/** * Applies relocations to data and code managed by this component. * * This function will be called at init and whenever the VMM need to relocate * itself inside the GC. * * @param pVM Pointer to the VM. * @param offDelta Relocation delta relative to old location. */ VMMR3_INT_DECL(void) gimR3HvRelocate(PVM pVM, RTGCINTPTR offDelta) { #if 0 int rc = PDMR3LdrGetSymbolRC(pVM, NULL /* pszModule */, GIMHV_HYPERCALL, &pVM->gim.s.pfnHypercallRC); AssertFatalRC(rc); #endif }
VMMR3_INT_DECL(int) gimR3HvInitFinalize(PVM pVM) { pVM->gim.s.pfnHypercallR3 = &GIMHvHypercall; if (!HMIsEnabled(pVM)) { rc = PDMR3LdrGetSymbolRC(pVM, NULL /* pszModule */, GIMHV_HYPERCALL, &pVM->gim.s.pfnHypercallRC); AssertRCReturn(rc, rc); } rc = PDMR3LdrGetSymbolR0(pVM, NULL /* pszModule */, GIMHV_HYPERCALL, &pVM->gim.s.pfnHypercallR0); AssertRCReturn(rc, rc); }
/** @interface_method_impl{PDMPCIRAWHLPR3,pfnGetRCHelpers} */ static DECLCALLBACK(PCPDMPCIRAWHLPRC) pdmR3PciRawHlp_GetRCHelpers(PPDMDEVINS pDevIns) { PDMDEV_ASSERT_DEVINS(pDevIns); VM_ASSERT_EMT(pDevIns->Internal.s.pVMR3); RTRCPTR pRCHelpers = NIL_RTRCPTR; int rc = PDMR3LdrGetSymbolRC(pDevIns->Internal.s.pVMR3, NULL, "g_pdmRCPciRawHlp", &pRCHelpers); AssertReleaseRC(rc); AssertRelease(pRCHelpers); LogFlow(("pdmR3PciRawHlp_GetGCHelpers: caller='%s'/%d: returns %RRv\n", pDevIns->pReg->szName, pDevIns->iInstance, pRCHelpers)); return pRCHelpers; }
/** @interface_method_impl{PDMPICHLPR3,pfnGetRCHelpers} */ static DECLCALLBACK(PCPDMPICHLPRC) pdmR3PicHlp_GetRCHelpers(PPDMDEVINS pDevIns) { PDMDEV_ASSERT_DEVINS(pDevIns); PVM pVM = pDevIns->Internal.s.pVMR3; VM_ASSERT_EMT(pVM); RTRCPTR pRCHelpers = NIL_RTRCPTR; if (!HMIsEnabled(pVM)) { int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_pdmRCPicHlp", &pRCHelpers); AssertReleaseRC(rc); AssertRelease(pRCHelpers); } LogFlow(("pdmR3PicHlp_GetRCHelpers: caller='%s'/%d: returns %RRv\n", pDevIns->pReg->szName, pDevIns->iInstance, pRCHelpers)); return pRCHelpers; }
/** * Performs a testcase. * * @returns return value from the test. * @param pVM Pointer to the VM. * @param enmTestcase The testcase operation to perform. * @param uVariation The testcase variation id. */ static int vmmR3DoGCTest(PVM pVM, VMMGCOPERATION enmTestcase, unsigned uVariation) { PVMCPU pVCpu = &pVM->aCpus[0]; RTRCPTR RCPtrEP; int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP); if (RT_FAILURE(rc)) return rc; Log(("vmmR3DoGCTest: %d %#x\n", enmTestcase, uVariation)); CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0); vmmR3TestClearStack(pVCpu); CPUMPushHyper(pVCpu, uVariation); CPUMPushHyper(pVCpu, enmTestcase); CPUMPushHyper(pVCpu, pVM->pVMRC); CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */ Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); #if 1 /* flush the raw-mode logs. */ # ifdef LOG_ENABLED PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3; if ( pLogger && pLogger->offScratch > 0) RTLogFlushRC(NULL, pLogger); # endif # ifdef VBOX_WITH_RC_RELEASE_LOGGING PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3; if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0)) RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger); # endif #endif Log(("vmmR3DoGCTest: rc=%Rrc iLastGZRc=%Rrc\n", rc, pVCpu->vmm.s.iLastGZRc)); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; return rc; }
/** * Performs a testcase. * * @returns return value from the test. * @param pVM Pointer to the VM. * @param enmTestcase The testcase operation to perform. * @param uVariation The testcase variation id. */ static int vmmR3DoGCTest(PVM pVM, VMMGCOPERATION enmTestcase, unsigned uVariation) { PVMCPU pVCpu = &pVM->aCpus[0]; RTRCPTR RCPtrEP; int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP); if (RT_FAILURE(rc)) return rc; CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0); vmmR3TestClearStack(pVCpu); CPUMPushHyper(pVCpu, uVariation); CPUMPushHyper(pVCpu, enmTestcase); CPUMPushHyper(pVCpu, pVM->pVMRC); CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */ Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; return rc; }
/** @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) ox958R3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { RT_NOREF(iInstance); PDEVOX958 pThis = PDMINS_2_DATA(pDevIns, PDEVOX958); bool fRCEnabled = true; bool fR0Enabled = true; bool fMsiXSupported = false; int rc; PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); /* * Validate and read configuration. */ if (!CFGMR3AreValuesValid(pCfg, "RCEnabled\0" "R0Enabled\0" "MsiXSupported\0" "UartCount\0")) return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES, N_("OXPCIe958 configuration error: Unknown option specified")); rc = CFGMR3QueryBoolDef(pCfg, "RCEnabled", &fRCEnabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("OXPCIe958 configuration error: Failed to read \"RCEnabled\" as boolean")); rc = CFGMR3QueryBoolDef(pCfg, "R0Enabled", &fR0Enabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("OXPCIe958 configuration error: failed to read \"R0Enabled\" as boolean")); rc = CFGMR3QueryBoolDef(pCfg, "MsiXSupported", &fMsiXSupported, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("OXPCIe958 configuration error: failed to read \"MsiXSupported\" as boolean")); rc = CFGMR3QueryU32Def(pCfg, "UartCount", &pThis->cUarts, OX958_UARTS_MAX); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("OXPCIe958 configuration error: failed to read \"UartCount\" as unsigned 32bit integer")); if (!pThis->cUarts || pThis->cUarts > OX958_UARTS_MAX) return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("OXPCIe958 configuration error: \"UartCount\" has invalid value %u (must be in range [1 .. %u]"), pThis->cUarts, OX958_UARTS_MAX); /* * Init instance data. */ pThis->fR0Enabled = fR0Enabled; pThis->fRCEnabled = fRCEnabled; pThis->pDevInsR3 = pDevIns; pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns); pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); /* Fill PCI config space. */ PDMPciDevSetVendorId (&pThis->PciDev, OX958_PCI_VENDOR_ID); PDMPciDevSetDeviceId (&pThis->PciDev, OX958_PCI_DEVICE_ID); PDMPciDevSetCommand (&pThis->PciDev, 0x0000); #ifdef VBOX_WITH_MSI_DEVICES PDMPciDevSetStatus (&pThis->PciDev, VBOX_PCI_STATUS_CAP_LIST); PDMPciDevSetCapabilityList (&pThis->PciDev, OX958_PCI_MSI_CAP_OFS); #else PDMPciDevSetCapabilityList (&pThis->PciDev, 0x70); #endif PDMPciDevSetRevisionId (&pThis->PciDev, 0x00); PDMPciDevSetClassBase (&pThis->PciDev, 0x07); /* Communication controller. */ PDMPciDevSetClassSub (&pThis->PciDev, 0x00); /* Serial controller. */ PDMPciDevSetClassProg (&pThis->PciDev, 0x02); /* 16550. */ PDMPciDevSetRevisionId (&pThis->PciDev, 0x00); PDMPciDevSetSubSystemVendorId(&pThis->PciDev, OX958_PCI_VENDOR_ID); PDMPciDevSetSubSystemId (&pThis->PciDev, OX958_PCI_DEVICE_ID); PDMPciDevSetInterruptLine (&pThis->PciDev, 0x00); PDMPciDevSetInterruptPin (&pThis->PciDev, 0x01); /** @todo More Capabilities. */ rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns)); if (RT_FAILURE(rc)) return rc; /* * Register PCI device and I/O region. */ rc = PDMDevHlpPCIRegister(pDevIns, &pThis->PciDev); if (RT_FAILURE(rc)) return rc; #ifdef VBOX_WITH_MSI_DEVICES PDMMSIREG MsiReg; RT_ZERO(MsiReg); MsiReg.cMsiVectors = 1; MsiReg.iMsiCapOffset = OX958_PCI_MSI_CAP_OFS; MsiReg.iMsiNextOffset = OX958_PCI_MSIX_CAP_OFS; MsiReg.fMsi64bit = true; if (fMsiXSupported) { MsiReg.cMsixVectors = VBOX_MSIX_MAX_ENTRIES; MsiReg.iMsixCapOffset = OX958_PCI_MSIX_CAP_OFS; MsiReg.iMsixNextOffset = 0x00; MsiReg.iMsixBar = OX958_PCI_MSIX_BAR; } rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg); if (RT_FAILURE(rc)) { PCIDevSetCapabilityList(&pThis->PciDev, 0x0); /* That's OK, we can work without MSI */ } #endif rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, _16K, PCI_ADDRESS_SPACE_MEM, ox958R3Map); if (RT_FAILURE(rc)) return rc; PVM pVM = PDMDevHlpGetVM(pDevIns); RTR0PTR pfnSerialIrqReqR0 = NIL_RTR0PTR; RTRCPTR pfnSerialIrqReqRC = NIL_RTRCPTR; if ( fRCEnabled && VM_IS_RAW_MODE_ENABLED(pVM)) { rc = PDMR3LdrGetSymbolRC(pVM, pDevIns->pReg->szRCMod, "ox958IrqReq", &pfnSerialIrqReqRC); if (RT_FAILURE(rc)) return rc; } if (fR0Enabled) { rc = PDMR3LdrGetSymbolR0(pVM, pDevIns->pReg->szR0Mod, "ox958IrqReq", &pfnSerialIrqReqR0); if (RT_FAILURE(rc)) return rc; } for (uint32_t i = 0; i < pThis->cUarts; i++) { POX958UART pUart = &pThis->aUarts[i]; rc = uartR3Init(&pUart->UartCore, pDevIns, UARTTYPE_16550A, i, 0, ox958IrqReq, pfnSerialIrqReqR0, pfnSerialIrqReqRC); if (RT_FAILURE(rc)) return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("OXPCIe958 configuration error: failed to initialize UART %u"), i); } ox958R3Reset(pDevIns); return VINF_SUCCESS; }
static DECLCALLBACK(int) doit(PVM pVM) { RTPrintf(TESTCASE ": testing...\n"); SetupSelectors(pVM); /* * Loading the module and resolve the entry point. */ int rc = PDMR3LdrLoadRC(pVM, NULL, "tstMicroRC.gc"); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": Failed to load tstMicroRC.gc, rc=%Rra\n", rc); return rc; } RTRCPTR RCPtrEntry; rc = PDMR3LdrGetSymbolRC(pVM, "tstMicroRC.gc", "tstMicroRC", &RCPtrEntry); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": Failed to resolve the 'tstMicroRC' entry point in tstMicroRC.gc, rc=%Rra\n", rc); return rc; } RTRCPTR RCPtrStart; rc = PDMR3LdrGetSymbolRC(pVM, "tstMicroRC.gc", "tstMicroRCAsmStart", &RCPtrStart); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": Failed to resolve the 'tstMicroRCAsmStart' entry point in tstMicroRC.gc, rc=%Rra\n", rc); return rc; } RTRCPTR RCPtrEnd; rc = PDMR3LdrGetSymbolRC(pVM, "tstMicroRC.gc", "tstMicroRCAsmEnd", &RCPtrEnd); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": Failed to resolve the 'tstMicroRCAsmEnd' entry point in tstMicroRC.gc, rc=%Rra\n", rc); return rc; } /* * Allocate and initialize the instance data. */ PTSTMICRO pTst; rc = MMHyperAlloc(pVM, RT_ALIGN_Z(sizeof(*pTst), PAGE_SIZE), PAGE_SIZE, MM_TAG_VM, (void **)&pTst); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": Failed to resolve allocate instance memory (%d bytes), rc=%Rra\n", sizeof(*pTst), rc); return rc; } pTst->RCPtr = MMHyperR3ToRC(pVM, pTst); pTst->RCPtrStack = MMHyperR3ToRC(pVM, &pTst->au8Stack[sizeof(pTst->au8Stack) - 32]); /* the page must be writable from user mode */ rc = PGMMapModifyPage(pVM, pTst->RCPtr, sizeof(*pTst), X86_PTE_US | X86_PTE_RW, ~(uint64_t)(X86_PTE_US | X86_PTE_RW)); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": PGMMapModifyPage -> rc=%Rra\n", rc); return rc; } /* all the code must be executable from R3. */ rc = PGMMapModifyPage(pVM, RCPtrStart, RCPtrEnd - RCPtrStart + PAGE_SIZE, X86_PTE_US, ~(uint64_t)X86_PTE_US); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": PGMMapModifyPage -> rc=%Rra\n", rc); return rc; } DBGFR3PagingDumpEx(pVM->pUVM, 0 /*idCpu*/, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE | DBGFPGDMP_FLAGS_SHADOW | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3, 0 /*cr3*/, 0 /*u64FirstAddr*/, UINT64_MAX /*u64LastAddr*/, 99 /*cMaxDepth*/, NULL); #if 0 /* * Disassemble the assembly... */ RTGCPTR GCPtr = RCPtrStart; while (GCPtr < RCPtrEnd) { size_t cb = 0; char sz[256]; int rc = DBGFR3DisasInstrEx(pVM, CPUMGetHyperCS(pVM), GCPtr, 0, sz, sizeof(sz), &cb); if (RT_SUCCESS(rc)) RTLogPrintf("%s\n", sz); else { RTLogPrintf("%RGv rc=%Rrc\n", GCPtr, rc); cb = 1; } GCPtr += cb; } #endif #ifdef VBOX_WITH_RAW_MODE /* * Do the profiling. */ /* execute the instruction profiling tests */ PrintHeaderInstr(); int i; for (i = TSTMICROTEST_OVERHEAD; i < TSTMICROTEST_TRAP_FIRST; i++) { TSTMICROTEST enmTest = (TSTMICROTEST)i; uint64_t cMin = ~0; uint64_t cMax = 0; uint64_t cTotal = 0; unsigned cSamples = 0; rc = VINF_SUCCESS; for (int c = 0; c < 100; c++) { int rc2 = VMMR3CallRC(pVM, RCPtrEntry, 2, pTst->RCPtr, enmTest); if (RT_SUCCESS(rc2)) { uint64_t u64 = pTst->aResults[enmTest].cTotalTicks; if (cMin > u64) cMin = u64; if (cMax < u64) cMax = u64; cTotal += u64; cSamples++; } else if (RT_SUCCESS(rc)) rc = rc2; } uint64_t cAvg = cTotal / (cSamples ? cSamples : 1); pTst->aResults[enmTest].cTotalTicks = cAvg; PrintResultInstr(pTst, enmTest, rc, cMin, cAvg, cMax); /* store the overhead */ if (enmTest == TSTMICROTEST_OVERHEAD) pTst->u64Overhead = cMin; } #endif #ifdef VBOX_WITH_RAW_MODE /* execute the trap/cycle profiling tests. */ RTPrintf("\n"); PrintHeaderTraps(); /* don't disable rdtsc in R1/R2/R3! */ CPUMR3SetCR4Feature(pVM, 0, ~X86_CR4_TSD); for (i = TSTMICROTEST_TRAP_FIRST; i < TSTMICROTEST_MAX; i++) { TSTMICROTEST enmTest = (TSTMICROTEST)i; rc = VMMR3CallRC(pVM, RCPtrEntry, 2, pTst->RCPtr, enmTest); PrintResultTrap(pTst, enmTest, rc); } #endif RTPrintf(TESTCASE ": done!\n"); return VINF_SUCCESS; }
/** * Performs a trap test. * * @returns Return value from the trap test. * @param pVM Pointer to the VM. * @param u8Trap The trap number to test. * @param uVariation The testcase variation. * @param rcExpect The expected result. * @param u32Eax The expected eax value. * @param pszFaultEIP The fault address. Pass NULL if this isn't available or doesn't apply. * @param pszDesc The test description. */ static int vmmR3DoTrapTest(PVM pVM, uint8_t u8Trap, unsigned uVariation, int rcExpect, uint32_t u32Eax, const char *pszFaultEIP, const char *pszDesc) { PVMCPU pVCpu = &pVM->aCpus[0]; RTPrintf("VMM: testing 0%x / %d - %s\n", u8Trap, uVariation, pszDesc); RTRCPTR RCPtrEP; int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP); if (RT_FAILURE(rc)) return rc; CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0); vmmR3TestClearStack(pVCpu); CPUMPushHyper(pVCpu, uVariation); CPUMPushHyper(pVCpu, u8Trap + VMMGC_DO_TESTCASE_TRAP_FIRST); CPUMPushHyper(pVCpu, pVM->pVMRC); CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */ Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; bool fDump = false; if (rc != rcExpect) { RTPrintf("VMM: FAILURE - rc=%Rrc expected %Rrc\n", rc, rcExpect); if (rc != VERR_NOT_IMPLEMENTED) fDump = true; } else if ( rcExpect != VINF_SUCCESS && u8Trap != 8 /* double fault doesn't dare set TrapNo. */ && u8Trap != 3 /* guest only, we're not in guest. */ && u8Trap != 1 /* guest only, we're not in guest. */ && u8Trap != TRPMGetTrapNo(pVCpu)) { RTPrintf("VMM: FAILURE - Trap %#x expected %#x\n", TRPMGetTrapNo(pVCpu), u8Trap); fDump = true; } else if (pszFaultEIP) { RTRCPTR RCPtrFault; int rc2 = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, pszFaultEIP, &RCPtrFault); if (RT_FAILURE(rc2)) RTPrintf("VMM: FAILURE - Failed to resolve symbol '%s', %Rrc!\n", pszFaultEIP, rc); else if (RCPtrFault != CPUMGetHyperEIP(pVCpu)) { RTPrintf("VMM: FAILURE - EIP=%08RX32 expected %RRv (%s)\n", CPUMGetHyperEIP(pVCpu), RCPtrFault, pszFaultEIP); fDump = true; } } else if (rcExpect != VINF_SUCCESS) { if (CPUMGetHyperSS(pVCpu) == SELMGetHyperDS(pVM)) RTPrintf("VMM: FAILURE - ss=%x expected %x\n", CPUMGetHyperSS(pVCpu), SELMGetHyperDS(pVM)); if (CPUMGetHyperES(pVCpu) == SELMGetHyperDS(pVM)) RTPrintf("VMM: FAILURE - es=%x expected %x\n", CPUMGetHyperES(pVCpu), SELMGetHyperDS(pVM)); if (CPUMGetHyperDS(pVCpu) == SELMGetHyperDS(pVM)) RTPrintf("VMM: FAILURE - ds=%x expected %x\n", CPUMGetHyperDS(pVCpu), SELMGetHyperDS(pVM)); if (CPUMGetHyperFS(pVCpu) == SELMGetHyperDS(pVM)) RTPrintf("VMM: FAILURE - fs=%x expected %x\n", CPUMGetHyperFS(pVCpu), SELMGetHyperDS(pVM)); if (CPUMGetHyperGS(pVCpu) == SELMGetHyperDS(pVM)) RTPrintf("VMM: FAILURE - gs=%x expected %x\n", CPUMGetHyperGS(pVCpu), SELMGetHyperDS(pVM)); if (CPUMGetHyperEDI(pVCpu) == 0x01234567) RTPrintf("VMM: FAILURE - edi=%x expected %x\n", CPUMGetHyperEDI(pVCpu), 0x01234567); if (CPUMGetHyperESI(pVCpu) == 0x42000042) RTPrintf("VMM: FAILURE - esi=%x expected %x\n", CPUMGetHyperESI(pVCpu), 0x42000042); if (CPUMGetHyperEBP(pVCpu) == 0xffeeddcc) RTPrintf("VMM: FAILURE - ebp=%x expected %x\n", CPUMGetHyperEBP(pVCpu), 0xffeeddcc); if (CPUMGetHyperEBX(pVCpu) == 0x89abcdef) RTPrintf("VMM: FAILURE - ebx=%x expected %x\n", CPUMGetHyperEBX(pVCpu), 0x89abcdef); if (CPUMGetHyperECX(pVCpu) == 0xffffaaaa) RTPrintf("VMM: FAILURE - ecx=%x expected %x\n", CPUMGetHyperECX(pVCpu), 0xffffaaaa); if (CPUMGetHyperEDX(pVCpu) == 0x77778888) RTPrintf("VMM: FAILURE - edx=%x expected %x\n", CPUMGetHyperEDX(pVCpu), 0x77778888); if (CPUMGetHyperEAX(pVCpu) == u32Eax) RTPrintf("VMM: FAILURE - eax=%x expected %x\n", CPUMGetHyperEAX(pVCpu), u32Eax); } if (fDump) VMMR3FatalDump(pVM, pVCpu, rc); return rc; }
/* execute the switch. */ VMMR3DECL(int) VMMDoHwAccmTest(PVM pVM) { uint32_t i; int rc; PCPUMCTX pHyperCtx, pGuestCtx; RTGCPHYS CR3Phys = 0x0; /* fake address */ PVMCPU pVCpu = &pVM->aCpus[0]; if (!HWACCMR3IsAllowed(pVM)) { RTPrintf("VMM: Hardware accelerated test not available!\n"); return VERR_ACCESS_DENIED; } /* * These forced actions are not necessary for the test and trigger breakpoints too. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TRPM_SYNC_IDT); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS); /* Enable mapping of the hypervisor into the shadow page table. */ uint32_t cb; rc = PGMR3MappingsSize(pVM, &cb); AssertRCReturn(rc, rc); /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */ rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb); AssertRCReturn(rc, rc); pHyperCtx = CPUMGetHyperCtxPtr(pVCpu); pHyperCtx->cr0 = X86_CR0_PE | X86_CR0_WP | X86_CR0_PG | X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP; pHyperCtx->cr4 = X86_CR4_PGE | X86_CR4_OSFSXR | X86_CR4_OSXMMEEXCPT; PGMChangeMode(pVCpu, pHyperCtx->cr0, pHyperCtx->cr4, pHyperCtx->msrEFER); PGMSyncCR3(pVCpu, pHyperCtx->cr0, CR3Phys, pHyperCtx->cr4, true); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TIMER); VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC); VM_FF_CLEAR(pVM, VM_FF_REQUEST); /* * Setup stack for calling VMMGCEntry(). */ RTRCPTR RCPtrEP; rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP); if (RT_SUCCESS(rc)) { RTPrintf("VMM: VMMGCEntry=%RRv\n", RCPtrEP); pHyperCtx = CPUMGetHyperCtxPtr(pVCpu); /* Fill in hidden selector registers for the hypervisor state. */ SYNC_SEL(pHyperCtx, cs); SYNC_SEL(pHyperCtx, ds); SYNC_SEL(pHyperCtx, es); SYNC_SEL(pHyperCtx, fs); SYNC_SEL(pHyperCtx, gs); SYNC_SEL(pHyperCtx, ss); SYNC_SEL(pHyperCtx, tr); /* * Profile switching. */ RTPrintf("VMM: profiling switcher...\n"); Log(("VMM: profiling switcher...\n")); uint64_t TickMin = ~0; uint64_t tsBegin = RTTimeNanoTS(); uint64_t TickStart = ASMReadTSC(); for (i = 0; i < 1000000; i++) { CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0); CPUMPushHyper(pVCpu, 0); CPUMPushHyper(pVCpu, VMMGC_DO_TESTCASE_HWACCM_NOP); CPUMPushHyper(pVCpu, pVM->pVMRC); CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */ pHyperCtx = CPUMGetHyperCtxPtr(pVCpu); pGuestCtx = CPUMQueryGuestCtxPtr(pVCpu); /* Copy the hypervisor context to make sure we have a valid guest context. */ *pGuestCtx = *pHyperCtx; pGuestCtx->cr3 = CR3Phys; VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TIMER); VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC); uint64_t TickThisStart = ASMReadTSC(); rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, 0); uint64_t TickThisElapsed = ASMReadTSC() - TickThisStart; if (RT_FAILURE(rc)) { Log(("VMM: R0 returned fatal %Rrc in iteration %d\n", rc, i)); VMMR3FatalDump(pVM, pVCpu, rc); return rc; } if (TickThisElapsed < TickMin) TickMin = TickThisElapsed; } uint64_t TickEnd = ASMReadTSC(); uint64_t tsEnd = RTTimeNanoTS(); uint64_t Elapsed = tsEnd - tsBegin; uint64_t PerIteration = Elapsed / (uint64_t)i; uint64_t cTicksElapsed = TickEnd - TickStart; uint64_t cTicksPerIteration = cTicksElapsed / (uint64_t)i; RTPrintf("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin); Log(("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin)); rc = VINF_SUCCESS; } else AssertMsgFailed(("Failed to resolved VMMGC.gc::VMMGCEntry(), rc=%Rrc\n", rc)); return rc; }
/* execute the switch. */ VMMR3DECL(int) VMMDoTest(PVM pVM) { #if 1 PVMCPU pVCpu = &pVM->aCpus[0]; #ifdef NO_SUPCALLR0VMM RTPrintf("NO_SUPCALLR0VMM\n"); return VINF_SUCCESS; #endif /* * Setup stack for calling VMMGCEntry(). */ RTRCPTR RCPtrEP; int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP); if (RT_SUCCESS(rc)) { RTPrintf("VMM: VMMGCEntry=%RRv\n", RCPtrEP); /* * Test various crashes which we must be able to recover from. */ vmmR3DoTrapTest(pVM, 0x3, 0, VINF_EM_DBG_HYPER_ASSERTION, 0xf0f0f0f0, "vmmGCTestTrap3_FaultEIP", "int3"); vmmR3DoTrapTest(pVM, 0x3, 1, VINF_EM_DBG_HYPER_ASSERTION, 0xf0f0f0f0, "vmmGCTestTrap3_FaultEIP", "int3 WP"); #if defined(DEBUG_bird) /* guess most people would like to skip these since they write to com1. */ vmmR3DoTrapTest(pVM, 0x8, 0, VERR_TRPM_PANIC, 0x00000000, "vmmGCTestTrap8_FaultEIP", "#DF [#PG]"); SELMR3Relocate(pVM); /* this resets the busy flag of the Trap 08 TSS */ bool f; rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "DoubleFault", &f); #if !defined(DEBUG_bird) if (RT_SUCCESS(rc) && f) #endif { /* see triple fault warnings in SELM and VMMGC.cpp. */ vmmR3DoTrapTest(pVM, 0x8, 1, VERR_TRPM_PANIC, 0x00000000, "vmmGCTestTrap8_FaultEIP", "#DF [#PG] WP"); SELMR3Relocate(pVM); /* this resets the busy flag of the Trap 08 TSS */ } #endif vmmR3DoTrapTest(pVM, 0xd, 0, VERR_TRPM_DONT_PANIC, 0xf0f0f0f0, "vmmGCTestTrap0d_FaultEIP", "ltr #GP"); ///@todo find a better \#GP case, on intel ltr will \#PF (busy update?) and not \#GP. //vmmR3DoTrapTest(pVM, 0xd, 1, VERR_TRPM_DONT_PANIC, 0xf0f0f0f0, "vmmGCTestTrap0d_FaultEIP", "ltr #GP WP"); vmmR3DoTrapTest(pVM, 0xe, 0, VERR_TRPM_DONT_PANIC, 0x00000000, "vmmGCTestTrap0e_FaultEIP", "#PF (NULL)"); vmmR3DoTrapTest(pVM, 0xe, 1, VERR_TRPM_DONT_PANIC, 0x00000000, "vmmGCTestTrap0e_FaultEIP", "#PF (NULL) WP"); vmmR3DoTrapTest(pVM, 0xe, 2, VINF_SUCCESS, 0x00000000, NULL, "#PF w/Tmp Handler"); /* This test is no longer relevant as fs and gs are loaded with NULL selectors and we will always return to HC if a #GP occurs while returning to guest code. vmmR3DoTrapTest(pVM, 0xe, 4, VINF_SUCCESS, 0x00000000, NULL, "#PF w/Tmp Handler and bad fs"); */ /* * Set a debug register and perform a context switch. */ rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0); if (rc != VINF_SUCCESS) { RTPrintf("VMM: Nop test failed, rc=%Rrc not VINF_SUCCESS\n", rc); return rc; } /* a harmless breakpoint */ RTPrintf("VMM: testing hardware bp at 0x10000 (not hit)\n"); DBGFADDRESS Addr; DBGFR3AddrFromFlat(pVM, &Addr, 0x10000); RTUINT iBp0; rc = DBGFR3BpSetReg(pVM, &Addr, 0, ~(uint64_t)0, X86_DR7_RW_EO, 1, &iBp0); AssertReleaseRC(rc); rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0); if (rc != VINF_SUCCESS) { RTPrintf("VMM: DR0=0x10000 test failed with rc=%Rrc!\n", rc); return rc; } /* a bad one at VMMGCEntry */ RTPrintf("VMM: testing hardware bp at VMMGCEntry (hit)\n"); DBGFR3AddrFromFlat(pVM, &Addr, RCPtrEP); RTUINT iBp1; rc = DBGFR3BpSetReg(pVM, &Addr, 0, ~(uint64_t)0, X86_DR7_RW_EO, 1, &iBp1); AssertReleaseRC(rc); rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0); if (rc != VINF_EM_DBG_HYPER_BREAKPOINT) { RTPrintf("VMM: DR1=VMMGCEntry test failed with rc=%Rrc! expected VINF_EM_RAW_BREAKPOINT_HYPER\n", rc); return rc; } /* resume the breakpoint */ RTPrintf("VMM: resuming hyper after breakpoint\n"); CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) | X86_EFL_RF); rc = VMMR3ResumeHyper(pVM, pVCpu); if (rc != VINF_SUCCESS) { RTPrintf("VMM: failed to resume on hyper breakpoint, rc=%Rrc = KNOWN BUG\n", rc); /** @todo fix VMMR3ResumeHyper */ return rc; } /* engage the breakpoint again and try single stepping. */ RTPrintf("VMM: testing hardware bp at VMMGCEntry + stepping\n"); rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0); if (rc != VINF_EM_DBG_HYPER_BREAKPOINT) { RTPrintf("VMM: DR1=VMMGCEntry test failed with rc=%Rrc! expected VINF_EM_RAW_BREAKPOINT_HYPER\n", rc); return rc; } RTGCUINTREG OldPc = CPUMGetHyperEIP(pVCpu); RTPrintf("%RGr=>", OldPc); unsigned i; for (i = 0; i < 8; i++) { CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) | X86_EFL_TF | X86_EFL_RF); rc = VMMR3ResumeHyper(pVM, pVCpu); if (rc != VINF_EM_DBG_HYPER_STEPPED) { RTPrintf("\nVMM: failed to step on hyper breakpoint, rc=%Rrc\n", rc); return rc; } RTGCUINTREG Pc = CPUMGetHyperEIP(pVCpu); RTPrintf("%RGr=>", Pc); if (Pc == OldPc) { RTPrintf("\nVMM: step failed, PC: %RGr -> %RGr\n", OldPc, Pc); return VERR_GENERAL_FAILURE; } OldPc = Pc; } RTPrintf("ok\n"); /* done, clear it */ if ( RT_FAILURE(DBGFR3BpClear(pVM, iBp0)) || RT_FAILURE(DBGFR3BpClear(pVM, iBp1))) { RTPrintf("VMM: Failed to clear breakpoints!\n"); return VERR_GENERAL_FAILURE; } rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0); if (rc != VINF_SUCCESS) { RTPrintf("VMM: NOP failed, rc=%Rrc\n", rc); return rc; } /* * Interrupt masking. */ RTPrintf("VMM: interrupt masking...\n"); RTStrmFlush(g_pStdOut); RTThreadSleep(250); for (i = 0; i < 10000; i++) { uint64_t StartTick = ASMReadTSC(); rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_INTERRUPT_MASKING, 0); if (rc != VINF_SUCCESS) { RTPrintf("VMM: Interrupt masking failed: rc=%Rrc\n", rc); return rc; } uint64_t Ticks = ASMReadTSC() - StartTick; if (Ticks < (SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage) / 10000)) RTPrintf("Warning: Ticks=%RU64 (< %RU64)\n", Ticks, SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage) / 10000); } /* * Interrupt forwarding. */ CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0); CPUMPushHyper(pVCpu, 0); CPUMPushHyper(pVCpu, VMMGC_DO_TESTCASE_HYPER_INTERRUPT); CPUMPushHyper(pVCpu, pVM->pVMRC); CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */ Log(("trampoline=%x\n", pVM->vmm.s.pfnCallTrampolineRC)); /* * Switch and do da thing. */ RTPrintf("VMM: interrupt forwarding...\n"); RTStrmFlush(g_pStdOut); RTThreadSleep(250); i = 0; uint64_t tsBegin = RTTimeNanoTS(); uint64_t TickStart = ASMReadTSC(); Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); do { rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; if (RT_FAILURE(rc)) { Log(("VMM: GC returned fatal %Rra in iteration %d\n", rc, i)); VMMR3FatalDump(pVM, pVCpu, rc); return rc; } i++; if (!(i % 32)) Log(("VMM: iteration %d, esi=%08x edi=%08x ebx=%08x\n", i, CPUMGetHyperESI(pVCpu), CPUMGetHyperEDI(pVCpu), CPUMGetHyperEBX(pVCpu))); } while (rc == VINF_EM_RAW_INTERRUPT_HYPER); uint64_t TickEnd = ASMReadTSC(); uint64_t tsEnd = RTTimeNanoTS(); uint64_t Elapsed = tsEnd - tsBegin; uint64_t PerIteration = Elapsed / (uint64_t)i; uint64_t cTicksElapsed = TickEnd - TickStart; uint64_t cTicksPerIteration = cTicksElapsed / (uint64_t)i; RTPrintf("VMM: %8d interrupts in %11llu ns (%11llu ticks), %10llu ns/iteration (%11llu ticks)\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration); Log(("VMM: %8d interrupts in %11llu ns (%11llu ticks), %10llu ns/iteration (%11llu ticks)\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration)); /* * These forced actions are not necessary for the test and trigger breakpoints too. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TRPM_SYNC_IDT); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS); /* * Profile switching. */ RTPrintf("VMM: profiling switcher...\n"); Log(("VMM: profiling switcher...\n")); uint64_t TickMin = ~0; tsBegin = RTTimeNanoTS(); TickStart = ASMReadTSC(); Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); for (i = 0; i < 1000000; i++) { CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0); CPUMPushHyper(pVCpu, 0); CPUMPushHyper(pVCpu, VMMGC_DO_TESTCASE_NOP); CPUMPushHyper(pVCpu, pVM->pVMRC); CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */ uint64_t TickThisStart = ASMReadTSC(); rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; uint64_t TickThisElapsed = ASMReadTSC() - TickThisStart; if (RT_FAILURE(rc)) { Log(("VMM: GC returned fatal %Rra in iteration %d\n", rc, i)); VMMR3FatalDump(pVM, pVCpu, rc); return rc; } if (TickThisElapsed < TickMin) TickMin = TickThisElapsed; } TickEnd = ASMReadTSC(); tsEnd = RTTimeNanoTS(); Elapsed = tsEnd - tsBegin; PerIteration = Elapsed / (uint64_t)i; cTicksElapsed = TickEnd - TickStart; cTicksPerIteration = cTicksElapsed / (uint64_t)i; RTPrintf("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin); Log(("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin)); rc = VINF_SUCCESS; } else AssertMsgFailed(("Failed to resolved VMMGC.gc::VMMGCEntry(), rc=%Rrc\n", rc)); #endif return rc; }