Esempio n. 1
0
	void Collider3D::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
	{
		float inertiaMatrix[3];
		float origin[3];

		// Si nous n'avons aucune instance, nous en créons une temporaire
		if (m_handles.empty())
		{
			PhysWorld3D world;

			NewtonCollision* collision = CreateHandle(&world);
			{
				NewtonConvexCollisionCalculateInertialMatrix(collision, inertiaMatrix, origin);
			}
			NewtonDestroyCollision(collision);
		}
		else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
			NewtonConvexCollisionCalculateInertialMatrix(m_handles.begin()->second, inertiaMatrix, origin);

		if (inertia)
			inertia->Set(inertiaMatrix);

		if (center)
			center->Set(origin);
	}
	void Collider3D::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
	{
		float inertiaMatrix[3];
		float origin[3];

		// Check for existing collision handles, and create a temporary one if none is available
		if (m_handles.empty())
		{
			PhysWorld3D world;

			NewtonCollision* collision = CreateHandle(&world);
			{
				NewtonConvexCollisionCalculateInertialMatrix(collision, inertiaMatrix, origin);
			}
			NewtonDestroyCollision(collision);
		}
		else
			NewtonConvexCollisionCalculateInertialMatrix(m_handles.begin()->second, inertiaMatrix, origin);

		if (inertia)
			inertia->Set(inertiaMatrix);

		if (center)
			center->Set(origin);
	}
Esempio n. 3
0
NewtonBody* Body::create(NewtonCollision* collision, float mass, int freezeState, const Vec4f& damping)
{
	Vec4f minBox, maxBox;
	Vec4f origin, inertia;

	m_body = NewtonCreateBody(newton::world, collision, this->m_matrix[0]);

	NewtonBodySetUserData(m_body, this);
	NewtonBodySetMatrix(m_body, this->m_matrix[0]);
	NewtonConvexCollisionCalculateInertialMatrix(collision, &inertia[0], &origin[0]);

	if (mass < 0.0f)
		mass = NewtonConvexCollisionCalculateVolume(collision) * 0.5f;

	if (mass != 0.0f)
		NewtonBodySetMassMatrix(m_body, mass, mass * inertia.x, mass * inertia.y, mass * inertia.z);

	NewtonBodySetCentreOfMass(m_body, &origin[0]);

	NewtonBodySetForceAndTorqueCallback(m_body, Body::__applyForceAndTorqueCallback);
	NewtonBodySetTransformCallback(m_body, Body::__setTransformCallback);
	NewtonBodySetDestructorCallback(m_body, Body::__destroyBodyCallback);

	NewtonBodySetFreezeState(m_body, freezeState);
	NewtonBodySetLinearDamping(m_body, damping.w);
	NewtonBodySetAngularDamping(m_body, &damping[0]);

	return m_body;
}
Esempio n. 4
0
NewtonBody*	CPhysics::CreateRigidBody(NewtonWorld *world,  CObject3D *object, NewtonCollision *collision, float mass)
{
	object->UpdateMatrix();
	float matrix[16];
	object->matrixModel.FlattenToArray(matrix);
	Vector3 angles = object->rotation * ToRad;

	NewtonBody *body = NewtonCreateBody(world, collision, matrix);
	

	if (mass > 0)
	{
		float inertia[3], origin[3];
		NewtonConvexCollisionCalculateInertialMatrix (collision, &inertia[0], &origin[0]);	
		NewtonBodySetMassMatrix(body, mass, mass * inertia[0], mass * inertia[1], mass * inertia[2]);
		NewtonBodySetCentreOfMass(body, &origin[0]);
	}	

	NewtonBodySetUserData(body, object);
	NewtonBodySetTransformCallback(body, CPhysics::TransformCallback);
	NewtonBodySetDestructorCallback(body, CPhysics::DestroyBodyCallback);

	NewtonReleaseCollision(world, collision);
	
	return body;
}
	ShatterEffect(NewtonWorld* const world, NewtonMesh* const mesh, int interiorMaterial)
		:dList<ShatterAtom>(), m_world (world)
	{
		// first we populate the bounding Box area with few random point to get some interior subdivisions.
		// the subdivision are local to the point placement, by placing these points visual ally with a 3d tool
		// and have precise control of how the debris are created.
		// the number of pieces is equal to the number of point inside the Mesh plus the number of point on the mesh 
		dVector size;
		dMatrix matrix(GetIdentityMatrix()); 
		NewtonMeshCalculateOOBB(mesh, &matrix[0][0], &size.m_x, &size.m_y, &size.m_z);

		// pepper the inside of the BBox box of the mesh with random points
		int count = 0;
		dVector points[NUMBER_OF_ITERNAL_PARTS + 1];
		while (count < NUMBER_OF_ITERNAL_PARTS) {			
			dFloat x = RandomVariable(size.m_x);
			dFloat y = RandomVariable(size.m_y);
			dFloat z = RandomVariable(size.m_z);
			if ((x <= size.m_x) && (x >= -size.m_x) && (y <= size.m_y) && (y >= -size.m_y) && (z <= size.m_z) && (z >= -size.m_z)){
				points[count] = dVector (x, y, z);
				count ++;
			}
		} 

		// create a texture matrix, for applying the material's UV to all internal faces
		dMatrix textureMatrix (GetIdentityMatrix());
		textureMatrix[0][0] = 1.0f / size.m_x;
		textureMatrix[1][1] = 1.0f / size.m_y;

		// now we call create we decompose the mesh into several convex pieces 
		NewtonMesh* const debriMeshPieces = NewtonMeshVoronoiDecomposition (mesh, count, sizeof (dVector), &points[0].m_x, interiorMaterial, &textureMatrix[0][0]);


		// Get the volume of the original mesh
		NewtonCollision* const collision = NewtonCreateConvexHullFromMesh (m_world, mesh, 0.0f, 0);
		dFloat volume = NewtonConvexCollisionCalculateVolume (collision);
		NewtonReleaseCollision(m_world, collision);

		// now we iterate over each pieces and for each one we create a visual entity and a rigid body
		NewtonMesh* nextDebri;
		for (NewtonMesh* debri = NewtonMeshCreateFirstLayer (debriMeshPieces); debri; debri = nextDebri) {
			nextDebri = NewtonMeshCreateNextLayer (debriMeshPieces, debri); 

			NewtonCollision* const collision = NewtonCreateConvexHullFromMesh (m_world, debri, 0.0f, 0);
			if (collision) {
				ShatterAtom& atom = Append()->GetInfo();
				atom.m_mesh = new DemoMesh(debri);
				atom.m_collision = collision;
				NewtonConvexCollisionCalculateInertialMatrix (atom.m_collision, &atom.m_momentOfInirtia[0], &atom.m_centerOfMass[0]);	
				dFloat debriVolume = NewtonConvexCollisionCalculateVolume (atom.m_collision);
				atom.m_massFraction = debriVolume / volume;
			}
			NewtonMeshDestroy(debri);
		}

		NewtonMeshDestroy(debriMeshPieces);
	}
static void AddShatterEntity (DemoEntityManager* const scene, DemoMesh* const visualMesh, NewtonCollision* const collision, const ShatterEffect& shatterEffect, dVector location)
{
	dQuaternion rotation;
	SimpleShatterEffectEntity* const entity = new SimpleShatterEffectEntity (visualMesh, shatterEffect);
	entity->SetMatrix(*scene, rotation, location);
	entity->InterpolateMatrix (*scene, 1.0f);
	scene->Append(entity);

	dVector origin;
	dVector inertia;
	NewtonConvexCollisionCalculateInertialMatrix (collision, &inertia[0], &origin[0]);	

float mass = 10.0f;
int materialId = 0;

	dFloat Ixx = mass * inertia[0];
	dFloat Iyy = mass * inertia[1];
	dFloat Izz = mass * inertia[2];

	//create the rigid body
	dMatrix matrix (GetIdentityMatrix());
	matrix.m_posit = location;

	NewtonWorld* const world = scene->GetNewton();
	NewtonBody* const rigidBody = NewtonCreateBody (world, collision, &matrix[0][0]);


	entity->m_myBody = rigidBody;
	entity->m_myweight = dAbs (mass * DEMO_GRAVITY);

	// set the correct center of gravity for this body
	NewtonBodySetCentreOfMass (rigidBody, &origin[0]);

	// set the mass matrix
	NewtonBodySetMassMatrix (rigidBody, mass, Ixx, Iyy, Izz);

	// activate 
	//	NewtonBodyCoriolisForcesMode (blockBoxBody, 1);

	// save the pointer to the graphic object with the body.
	NewtonBodySetUserData (rigidBody, entity);

	// assign the wood id
	NewtonBodySetMaterialGroupID (rigidBody, materialId);

	//  set continue collision mode
	//	NewtonBodySetContinuousCollisionMode (rigidBody, continueCollisionMode);

	// set a destructor for this rigid body
	NewtonBodySetDestructorCallback (rigidBody, PhysicsBodyDestructor);

	// set the transform call back function
	NewtonBodySetTransformCallback (rigidBody, DemoEntity::SetTransformCallback);

	// set the force and torque call back function
	NewtonBodySetForceAndTorqueCallback (rigidBody, PhysicsApplyGravityForce);
}
Esempio n. 7
0
void NzBaseGeom::ComputeInertialMatrix(NzVector3f* inertia, NzVector3f* center) const
{
	float inertiaMatrix[3];
	float origin[3];

	NewtonConvexCollisionCalculateInertialMatrix(m_collision, inertiaMatrix, origin);

	if (inertia)
		inertia->Set(inertiaMatrix);

	if (center)
		center->Set(origin);
}
	static void AddFracturedEntity(DemoEntityManager* const scene, DemoMesh* const visualMesh, NewtonCollision* const collision, const FractureEffect& fractureEffect, const dVector& location)
	{
		dQuaternion rotation;
		SimpleFracturedEffectEntity* const entity = new SimpleFracturedEffectEntity(visualMesh, fractureEffect);
		entity->SetMatrix(*scene, rotation, location);
		entity->InterpolateMatrix(*scene, 1.0f);
		scene->Append(entity);

		dVector origin(0.0f);
		dVector inertia(0.0f);
		NewtonConvexCollisionCalculateInertialMatrix(collision, &inertia[0], &origin[0]);

		dFloat mass = 10.0f;
		int materialId = 0;

		//create the rigid body
		dMatrix matrix(dGetIdentityMatrix());
		matrix.m_posit = location;

		NewtonWorld* const world = scene->GetNewton();
		NewtonBody* const rigidBody = NewtonCreateDynamicBody(world, collision, &matrix[0][0]);

		entity->m_myBody = rigidBody;
		entity->m_myMassInverse = 1.0f / mass;

		// set the correct center of gravity for this body
		//NewtonBodySetCentreOfMass (rigidBody, &origin[0]);

		// set the mass matrix
		NewtonBodySetMassProperties(rigidBody, mass, collision);

		// save the pointer to the graphic object with the body.
		NewtonBodySetUserData(rigidBody, entity);

		// assign the wood id
		NewtonBodySetMaterialGroupID(rigidBody, materialId);

		//  set continuous collision mode
		//	NewtonBodySetContinuousCollisionMode (rigidBody, continueCollisionMode);

		// set a destructor for this rigid body
		NewtonBodySetDestructorCallback(rigidBody, PhysicsBodyDestructor);

		// set the transform call back function
		NewtonBodySetTransformCallback(rigidBody, DemoEntity::TransformCallback);

		// set the force and torque call back function
		NewtonBodySetForceAndTorqueCallback(rigidBody, PhysicsApplyGravityForce);
	}
Esempio n. 9
0
	void  cPhysicsBodyNewton::SetMass(float afMass)
	{
		cCollideShapeNewton *pShapeNewton = static_cast<cCollideShapeNewton*>(mpShape);
		
		cVector3f vInertia;// = pShapeNewton->GetInertia(afMass);
		cVector3f vOffset;

		NewtonConvexCollisionCalculateInertialMatrix(pShapeNewton->GetNewtonCollision(),
													vInertia.v, vOffset.v);
		vInertia = vInertia * afMass;

		NewtonBodySetCentreOfMass(mpNewtonBody,vOffset.v);

		NewtonBodySetMassMatrix(mpNewtonBody, afMass, vInertia.x, vInertia.y, vInertia.z);	
		mfMass = afMass;
	}
	DelaunayEffect(NewtonWorld* const world, NewtonMesh* const mesh, int interiorMaterial)
		:FractureEffect(world)
	{
		// first we populate the bounding Box area with few random point to get some interior subdivisions.
		// the subdivision are local to the point placement, by placing these points visual ally with a 3d tool
		// and have precise control of how the debris are created.
		// the number of pieces is equal to the number of point inside the Mesh plus the number of point on the mesh 
		dVector size(0.0f);
		dMatrix matrix(dGetIdentityMatrix());
		NewtonMeshCalculateOOBB(mesh, &matrix[0][0], &size.m_x, &size.m_y, &size.m_z);

		// create a texture matrix, for applying the material's UV to all internal faces
		dMatrix textureMatrix(dGetIdentityMatrix());
		textureMatrix[0][0] = 1.0f / size.m_x;
		textureMatrix[1][1] = 1.0f / size.m_y;

		// Get the volume of the original mesh
		NewtonCollision* const collision1 = NewtonCreateConvexHullFromMesh(m_world, mesh, 0.0f, 0);
		dFloat volume = NewtonConvexCollisionCalculateVolume(collision1);
		NewtonDestroyCollision(collision1);

		// now we call create we decompose the mesh into several convex pieces 
		NewtonMesh* const debriMeshPieces = NewtonMeshCreateTetrahedraIsoSurface(mesh);
		dAssert(debriMeshPieces);

		// now we iterate over each pieces and for each one we create a visual entity and a rigid body
		NewtonMesh* nextDebri;
		for (NewtonMesh* debri = NewtonMeshCreateFirstLayer(debriMeshPieces); debri; debri = nextDebri) {
			// get next segment piece
			nextDebri = NewtonMeshCreateNextLayer(debriMeshPieces, debri);
			
			//clip the Delaunay convexes against the mesh, make a convex hull collision shape
			NewtonCollision* const collision = NewtonCreateConvexHullFromMesh(m_world, debri, 0.0f, 0);
			if (collision) {
				// we have a piece which has a convex collision  representation, add that to the list
				FractureAtom& atom = Append()->GetInfo();
				atom.m_mesh = new DemoMesh(debri);
				atom.m_collision = collision;
				NewtonConvexCollisionCalculateInertialMatrix(atom.m_collision, &atom.m_momentOfInirtia[0], &atom.m_centerOfMass[0]);
				dFloat debriVolume = NewtonConvexCollisionCalculateVolume(atom.m_collision);
				atom.m_massFraction = debriVolume / volume;
			}
			NewtonMeshDestroy(debri);
		}

		NewtonMeshDestroy(debriMeshPieces);
	}
Esempio n. 11
0
/*
=============
CMod_PhysicsAddEntity
=============
*/
void CMod_PhysicsAddEntity(sharedEntity_t * gEnt) {
	NewtonCollision* collision = NULL;
	NewtonBody* body = NULL;

	std::map<int, bspCmodel>::iterator it = bspModels.find (gEnt->s.modelindex);
	if ( it == bspModels.end() ) {
		return;
	}
	
	vec3_t inertia, com;
	dMatrix matrix (GetIdentityMatrix());
	bspCmodel* bmodel = &it->second;
	
	collision = NewtonCreateConvexHull (g_world, bmodel->vertices.size(), &bmodel->vertices[0].m_x, sizeof (dVector), 0.0f, &matrix[0][0]);
	body = NewtonCreateBody (g_world, collision);
	NewtonConvexCollisionCalculateVolume (collision);
	NewtonReleaseCollision (g_world, collision);
	
	bmodel->rigidBody = body;

	NewtonBodySetMaterialGroupID (body, defaultMaterialGroup);
	NewtonBodySetUserData (body, (void*)gEnt);
	NewtonBodySetDestructorCallback (body, PhysicsEntityDie);
	NewtonBodySetContinuousCollisionMode (body, 0);
	NewtonBodySetForceAndTorqueCallback (body, PhysicsEntityThink);
	NewtonBodySetTransformCallback (body, PhysicsEntitySetTransform);
	
	NewtonConvexCollisionCalculateInertialMatrix (collision, &inertia[0], &com[0]);
	NewtonBodySetCentreOfMass (body, &com[0]);
	
	VectorScale (inertia, 10.0f, inertia); // The inertia needs to be scaled by the mass.
	
	NewtonBodySetMassMatrix (body, 10.f, inertia[0], inertia[1], inertia[2]);
	
	matrix.m_posit.m_x = gEnt->s.origin[0] * UNITS_PER_METRE;
	matrix.m_posit.m_y = gEnt->s.origin[1] * UNITS_PER_METRE;
	matrix.m_posit.m_z = gEnt->s.origin[2] * UNITS_PER_METRE;
	NewtonBodySetMatrix (body, &matrix[0][0]);
	
	gEnt->s.pos.trType = TR_INTERPOLATE;
	VectorCopy (gEnt->s.origin, gEnt->s.pos.trBase);
	VectorCopy (gEnt->s.origin, gEnt->r.currentOrigin);
	
	gEnt->s.apos.trType = TR_INTERPOLATE;
	VectorCopy (gEnt->s.angles, gEnt->s.apos.trBase);
	VectorCopy (gEnt->s.angles, gEnt->r.currentAngles);
}
Esempio n. 12
0
NewtonUserJoint* CreateRayCastCast (NewtonBody* body, SceneManager* sceneManager, dFloat tirePosit[4][3])
{
	dVector minBox;
	dVector maxBox;
	dVector origin(0, 0, 0, 1);
	dVector inertia(0, 0, 0, 1);
	NewtonUserJoint* carJoint;
	NewtonCollision* chassisCollision;

	// the first thing we need to do is to place the vehicle center of Mass on a stable position for a car

	// calculate the moment of inertia and the relative center of mass of the solid
	chassisCollision = NewtonBodyGetCollision(body);
	NewtonConvexCollisionCalculateInertialMatrix (chassisCollision, &inertia[0], &origin[0]);
	CalculateBoxdingBox (chassisCollision, minBox, maxBox);

	//displace the center of mass by some value
	origin.m_y -= 0.5f * (maxBox.m_y - minBox.m_y) * LOW_CENTER_OF_MASS_FACTOR;

	// now we Set a new center of mass for this car
	NewtonBodySetCentreOfMass (body, &origin[0]);


	// Next we need to set the internal coordinate system of the car geometry
	// this particular demo the car direction of motion is axis (1, 0, 0)
	// the car up direction (0, 1, 0);
	// the car lateral direction is the cross product of the front and vertical axis
	dMatrix chassisMatrix;
	chassisMatrix.m_front = dVector (1.0f, 0.0f, 0.0f, 0.0f);			// this is the vehicle direction of travel
	chassisMatrix.m_up	  = dVector (0.0f, 1.0f, 0.0f, 0.0f);			// this is the downward vehicle direction
	chassisMatrix.m_right = chassisMatrix.m_front * chassisMatrix.m_up;	// this is in the side vehicle direction (the plane of the wheels)
	chassisMatrix.m_posit = dVector (0.0f, 0.0f, 0.0f, 1.0f);

	// create a vehicle joint with 4 tires
	carJoint = DGRaycastVehicleCreate (4, &chassisMatrix[0][0], body);

	// we need to set a transform call back to render the tire entities
	DGRaycastVehicleSetTireTransformCallback (carJoint, TireTransformCallback);

	// now we will add four tires to this vehicle, 
	AddTire (carJoint, "leftTire.dat",  dVector (tirePosit[0][0], tirePosit[0][1], tirePosit[0][2], 0.0f), sceneManager);
	AddTire (carJoint, "rightTire.dat", dVector (tirePosit[1][0], tirePosit[1][1], tirePosit[1][2], 0.0f), sceneManager);
	AddTire (carJoint, "leftTire.dat",  dVector (tirePosit[2][0], tirePosit[2][1], tirePosit[2][2], 0.0f), sceneManager);
	AddTire (carJoint, "rightTire.dat", dVector (tirePosit[3][0], tirePosit[3][1], tirePosit[3][2], 0.0f), sceneManager);

	return carJoint;
}
Esempio n. 13
0
NewtonBody* CreateRigidBody (NewtonWorld* world, Entity* ent, NewtonCollision* collision, dFloat mass)
{
	dVector minBox;
	dVector maxBox;
	dVector origin;
	dVector inertia;
	NewtonBody* body;
 
	// Now with the collision Shape we can crate a rigid body
	body = NewtonCreateBody (world, collision);
 
	// bodies can have a destructor. 
	// this is a function callback that can be used to destroy any local data stored 
	// and that need to be destroyed before the body is destroyed. 
	NewtonBodySetDestructorCallback (body, DestroyBodyCallback);
 
	// save the entity as the user data for this body
	nEWTONbODySetUserData (body, ent);
 
	// we need to set physics properties to this body
	dMatrix matrix (ent->m_curRotation, ent->m_curPosition);
	NewtonBodySetMatrix (body, &matrix[0][0]);
 
	// we need to set the proper center of mass and inertia matrix for this body
	// the inertia matrix calculated by this function does not include the mass.
	// therefore it needs to be multiplied by the mass of the body before it is used.
	NewtonConvexCollisionCalculateInertialMatrix (collision, &inertia[0], &origin[0]);	
 
	// set the body mass matrix
	NewtonBodySetMassMatrix (body, mass, mass * inertia.m_x, mass * inertia.m_y, mass * inertia.m_z);
 
	// set the body origin
	NewtonBodySetCentreOfMass (body, &origin[0]);
 
	// set the function callback to apply the external forces and torque to the body
	// the most common force is Gravity
	NewtonBodySetForceAndTorqueCallback (body, ApplyForceAndTorqueCallback);
 
	// set the function callback to set the transformation state of the graphic entity associated with this body 
	// each time the body change position and orientation in the physics world
	NewtonBodySetTransformCallback (body, SetTransformCallback);
 
	return body;
}
Esempio n. 14
0
void Car::initPhysics() {

    NewtonWorld * nWorld = this->controller->getWorld();
    NewtonCollision* collision;
    float mass = 900.0f;

    vector3df v1 = this->carNode->getBoundingBox().MinEdge;
    vector3df v2 = this->carNode->getBoundingBox().MaxEdge;

    dVector minBox(v1.X, v1.Y, v1.Z);
    dVector maxBox(v2.X, v2.Y, v2.Z);

    dVector size(maxBox - minBox);
    dVector origin((maxBox + minBox).Scale(0.5f));

    size.m_w = 1.0f;
    origin.m_w = 1.0f;

    dMatrix offset(GetIdentityMatrix());
    offset.m_posit = origin;

    collision = NewtonCreateBox(nWorld, size.m_x, size.m_y, size.m_z, 0, &offset[0][0]);

    dVector inertia;

    matrix4 m = this->carNode->getRelativeTransformation();
    NewtonConvexHullModifierSetMatrix(collision, m.pointer());
    NewtonBody * body = NewtonCreateBody(nWorld, collision, m.pointer());
    NewtonBodySetUserData(body, this);
    NewtonConvexCollisionCalculateInertialMatrix(collision, &inertia[0], &origin[0]);
    NewtonBodySetMassMatrix(body, mass, mass * inertia.m_x, mass * inertia.m_y, mass * inertia.m_z);
    NewtonBodySetCentreOfMass(body, &origin[0]);
    NewtonBodySetForceAndTorqueCallback(body, applyCarMoveForce);
    NewtonBodySetTransformCallback(body, applyCarTransform);
    int matId = NewtonMaterialGetDefaultGroupID(nWorld);
    NewtonMaterialSetCollisionCallback(nWorld, matId, matId, this, 0, applyCarCollisionForce);

    NewtonReleaseCollision(nWorld, collision);
    this->setCarBodyAndGravity(body, dVector(0,-10,0,0));
    this->setLocalCoordinates(this->createChassisMatrix());
}
void RigidBodyUIPane::SetSelectionMass (dFloat mass)
{
	RigidBodyWorldDesc* const plugin = (RigidBodyWorldDesc*) RigidBodyWorldDesc::GetDescriptor();
	Interface* const ip = GetCOREInterface();
	int selectionCount = ip->GetSelNodeCount();
	for (int i = 0; i < selectionCount; i ++) {
		INode* const node = ip->GetSelNode(i);
		RigidBodyController* const bodyInfo = (RigidBodyController*)plugin->GetRigidBodyControl(node);
		if (bodyInfo) {
			bodyInfo->m_mass = mass;
			_ASSERTE (bodyInfo->m_body);

//			dVector inertia (bodyInfo->m_inertia.Scale (mass));
//			NewtonBodySetMassMatrix(bodyInfo->m_body, mass, inertia.m_x, inertia.m_y, inertia.m_z);

			NewtonCollisionInfoRecord info;
			NewtonCollision* const collision = NewtonBodyGetCollision(bodyInfo->m_body);
			NewtonCollisionGetInfo (collision, &info);

			switch (info.m_collisionType)
			{
				case SERIALIZE_ID_BOX:
				case SERIALIZE_ID_CONE:
				case SERIALIZE_ID_SPHERE:
				case SERIALIZE_ID_CAPSULE:
				case SERIALIZE_ID_CYLINDER:
				case SERIALIZE_ID_COMPOUND:
				case SERIALIZE_ID_CONVEXHULL:
				case SERIALIZE_ID_CONVEXMODIFIER:
				case SERIALIZE_ID_CHAMFERCYLINDER:
				{
					NewtonConvexCollisionCalculateInertialMatrix (collision, &bodyInfo->m_inertia[0], &bodyInfo->m_origin[0]);	

					NewtonBodySetCentreOfMass(bodyInfo->m_body, &bodyInfo->m_origin[0]);
					NewtonBodySetMassMatrix(bodyInfo->m_body, bodyInfo->m_mass, bodyInfo->m_mass * bodyInfo->m_inertia.m_x, bodyInfo->m_mass * bodyInfo->m_inertia.m_y, bodyInfo->m_mass * bodyInfo->m_inertia.m_z);
				}
			}
		}
	}
}
Esempio n. 16
0
Car::Car(const ion::base::String& identifier,NewtonWorld *pWorld,const ion::video::Mesh& srcmesh,const float mass,
		 const float Ixx,const float Iyy,const float Izz):Node(identifier),m_pNewtonChassisCollision(0),m_pBody(0),
		 m_pNewtonworld(pWorld),m_pNewtonJoint(0)
{
	if (pWorld==0) {
		ion::base::log("Car::Car()",ion::base::Error) << "No NewtonWorld pointer given\n";
		return;
	}

	if (!srcmesh.isValid()) {
		ion::base::log("Car::Car()",ion::base::Error) << "Source mesh is invalid\n";
		return;
	}

	if (!srcmesh.vertexstream().isMapped()) {
		ion::base::log("Car::Car()",ion::base::Error) << "source mesh \"" << srcmesh.objIdentifier() << " is not mapped!\n";
		return;
	}


	if ((m_pNewtonChassisCollision!=0) && (m_pNewtonworld!=0))
		NewtonReleaseCollision(m_pNewtonworld,m_pNewtonChassisCollision);

	float *pPoints;
	{
		pPoints=new float[3*srcmesh.vertexstream().capacity()];
		for (ion_uint32 v=0;v<srcmesh.vertexstream().capacity();++v) {
			const ion::math::Vector3f &rV=srcmesh.vertexstream().position(v);
			pPoints[v*3+0]=rV.x();
			pPoints[v*3+1]=rV.y();
			pPoints[v*3+2]=rV.z();
		}
	}

	ion::math::Matrix4f c;

	m_pNewtonworld=pWorld;
	m_pNewtonChassisCollision=NewtonCreateConvexHull(m_pNewtonworld,srcmesh.vertexstream().capacity(),pPoints,12,c);
	m_pBody=NewtonCreateBody(m_pNewtonworld,m_pNewtonChassisCollision);
	NewtonBodySetUserData(m_pBody,this);

	ion::math::Vector3f origin,inertia;

	// calculate the moment of inertia and the relative center of mass of the solid
	NewtonConvexCollisionCalculateInertialMatrix (m_pNewtonChassisCollision, &inertia[0], &origin[0]);	

	float ixx = mass * inertia[0];
	float iyy = mass * inertia[1];
	float izz = mass * inertia[2];

	// set the mass matrix
	NewtonBodySetMassMatrix (m_pBody, mass, ixx, iyy, izz);

	origin.y()=-1;
	NewtonBodySetCentreOfMass (m_pBody, &origin[0]);

	NewtonBodySetMatrix(m_pBody,localTransform().matrix());

	NewtonReleaseCollision(m_pNewtonworld,m_pNewtonChassisCollision);

	NewtonBodySetTransformCallback (m_pBody, physicsSetTransform);
	NewtonBodySetForceAndTorqueCallback (m_pBody, physicsApplyForceAndTorque);

	float updir[3]={0,1,0};

	m_pNewtonJoint=NewtonConstraintCreateVehicle(m_pNewtonworld,&updir[0],m_pBody);
	NewtonVehicleSetTireCallback(m_pNewtonJoint,tireUpdate);

	delete [] pPoints;
}
	VoronoidEffect(NewtonWorld* const world, NewtonMesh* const mesh, int interiorMaterial)
		:FractureEffect(world)
	{
		// first we populate the bounding Box area with few random point to get some interior subdivisions.
		// the subdivision are local to the point placement, by placing these points visual ally with a 3d tool
		// and have precise control of how the debris are created.
		// the number of pieces is equal to the number of point inside the Mesh plus the number of point on the mesh 
		dVector size(0.0f);
		dMatrix matrix(dGetIdentityMatrix());
		NewtonMeshCalculateOOBB(mesh, &matrix[0][0], &size.m_x, &size.m_y, &size.m_z);

		dVector points[NUMBER_OF_INTERNAL_PARTS + 8];

		int count = 0;
		// pepper the inside of the BBox box of the mesh with random points
		while (count < NUMBER_OF_INTERNAL_PARTS) {
			dFloat x = dGaussianRandom (size.m_x);
			dFloat y = dGaussianRandom (size.m_y);
			dFloat z = dGaussianRandom (size.m_z);
			if ((x <= size.m_x) && (x >= -size.m_x) && (y <= size.m_y) && (y >= -size.m_y) && (z <= size.m_z) && (z >= -size.m_z)) {
				points[count] = dVector(x, y, z);
				count++;
			}
		}

		// add the bounding box as a safeguard area
		points[count + 0] = dVector(size.m_x, size.m_y, size.m_z, 0.0f);
		points[count + 1] = dVector(size.m_x, size.m_y, -size.m_z, 0.0f);
		points[count + 2] = dVector(size.m_x, -size.m_y, size.m_z, 0.0f);
		points[count + 3] = dVector(size.m_x, -size.m_y, -size.m_z, 0.0f);
		points[count + 4] = dVector(-size.m_x, size.m_y, size.m_z, 0.0f);
		points[count + 5] = dVector(-size.m_x, size.m_y, -size.m_z, 0.0f);
		points[count + 6] = dVector(-size.m_x, -size.m_y, size.m_z, 0.0f);
		points[count + 7] = dVector(-size.m_x, -size.m_y, -size.m_z, 0.0f);
		count += 8;


		// create a texture matrix, for applying the material's UV to all internal faces
		dMatrix textureMatrix(dGetIdentityMatrix());
		textureMatrix[0][0] = 1.0f / size.m_x;
		textureMatrix[1][1] = 1.0f / size.m_y;

		// Get the volume of the original mesh
		NewtonCollision* const collision1 = NewtonCreateConvexHullFromMesh(m_world, mesh, 0.0f, 0);
		dFloat volume = NewtonConvexCollisionCalculateVolume(collision1);
		NewtonDestroyCollision(collision1);

		// now we call create we decompose the mesh into several convex pieces 
		NewtonMesh* const debriMeshPieces = NewtonMeshCreateVoronoiConvexDecomposition(m_world, count, &points[0].m_x, sizeof (dVector), interiorMaterial, &textureMatrix[0][0]);
		dAssert(debriMeshPieces);

		// now we iterate over each pieces and for each one we create a visual entity and a rigid body
		NewtonMesh* nextDebri;
		for (NewtonMesh* debri = NewtonMeshCreateFirstLayer(debriMeshPieces); debri; debri = nextDebri) {
			// get next segment piece
			nextDebri = NewtonMeshCreateNextLayer(debriMeshPieces, debri);

			//clip the voronoi convexes against the mesh 
			NewtonMesh* const fracturePiece = NewtonMeshConvexMeshIntersection(mesh, debri);
			if (fracturePiece) {
				// make a convex hull collision shape
				NewtonCollision* const collision = NewtonCreateConvexHullFromMesh(m_world, fracturePiece, 0.0f, 0);
				if (collision) {
					// we have a piece which has a convex collision  representation, add that to the list
					FractureAtom& atom = Append()->GetInfo();
					atom.m_mesh = new DemoMesh(fracturePiece);
					atom.m_collision = collision;
					NewtonConvexCollisionCalculateInertialMatrix(atom.m_collision, &atom.m_momentOfInirtia[0], &atom.m_centerOfMass[0]);
					dFloat debriVolume = NewtonConvexCollisionCalculateVolume(atom.m_collision);
					atom.m_massFraction = debriVolume / volume;
				}
				NewtonMeshDestroy(fracturePiece);
			}

			NewtonMeshDestroy(debri);
		}

		NewtonMeshDestroy(debriMeshPieces);
	}
static void CreateDebriPiece (const NewtonBody* sourceBody, NewtonMesh* mesh, dFloat volume)
{
	dFloat Ixx;
	dFloat Iyy;
	dFloat Izz;
	dFloat mass;
	dFloat shapeVolume;
	NewtonWorld* world;
	NewtonBody* rigidBody;
	NewtonCollision* collision;
	OGLMesh* meshInstance;
	SceneManager* system;
	RenderPrimitive* primitive;
	dVector inertia;
	dVector origin;
	dVector veloc;
	dVector omega;
	dMatrix matrix;

	world = NewtonBodyGetWorld (sourceBody);

	NewtonBodyGetMatrix (sourceBody, &matrix[0][0]);

	NewtonBodyGetMassMatrix (sourceBody, &mass, &Ixx, &Iyy, &Izz);

	// make a visual object
	meshInstance = new OGLMesh();

	meshInstance->BuildFromMesh (mesh);

	// create a visual geometry
	primitive = new RenderPrimitive (matrix, meshInstance);
	meshInstance->Release();

	// save the graphics system
	system = (SceneManager*) NewtonWorldGetUserData(world);
	system->AddModel (primitive);

	collision = NewtonCreateConvexHullFromMesh (world, mesh, 0.1f, DEBRI_ID);

	// calculate the moment of inertia and the relative center of mass of the solid
	shapeVolume = NewtonConvexCollisionCalculateVolume (collision);
	NewtonConvexCollisionCalculateInertialMatrix (collision, &inertia[0], &origin[0]);	

	mass = mass * shapeVolume / volume;
	Ixx = mass * inertia[0];
	Iyy = mass * inertia[1];
	Izz = mass * inertia[2];

	//create the rigid body
	rigidBody = NewtonCreateBody (world, collision);

	// set the correct center of gravity for this body
	NewtonBodySetCentreOfMass (rigidBody, &origin[0]);

	// set the mass matrix
	NewtonBodySetMassMatrix (rigidBody, mass, Ixx, Iyy, Izz);

	// save the pointer to the graphic object with the body.
	NewtonBodySetUserData (rigidBody, primitive);

	// assign the wood id
//	NewtonBodySetMaterialGroupID (rigidBody, NewtonBodyGetMaterialGroupID(source));

	// set continue collision mode
	NewtonBodySetContinuousCollisionMode (rigidBody, 1);

	// set a destructor for this rigid body
	NewtonBodySetDestructorCallback (rigidBody, PhysicsBodyDestructor);

	// set the transform call back function
	NewtonBodySetTransformCallback (rigidBody, PhysicsSetTransform);

	// set the force and torque call back function
	NewtonBodySetForceAndTorqueCallback (rigidBody, PhysicsApplyGravityForce);

	// set the matrix for both the rigid body and the graphic body
	NewtonBodySetMatrix (rigidBody, &matrix[0][0]);
	PhysicsSetTransform (rigidBody, &matrix[0][0], 0);

	NewtonBodyGetVelocity(sourceBody, &veloc[0]);
	NewtonBodyGetOmega(sourceBody, &omega[0]);
	veloc += omega * matrix.RotateVector(origin);

// for now so that I can see the body
veloc = dVector (0, 0, 0, 0);
//	omega = dVector (0, 0, 0, 0);

	NewtonBodySetVelocity(rigidBody, &veloc[0]);
	NewtonBodySetOmega(rigidBody, &omega[0]);

	NewtonReleaseCollision(world, collision);

}
static void AddStructuredFractured (DemoEntityManager* const scene, const dVector& origin, int materialID, const char* const assetName)
{
	// create the shape and visual mesh as a common data to be re used
	NewtonWorld* const world = scene->GetNewton();


#if 0
	// load the mesh asset
	DemoEntity entity(GetIdentityMatrix(), NULL);	
	entity.LoadNGD_mesh (assetName, world);
	DemoMesh____* const mesh = entity.GetMesh();
	dAssert (mesh);

	// convert the mesh to a newtonMesh
	NewtonMesh* const solidMesh = mesh->CreateNewtonMesh (world, entity.GetMeshMatrix() * entity.GetCurrentMatrix());
#else
	int externalMaterial = LoadTexture("wood_0.tga");
	NewtonCollision* const collision = CreateConvexCollision (world, dGetIdentityMatrix(), dVector (3.0f, 3.0f, 3.0f, 0.0), _BOX_PRIMITIVE, 0);
	NewtonMesh* const solidMesh = NewtonMeshCreateFromCollision(collision);
	NewtonDestroyCollision(collision);
	//NewtonMeshTriangulate(solidMesh);
	NewtonMeshApplyBoxMapping (solidMesh, externalMaterial, externalMaterial, externalMaterial);
#endif


	// create a random point cloud
	dVector points[MAX_POINT_CLOUD_SIZE];
	int pointCount = MakeRandomPoisonPointCloud (solidMesh, points);
//	int pointCount = MakeRandomGuassianPointCloud (solidMesh, points, MAX_POINT_CLOUD_SIZE);

	// create and interiors material for texturing the fractured pieces
	//int internalMaterial = LoadTexture("KAMEN-stup.tga");
	int internalMaterial = LoadTexture("concreteBrick.tga");

	// crate a texture matrix for uv mapping of fractured pieces
	dMatrix textureMatrix (dGetIdentityMatrix());
	textureMatrix[0][0] = 1.0f / 2.0f;
	textureMatrix[1][1] = 1.0f / 2.0f;

	/// create the fractured collision and mesh
	int debreePhysMaterial = NewtonMaterialGetDefaultGroupID(world);
	NewtonCollision* structuredFracturedCollision = NewtonCreateFracturedCompoundCollision (world, solidMesh, 0, debreePhysMaterial, pointCount, &points[0][0], sizeof (dVector), internalMaterial, &textureMatrix[0][0],
																							OnReconstructMainMeshCallBack, OnEmitFracturedCompound, OnEmitFracturedChunk);

// uncomment this to test serialization
#if 0
	FILE* file = fopen ("serialize.bin", "wb");
	NewtonCollisionSerialize (world, structuredFracturedCollision, DemoEntityManager::SerializeFile, file);
	NewtonDestroyCollision (structuredFracturedCollision);
	fclose (file);

	file = fopen ("serialize.bin", "rb");
	structuredFracturedCollision = NewtonCreateCollisionFromSerialization (world, DemoEntityManager::DeserializeFile, file);
	NewtonFracturedCompoundSetCallbacks (structuredFracturedCollision, OnReconstructMainMeshCallBack, OnEmitFracturedCompound, OnEmitFracturedChunk);
	fclose (file);
#endif	

#if 0
	// test the interface
	dTree<void*, void*> detachableNodes;
	NewtonCompoundCollisionBeginAddRemove(structuredFracturedCollision);	

	// remove all chunk that can be detached for the first layer
	for (void* node = NewtonCompoundCollisionGetFirstNode(structuredFracturedCollision); node; node = NewtonCompoundCollisionGetNextNode(structuredFracturedCollision, node)) { 
		if (NewtonFracturedCompoundIsNodeFreeToDetach (structuredFracturedCollision, node)) {
			detachableNodes.Insert(node, node);
		}

		// remove any node that can be deched fro the secund layer, this codul; be reusive
		void* neighbors[32];
		int count = NewtonFracturedCompoundNeighborNodeList (structuredFracturedCollision, node, neighbors, sizeof (neighbors) / sizeof (neighbors[0]));
		for (int i = 0; i < count; i ++ ) {
			if (NewtonFracturedCompoundIsNodeFreeToDetach (structuredFracturedCollision, neighbors[i])) {
				detachableNodes.Insert(node, node);
			}
		}
	}

	// now delete the actual nodes
	dTree<void*, void*>::Iterator iter (detachableNodes) ;
	for (iter.Begin(); iter; iter ++) { 
		void* const node = iter.GetNode()->GetInfo(); 
		NewtonCompoundCollisionRemoveSubCollision (structuredFracturedCollision, node);
	}
	NewtonCompoundCollisionEndAddRemove(structuredFracturedCollision);	
#endif
	
#if 1
	dVector plane (0.0f, 1.0f, 0.0f, 0.0f);
	NewtonCollision* const crack = NewtonFracturedCompoundPlaneClip (structuredFracturedCollision, &plane[0]);
	if (crack) {
		NewtonDestroyCollision (structuredFracturedCollision);
	}
#endif




    dVector com(0.0f);
    dVector inertia(0.0f);
    NewtonConvexCollisionCalculateInertialMatrix (structuredFracturedCollision, &inertia[0], &com[0]);	

    //dFloat mass = 10.0f;
    //int materialId = 0;
    //create the rigid body
	dMatrix matrix (dGetIdentityMatrix());
	matrix.m_posit = origin;
	matrix.m_posit.m_y = 20.0;
	matrix.m_posit.m_w = 1.0f;
    NewtonBody* const rigidBody = NewtonCreateDynamicBody (world, structuredFracturedCollision, &matrix[0][0]);

	// set the mass and center of mass
	dFloat density = 1.0f;
	dFloat mass = density * NewtonConvexCollisionCalculateVolume (structuredFracturedCollision);
	NewtonBodySetMassProperties (rigidBody, mass, structuredFracturedCollision);


	// set the transform call back function
	NewtonBodySetTransformCallback (rigidBody, DemoEntity::TransformCallback);

	// set the force and torque call back function
	NewtonBodySetForceAndTorqueCallback (rigidBody, PhysicsApplyGravityForce);

	// create the entity and visual mesh and attach to the body as user data
	CreateVisualEntity (scene, rigidBody);

    // assign the wood id
//    NewtonBodySetMaterialGroupID (rigidBody, materialId);

    // set a destructor for this rigid body
//    NewtonBodySetDestructorCallback (rigidBody, PhysicsBodyDestructor);

	// release the interior texture
//	ReleaseTexture (internalMaterial);

	// delete the solid mesh since it no longed needed
	NewtonMeshDestroy (solidMesh);

	// destroy the fracture collision
	NewtonDestroyCollision (structuredFracturedCollision);
}
int CustomMultiBodyVehicle::AddSingleSuspensionTire (
    void* userData,
    const dVector& localPosition,
    dFloat mass,
    dFloat radius,
    dFloat width,
    dFloat suspensionLength,
    dFloat springConst,
    dFloat springDamper)
{
    dFloat Ixx;
    dFloat Iyy;
    dFloat Izz;
    dMatrix carMatrix;
    NewtonBody* tire;
    NewtonWorld* world;
    NewtonCollision *collision;

    world = NewtonBodyGetWorld(GetBody0());

    // create the tire RogidBody
    collision = NewtonCreateChamferCylinder(world, radius, width, 0, NULL);

    //create the rigid body
    tire = NewtonCreateBody (world, collision);

    // release the collision
    NewtonReleaseCollision (world, collision);

    // save the user data
    NewtonBodySetUserData (tire, userData);

    // set the material group id for vehicle
    NewtonBodySetMaterialGroupID (tire, 0);
//	NewtonBodySetMaterialGroupID (tire, woodID);

    // set the force and torque call back function
    NewtonBodySetForceAndTorqueCallback (tire, NewtonBodyGetForceAndTorqueCallback (GetBody0()));

    // body part do not collision
    NewtonBodySetJointRecursiveCollision (tire, 0);

    // calculate the moment of inertia and the relative center of mass of the solid
    dVector origin;
    dVector inertia;
    NewtonConvexCollisionCalculateInertialMatrix (collision, &inertia[0], &origin[0]);
    Ixx = mass * inertia[0];
    Iyy = mass * inertia[1];
    Izz = mass * inertia[2];

    // set the mass matrix
    NewtonBodySetMassMatrix (tire, mass, Ixx, Iyy, Izz);

    // calculate the tire local base pose matrix
    dMatrix tireMatrix;
    tireMatrix.m_front = m_localFrame.m_right;
    tireMatrix.m_up = m_localFrame.m_up;
    tireMatrix.m_right = tireMatrix.m_front * tireMatrix.m_up;
    tireMatrix.m_posit = localPosition;
    NewtonBodyGetMatrix(GetBody0(), &carMatrix[0][0]);
    tireMatrix = tireMatrix * carMatrix;

    // set the matrix for both the rigid body and the graphic body
    NewtonBodySetMatrix (tire, &tireMatrix[0][0]);

    // add a single tire
    m_tires[m_tiresCount] = new CustomMultiBodyVehicleTire (GetBody0(), tire, suspensionLength, springConst, springDamper, radius);
    m_tiresCount ++;

    return m_tiresCount - 1;
}