Esempio n. 1
0
File: PWM.c Progetto: sdajani/sdp
/****************************************************************************
 Function
     PWM_init

 Parameters
    Channels, used #defined PWM_PORTxxx OR'd together for each PWM Channel
    Period, An integer representing the frequency in hertz


 Returns
     SUCCESS or ERROR

 Description
 Initializes the OC channels into PWM mode and sets up the channels at frequncy given
 Notes
     None.

 Author
 Max Dunne, 2011.11.12
 ****************************************************************************/
char PWM_init(unsigned char Channels, unsigned int Period) {
    if ((Channels < 1) || (Channels > 0x1F) || (usedChannels != 0))
        return ERROR;
    if (Period <= 1000) {
        OpenTimer2(T2_ON | T2_PS_1_32, F_PB / 32 / Period);
        dbprintf("Period less than 1KHz, setting prescaler to 32");
    } else {
        OpenTimer2(T2_ON | T2_PS_1_1, F_PB / Period);
        dbprintf("Period greater than 1KHz, setting prescaler to 1");
    }
    usedChannels = Channels;
    if (PWM_PORTZ06 & Channels) {
        OpenOC1(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0);
        dbprintf("Port Z6 Initialized\r\n");
    }
    if (PWM_PORTY12 & Channels) {
        OpenOC2(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0);
        dbprintf("Port Y12 Initialized\r\n");
    }
    if (PWM_PORTY10 & Channels) {
        OpenOC3(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0);
        dbprintf("Port Y10 Initialized\r\n");
    }
    if (PWM_PORTY04 & Channels) {
        OpenOC4(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0);
        dbprintf("Port Y4 Initialized\r\n");
    }
    if (PWM_PORTX11 & Channels) {
        OpenOC5(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0);
        dbprintf("Port X11 Initialized\r\n");
    }
}
Esempio n. 2
0
File: PWM.c Progetto: gpeal/Sherman
void setupPWM(int outputControlX)
{

    switch(outputControlX)
    {
        case 1:
            OpenOC1(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); // PWM output on Pin D0, 0 duty cycle
            break;
        case 2:
            OpenOC2(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); // PWM output on Pin D0, 0 duty cycle
            break;
        case 3:
            OpenOC3(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); // PWM output on Pin D0, 0 duty cycle
            break;
        case 4:
            OpenOC4(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); // PWM output on Pin D0, 0 duty cycle
            break;
        case 5:
            OpenOC5(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); // PWM output on Pin D0, 0 duty cycle
            break;
        default:
            OpenOC1(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); // PWM output on Pin D0, 0 duty cycle
            break;
    }

}
Esempio n. 3
0
// setup timers and initialize motors to off
void MotorInit(void)
{
    int i;

    M1_FORWARD_TRIS = OUTPUT_PIN;
    M1_FORWARD_IO = 0;
    M1_BACKWARD_TRIS = OUTPUT_PIN;
    M1_BACKWARD_IO = 0;
    M2_FORWARD_TRIS = OUTPUT_PIN;
    M2_FORWARD_IO = 0;
    M2_BACKWARD_TRIS = OUTPUT_PIN;
    M2_BACKWARD_IO = 0;
    M3_FORWARD_TRIS = OUTPUT_PIN;
    M3_FORWARD_IO = 0;
    M3_BACKWARD_TRIS = OUTPUT_PIN;
    M3_BACKWARD_IO = 0;
    M4_FORWARD_TRIS = OUTPUT_PIN;
    M4_FORWARD_IO = 0;
    M4_BACKWARD_TRIS = OUTPUT_PIN;
    M4_BACKWARD_IO = 0;

    OpenOC1(OC_ON | OC_TIMER3_SRC | OC_PWM_FAULT_PIN_DISABLE,2560,2560);
    OpenOC2(OC_ON | OC_TIMER3_SRC | OC_PWM_FAULT_PIN_DISABLE,2560,2560);
    OpenOC3(OC_ON | OC_TIMER3_SRC | OC_PWM_FAULT_PIN_DISABLE,2560,2560);
    //OpenOC4(OC_ON | OC_TIMER3_SRC | OC_PWM_FAULT_PIN_DISABLE,2560,2560);
    OpenTimer3(T3_ON | T3_PS_1_1, MOTOR_TIMER_PERIOD);

}
Esempio n. 4
0
int32_t main(void)
{
    DDPCONbits.JTAGEN = 0; // Disable the JTAG programming port

    /*
    SYS_CFG_WAIT_STATES (configures flash wait states from system clock)
    SYS_CFG_PB_BUS (configures the PB bus from the system clock)
    SYS_CFG_PCACHE (configures the pCache if used)
    SYS_CFG_ALL (configures the flash wait states, PB bus, and pCache)*/

    /* TODO Add user clock/system configuration code if appropriate.  */
    SYSTEMConfig(SYS_FREQ, SYS_CFG_ALL); 
    
    
    /*Configure Multivector Interrupt Mode.  Using Single Vector Mode
    is expensive from a timing perspective, so most applications
    should probably not use a Single Vector Mode*/
    INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR);

    /* TODO <INSERT USER APPLICATION CODE HERE> */

    
    

    

    // initialise the IO pins and PWM outputs
    TRISD = 0;
    pickerBusTRIS = 0x00;
    pickerBus = 0x00;

    OpenOC1( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); // vibration motor
    OpenOC2( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); // head led
    OpenOC3( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); // base led
    OpenTimer2( T2_ON | T2_PS_1_4 | T2_SOURCE_INT, 1024);
    SetDCOC1PWM(0);
    SetDCOC2PWM(0);
    SetDCOC3PWM(0);

    setVac1off;
    setVac2off;
    

    USBOutHandle = 0;
    USBInHandle = 0;
    USBDeviceInit();	//usb_device.c.  Initializes USB module SFRs and firmware

    USBDeviceAttach();
    
    init_component_picker();

    /*while(1)
    {
        LATBbits.LATB0 = feederXHome;
        LATBbits.LATB1 = feederZHome;
        //ProcessIO();
    }*/
}
Esempio n. 5
0
/**
 * Backlight is open drain on pin D2, controlled by OC4, using Timer 3
 * Contrast uses normal CMOS with OC3, also driven by Timer 3
 */
void lcd_init(void) {
	//Set backlight to open drain
	mPORTDOpenDrainOpen( BIT_2 );

	//Start the timer for contrast/brightness PWM
	OpenTimer3(T3_ON, LCD_PWMPERIOD);

	//Enable contrast control
	OpenOC3( OC_ON | OC_TIMER_MODE16 | OC_TIMER3_SRC | OC_CONTINUE_PULSE | OC_LOW_HIGH , LCD_PWMPERIOD, 0x500 );

	//Enable brightness control
	OpenOC4( OC_ON | OC_TIMER_MODE16 | OC_TIMER3_SRC | OC_CONTINUE_PULSE | OC_LOW_HIGH , LCD_PWMPERIOD, 0x500 );
}
void setupPWMForIR()
{
    // init OC3 module
    OpenOC3(OC_OFF | OC_TIMER3_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0);

    // init Timer3 mode and period (PR2) 40 kHz freq: 1 / 40 kHz = (X + 1) / 80MHz * 1
    //80 000 / 20 = X + 1 = 3999
    //80 000 / 38 = X + 1 = 2104
    //80 000 / 36 = X + 1 = 2221
    //80 000 / 40 = X + 1 = 2001
    OpenTimer3(T3_ON | T3_PS_1_1 | T3_SOURCE_INT, MAX_DUTY);

    SetDCOC3PWM(PR3 / 2);
}
Esempio n. 7
0
void Initialize_OC()
{
    UnlockRP;
    _RP10R = 0b10010; //Tie OC1 to RP10 (PWM1)
    _RP11R = 0b10011; //Tie OC2 to RP11 (PWM2)
    _RP12R = 0b10100; //Tie OC3 to RP12 (PWM3)
    _RP13R = 0b10101; //Tie OC4 to RP13 (PWM4)
    LockRP;

    OpenOC1(OC_IDLE_CON & OC_TIMER3_SRC & OC_OFF, 1000, 0);
    OpenOC2(OC_IDLE_CON & OC_TIMER3_SRC & OC_OFF, 1000, 0);
    OpenOC3(OC_IDLE_CON & OC_TIMER3_SRC & OC_OFF, 1000, 0);
    OpenOC4(OC_IDLE_CON & OC_TIMER3_SRC & OC_OFF, 1000, 0); //dans l'ordre OCxRS et OCxR

    ConfigIntOC1(OC_INT_OFF & OC_INT_PRIOR_2);
    ConfigIntOC2(OC_INT_OFF & OC_INT_PRIOR_2);
    ConfigIntOC3(OC_INT_OFF & OC_INT_PRIOR_2);
    ConfigIntOC4(OC_INT_OFF & OC_INT_PRIOR_2);
}
Esempio n. 8
0
//*********************************************************************
//*	PWM output only works on the pins with hardware support. 
//*	These are defined in the appropriate pins_*.c file.
//*	For the rest of the pins, we default to digital output.
//*********************************************************************
void analogWrite(uint8_t pin, int val)
{

	// We need to make sure the PWM output is enabled for those pins
	// that support it, as we turn it off when digitally reading or
	// writing with them.  Also, make sure the pin is in output mode
	// for consistenty with Wiring, which doesn't require a pinMode
	// call for the analog output pins.
	pinMode(pin, OUTPUT);
	if (val == 0)
	{
		digitalWrite(pin, LOW);
	}
	else if (val == 255)
	{
		digitalWrite(pin, HIGH);
	}
	else
	{
		switch(digitalPinToTimer(pin))
		{
		#ifdef _OCMP1
			case TIMER_OC1:
				//* Open Timer2 with Period register value
				OpenTimer2(T2_ON | T2_PS_1_256, PWM_TIMER_PERIOD);
				OpenOC1( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, (PWM_TIMER_PERIOD*val)/256, (PWM_TIMER_PERIOD*val)/256  );
				//Set duty cycle on fly
				SetDCOC1PWM((PWM_TIMER_PERIOD*val)/256);
				break;
		#endif

		#ifdef _OCMP2
			case TIMER_OC2:
				//* Open Timer2 with Period register value
				OpenTimer2(T2_ON | T2_PS_1_256, PWM_TIMER_PERIOD);
				OpenOC2( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, (PWM_TIMER_PERIOD*val)/256, (PWM_TIMER_PERIOD*val)/256  );
				//Set duty cycle on fly
				SetDCOC2PWM((PWM_TIMER_PERIOD*val)/256);
				break;
		#endif

		#ifdef _OCMP3
			case TIMER_OC3:
				//* Open Timer2 with Period register value
				OpenTimer2(T2_ON | T2_PS_1_256, PWM_TIMER_PERIOD);
				OpenOC3( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, (PWM_TIMER_PERIOD*val)/256, (PWM_TIMER_PERIOD*val)/256  );
				//Set duty cycle on fly
				SetDCOC3PWM((PWM_TIMER_PERIOD*val)/256);
				break;
		#endif

		#ifdef _OCMP4
			case TIMER_OC4:
				//* Open Timer2 with Period register value
				OpenTimer2(T2_ON | T2_PS_1_256, PWM_TIMER_PERIOD);
				OpenOC4( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, (PWM_TIMER_PERIOD*val)/256, (PWM_TIMER_PERIOD*val)/256  );
				//Set duty cycle on fly
				SetDCOC4PWM((PWM_TIMER_PERIOD*val)/256);
				break;
		#endif

		#ifdef _OCMP5
			case TIMER_OC5:
				//* Open Timer2 with Period register value
				OpenTimer2(T2_ON | T2_PS_1_256, PWM_TIMER_PERIOD);
				OpenOC5( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, (PWM_TIMER_PERIOD*val)/256, (PWM_TIMER_PERIOD*val)/256  );
				//Set duty cycle on fly
				SetDCOC5PWM((PWM_TIMER_PERIOD*val)/256);
				break;
		#endif

#if 0
//*	this is the original code, I want to keep it around for refernce for a bit longer
		#ifdef _OCMP1
			case TIMER_OC1:
				//* Open Timer2 with Period register value
				OpenTimer2(T2_ON | T2_PS_1_256, PWM_TIMER_PERIOD);
				OpenOC1( OC_ON | OC_TIMER_MODE32 | OC_TIMER2_SRC | OC_CONTINUE_PULSE | OC_LOW_HIGH, 256, (256 - val) );

//			    SetDCOC1PWM((PWM_TIMER_PERIOD * val) / 256);
				break;
		#endif

		#ifdef _OCMP2
			case TIMER_OC2:
				//* Open Timer2 with Period register value
				OpenTimer2(T2_ON | T2_PS_1_256, PWM_TIMER_PERIOD);
				OpenOC2( OC_ON | OC_TIMER_MODE32 | OC_TIMER2_SRC | OC_CONTINUE_PULSE | OC_LOW_HIGH, 256, (256 - val) );

//			    SetDCOC2PWM((PWM_TIMER_PERIOD * val) / 256);
				break;
		#endif

		#ifdef _OCMP3
			case TIMER_OC3:
				//* Open Timer2 with Period register value
				OpenTimer2(T2_ON | T2_PS_1_256, PWM_TIMER_PERIOD);
				OpenOC3( OC_ON | OC_TIMER_MODE32 | OC_TIMER2_SRC | OC_CONTINUE_PULSE | OC_LOW_HIGH, 256, (256 - val) );

//			    SetDCOC3PWM((PWM_TIMER_PERIOD * val) / 256);
				break;
		#endif

		#ifdef _OCMP4
			case TIMER_OC4:
				//* Open Timer2 with Period register value
				OpenTimer2(T2_ON | T2_PS_1_256, PWM_TIMER_PERIOD);
				OpenOC4( OC_ON | OC_TIMER_MODE32 | OC_TIMER2_SRC | OC_CONTINUE_PULSE | OC_LOW_HIGH, 256, (256 - val) );

//			    SetDCOC4PWM((PWM_TIMER_PERIOD * val) / 256);
				break;
		#endif

		#ifdef _OCMP5
			case TIMER_OC5:
				//* Open Timer2 with Period register value
				OpenTimer2(T2_ON | T2_PS_1_256, PWM_TIMER_PERIOD);
				OpenOC5( OC_ON | OC_TIMER_MODE32 | OC_TIMER2_SRC | OC_CONTINUE_PULSE | OC_LOW_HIGH, 256, (256 - val) );

//			    SetDCOC5PWM((PWM_TIMER_PERIOD * val) / 256);
				break;
		#endif
#endif

			case NOT_ON_TIMER:
			default:
				if (val < 128)
				{
					digitalWrite(pin, LOW);
				}
				else
				{
					digitalWrite(pin, HIGH);
				}
		}
	}
}
Esempio n. 9
0
static void lcd_setup(void)
{
    //mPORTDSetPinsDigitalOut(BIT_3);
    //mPORTDClearBits(BIT_3);

    mPORTDSetPinsDigitalOut( BIT_2 );

    //Set backlight to open drain
    mPORTDOpenDrainOpen( BIT_2 );

    //Enable contrast control
    OpenTimer2(T2_ON, LCD_PWMPERIOD);
    OpenOC4( OC_ON | OC_TIMER_MODE16 | OC_TIMER2_SRC | OC_CONTINUE_PULSE | OC_LOW_HIGH , LCD_PWMPERIOD, 0x0458 );

    //Start the timer for contrast/brightness PWM
    //OpenTimer3(T3_ON | T3_PS_1_1 | T3_SOURCE_INT, LCD_PWMPERIOD);
    //PR3 = LCD_PWMPERIOD - 1;
    //OC3R = 0;
    //mT3SetIntPriority(4);
    //mT3ClearIntFlag();
    //mT3IntEnable(1);
    //SetDCOC3PWM(LCD_PWMPERIOD >> 2);
    //SetDCOC3PWM(1);

    //Enable brightness control
    OpenOC3( OC_ON | OC_TIMER_MODE16 | OC_TIMER2_SRC | OC_CONTINUE_PULSE | OC_LOW_HIGH , LCD_PWMPERIOD, 0x500 );

    // Open ENABLE line as output
    LCD_EN_CLR();
    PORT_DIR_OUT(LCD_EN_P, LCD_EN);
    LCD_EN_CLR();

    // Open RW and RS lines as output
    LCD_RS_CLR();
    PORT_CLR(LCD_RW_P, LCD_RW);

    PORT_DIR_OUT(LCD_RS_P, LCD_RS);
    PORT_DIR_OUT(LCD_RW_P, LCD_RW);

    LCD_RS_CLR();
    PORT_CLR(LCD_RW_P, LCD_RW);

    // Set data lines as output
    PORT_CLR(LCD_DATA_P, LCD_DATA_MASK);
    PORT_DIR_OUT(LCD_DATA_P, LCD_DATA_MASK);
    PORT_CLR(LCD_DATA_P, LCD_DATA_MASK);

    // Wait for proper power up
    task_delay(LCD_LONG_DELAY);
    task_delay(LCD_LONG_DELAY);
    task_delay(LCD_LONG_DELAY);
    task_delay(LCD_LONG_DELAY);

    // Wait for the LCD to power up correctly
    lcd_command(LCD_FUNCTION_SET_CMD | LCD_FUNCTION_SET_8_BITS);
    task_delay(LCD_SHORT_DELAY);
    lcd_command(LCD_FUNCTION_SET_CMD | LCD_FUNCTION_SET_8_BITS);
    task_delay(LCD_VERY_SHORT_DELAY);
    lcd_command(LCD_FUNCTION_SET_CMD | LCD_FUNCTION_SET_8_BITS);
    task_delay(LCD_VERY_SHORT_DELAY);

    // Set up the LCD function
    lcd_command(LCD_FUNCTION_SET_CMD | LCD_FUNCTION_SET_8_BITS | LCD_FUNCTION_SET_2_LINES);
    task_delay(LCD_VERY_SHORT_DELAY);

    // Turn the display on
    lcd_command(LCD_DISPLAY_CTRL_CMD | LCD_DISPLAY_CTRL_CURSOR_ON | LCD_DISPLAY_CTRL_BLINK_ON);
    task_delay(LCD_VERY_SHORT_DELAY);

    // Clear the display
    lcd_command(LCD_CLEAR_DISPLAY_CMD);
    task_delay(LCD_SHORT_DELAY);

    // Increase the cursor
    lcd_command(LCD_ENTRY_MODE_CMD | LCD_ENTRY_MODE_INCREASE);
    task_delay(LCD_SHORT_DELAY);

    lcd_command(LCD_DISPLAY_CTRL_CMD | LCD_DISPLAY_CTRL_DISPLAY_ON);
    task_delay(LCD_SHORT_DELAY);
}