Esempio n. 1
0
int testing_zhegst(int argc, char **argv)
{
    /* Check for number of arguments*/
    if (argc != 3) {
        USAGE("HEGST", "N LDA LDB",
              "   - N    : size of the matrices A and B\n"
              "   - LDA  : leading dimension of the matrix A\n"
              "   - LDB  : leading dimension of the matrix B\n");
        return -1;
    }

    double eps = LAPACKE_dlamch_work('e');
    int    N     = atoi(argv[0]);
    int    LDA   = atoi(argv[1]);
    int    LDB   = atoi(argv[2]);
    int    info_transformation, info_factorization;
    int    i, u;
    int    LDAxN = LDA*N;
    int    LDBxN = LDB*N;

    PLASMA_Complex64_t *A1    = (PLASMA_Complex64_t *)malloc(LDAxN*sizeof(PLASMA_Complex64_t));
    PLASMA_Complex64_t *A2    = (PLASMA_Complex64_t *)malloc(LDAxN*sizeof(PLASMA_Complex64_t));
    PLASMA_Complex64_t *B1    = (PLASMA_Complex64_t *)malloc(LDBxN*sizeof(PLASMA_Complex64_t));
    PLASMA_Complex64_t *B2    = (PLASMA_Complex64_t *)malloc(LDBxN*sizeof(PLASMA_Complex64_t));
    PLASMA_Complex64_t *Ainit = (PLASMA_Complex64_t *)malloc(LDAxN*sizeof(PLASMA_Complex64_t));
    PLASMA_Complex64_t *Binit = (PLASMA_Complex64_t *)malloc(LDBxN*sizeof(PLASMA_Complex64_t));

    /* Check if unable to allocate memory */
    if ((!A1)||(!A2)||(!B1)||(!B2)||(!Ainit)||(!Binit)){
        printf("Out of Memory \n ");
        return -2;
    }

    /*----------------------------------------------------------
    *  TESTING ZHEGST
    */

    /* Initialize A1 and A2 */
    PLASMA_zplghe(0., N, A1, LDA, 5198);
    LAPACKE_zlacpy_work(LAPACK_COL_MAJOR, 'A', N, N, A1, LDA, Ainit, LDA);

    /* Initialize B1 and B2 */
    PLASMA_zplghe((double)N, N, B1, LDB, 4231);
    LAPACKE_zlacpy_work(LAPACK_COL_MAJOR, 'A', N, N, B1, LDB, Binit, LDB);

    printf("\n");
    printf("------ TESTS FOR PLASMA ZHEGST ROUTINE -------  \n");
    printf("        Size of the Matrix %d by %d\n", N, N);
    printf("\n");
    printf(" The matrices A and B are randomly generated for each test.\n");
    printf("============\n");
    printf(" The relative machine precision (eps) is to be %e \n",eps);
    printf(" Computational tests pass if scaled residuals are less than 60.\n");

    /*----------------------------------------------------------
     *  TESTING ZHEGST
     */

    for (i=0; i<3; i++) {
        for (u=0; u<2; u++) {
            memcpy(A2, Ainit, LDAxN*sizeof(PLASMA_Complex64_t));
            memcpy(B2, Binit, LDBxN*sizeof(PLASMA_Complex64_t));

            PLASMA_zpotrf(uplo[u], N, B2, LDB);
            PLASMA_zhegst(itype[i], uplo[u], N, A2, LDA, B2, LDB);
        
            /* Check the Cholesky factorization and the transformation */
            info_factorization = check_factorization(N, B1, B2, LDB, uplo[u], eps);
            info_transformation = check_transformation(itype[i], uplo[u], N, A1, A2, LDA, B2, LDB, eps);
        
            if ( (info_transformation == 0) && (info_factorization == 0) ) {
                printf("***************************************************\n");
                printf(" ---- TESTING ZHEGST (%s, %s) ....... PASSED !\n", itypestr[i], uplostr[u]);
                printf("***************************************************\n");
            }
            else {
                printf("************************************************\n");
                printf(" - TESTING ZHEGST (%s, %s) ... FAILED !\n", itypestr[i], uplostr[u]);
                printf("************************************************\n");
            }
        }
    }
        
    free(A1); 
    free(A2); 
    free(B1); 
    free(B2);
    free(Ainit); 
    free(Binit);

    return 0;
}
Esempio n. 2
0
void PLASMA_ZPOTRF(PLASMA_enum *uplo, int *N, PLASMA_Complex64_t *A, int *LDA, int *INFO)
{   *INFO = PLASMA_zpotrf(*uplo, *N, A, *LDA); }
Esempio n. 3
0
int testing_zposv(int argc, char **argv)
{

    /* Check for number of arguments*/
    if (argc != 4){
        USAGE("POSV", "N LDA NRHS LDB",
              "   - N    : the size of the matrix\n"
              "   - LDA  : leading dimension of the matrix A\n"
              "   - NRHS : number of RHS\n"
              "   - LDB  : leading dimension of the RHS B\n");
        return -1;
    }

    int N     = atoi(argv[0]);
    int LDA   = atoi(argv[1]);
    int NRHS  = atoi(argv[2]);
    int LDB   = atoi(argv[3]);
    double eps;
    int info_solution, info_factorization;
    int u, trans1, trans2;

    PLASMA_Complex64_t *A1   = (PLASMA_Complex64_t *)malloc(LDA*N*sizeof(PLASMA_Complex64_t));
    PLASMA_Complex64_t *A2   = (PLASMA_Complex64_t *)malloc(LDA*N*sizeof(PLASMA_Complex64_t));
    PLASMA_Complex64_t *B1   = (PLASMA_Complex64_t *)malloc(LDB*NRHS*sizeof(PLASMA_Complex64_t));
    PLASMA_Complex64_t *B2   = (PLASMA_Complex64_t *)malloc(LDB*NRHS*sizeof(PLASMA_Complex64_t));

    /* Check if unable to allocate memory */
    if ((!A1)||(!A2)||(!B1)||(!B2)){
        printf("Out of Memory \n ");
        return -2;
    }

    eps = BLAS_dfpinfo( blas_eps );

    for(u=0; u<2; u++) {

        trans1 = uplo[u] == PlasmaUpper ? PlasmaConjTrans : PlasmaNoTrans;
        trans2 = uplo[u] == PlasmaUpper ? PlasmaNoTrans : PlasmaConjTrans;

        /*-------------------------------------------------------------
         *  TESTING ZPOSV
         */

        /* Initialize A1 and A2 for Symmetric Positif Matrix */
        PLASMA_zplghe( (double)N, N, A1, LDA, 51 );
        PLASMA_zlacpy( PlasmaUpperLower, N, N, A1, LDA, A2, LDA );

        /* Initialize B1 and B2 */
        PLASMA_zplrnt( N, NRHS, B1, LDB, 371 );
        PLASMA_zlacpy( PlasmaUpperLower, N, NRHS, B1, LDB, B2, LDB );

        printf("\n");
        printf("------ TESTS FOR PLASMA ZPOSV ROUTINE -------  \n");
        printf("            Size of the Matrix %d by %d\n", N, N);
        printf("\n");
        printf(" The matrix A is randomly generated for each test.\n");
        printf("============\n");
        printf(" The relative machine precision (eps) is to be %e \n", eps);
        printf(" Computational tests pass if scaled residuals are less than 60.\n");

        /* PLASMA ZPOSV */
        PLASMA_zposv(uplo[u], N, NRHS, A2, LDA, B2, LDB);

        /* Check the factorization and the solution */
        info_factorization = check_factorization( N, A1, A2, LDA, uplo[u], eps);
        info_solution = check_solution(N, NRHS, A1, LDA, B1, B2, LDB, eps);

        if ( (info_solution == 0) && (info_factorization == 0) ) {
            printf("***************************************************\n");
            printf(" ---- TESTING ZPOSV(%s) ...................... PASSED !\n", uplostr[u]);
            printf("***************************************************\n");
        }
        else {
            printf("***************************************************\n");
            printf(" - TESTING ZPOSV(%s) ... FAILED !\n", uplostr[u]);
            printf("***************************************************\n");
        }

        /*-------------------------------------------------------------
         *  TESTING ZPOTRF + ZPOTRS
         */

        /* Initialize A1 and A2 for Symmetric Positif Matrix */
        PLASMA_zplghe( (double)N, N, A1, LDA, 51 );
        PLASMA_zlacpy( PlasmaUpperLower, N, N, A1, LDA, A2, LDA );

        /* Initialize B1 and B2 */
        PLASMA_zplrnt( N, NRHS, B1, LDB, 371 );
        PLASMA_zlacpy( PlasmaUpperLower, N, NRHS, B1, LDB, B2, LDB );

        /* Plasma routines */
        PLASMA_zpotrf(uplo[u], N, A2, LDA);
        PLASMA_zpotrs(uplo[u], N, NRHS, A2, LDA, B2, LDB);

        printf("\n");
        printf("------ TESTS FOR PLASMA ZPOTRF + ZPOTRS ROUTINE -------  \n");
        printf("            Size of the Matrix %d by %d\n", N, N);
        printf("\n");
        printf(" The matrix A is randomly generated for each test.\n");
        printf("============\n");
        printf(" The relative machine precision (eps) is to be %e \n", eps);
        printf(" Computational tests pass if scaled residuals are less than 60.\n");

        /* Check the factorization and the solution */
        info_factorization = check_factorization( N, A1, A2, LDA, uplo[u], eps);
        info_solution = check_solution(N, NRHS, A1, LDA, B1, B2, LDB, eps);

        if ((info_solution == 0)&(info_factorization == 0)){
            printf("***************************************************\n");
            printf(" ---- TESTING ZPOTRF + ZPOTRS (%s)............ PASSED !\n", uplostr[u]);
            printf("***************************************************\n");
        }
        else{
            printf("****************************************************\n");
            printf(" - TESTING ZPOTRF + ZPOTRS (%s)... FAILED !\n", uplostr[u]);
            printf("****************************************************\n");
        }

        /*-------------------------------------------------------------
         *  TESTING ZPOTRF + ZPTRSM + ZTRSM
         */

        /* Initialize A1 and A2 for Symmetric Positif Matrix */
        PLASMA_zplghe( (double)N, N, A1, LDA, 51 );
        PLASMA_zlacpy( PlasmaUpperLower, N, N, A1, LDA, A2, LDA );

        /* Initialize B1 and B2 */
        PLASMA_zplrnt( N, NRHS, B1, LDB, 371 );
        PLASMA_zlacpy( PlasmaUpperLower, N, NRHS, B1, LDB, B2, LDB );

        /* PLASMA routines */
        PLASMA_zpotrf(uplo[u], N, A2, LDA);
        PLASMA_ztrsm(PlasmaLeft, uplo[u], trans1, PlasmaNonUnit,
                     N, NRHS, 1.0, A2, LDA, B2, LDB);
        PLASMA_ztrsm(PlasmaLeft, uplo[u], trans2, PlasmaNonUnit,
                     N, NRHS, 1.0, A2, LDA, B2, LDB);

        printf("\n");
        printf("------ TESTS FOR PLASMA ZPOTRF + ZTRSM + ZTRSM  ROUTINE -------  \n");
        printf("            Size of the Matrix %d by %d\n", N, N);
        printf("\n");
        printf(" The matrix A is randomly generated for each test.\n");
        printf("============\n");
        printf(" The relative machine precision (eps) is to be %e \n", eps);
        printf(" Computational tests pass if scaled residuals are less than 60.\n");

        /* Check the factorization and the solution */
        info_factorization = check_factorization( N, A1, A2, LDA, uplo[u], eps);
        info_solution = check_solution(N, NRHS, A1, LDA, B1, B2, LDB, eps);

        if ((info_solution == 0)&(info_factorization == 0)){
            printf("***************************************************\n");
            printf(" ---- TESTING ZPOTRF + ZTRSM + ZTRSM (%s)..... PASSED !\n", uplostr[u]);
            printf("***************************************************\n");
        }
        else{
            printf("***************************************************\n");
            printf(" - TESTING ZPOTRF + ZTRSM + ZTRSM (%s)... FAILED !\n", uplostr[u]);
            printf("***************************************************\n");
        }

        /*-------------------------------------------------------------
         *  TESTING ZPOCON on the last call
         */
        {
            double Anorm = PLASMA_zlanhe( PlasmaOneNorm, uplo[u], N, A1, LDA );
            double Acond;

            info_solution = PLASMA_zpocon(uplo[u], N, A2, LDA, Anorm, &Acond);
            if ( info_solution == 0 ) {
                info_solution = check_estimator(uplo[u], N, A1, LDA, A2, Anorm, Acond, eps);
            } else {
                printf(" PLASMA_zpocon returned info = %d\n", info_solution );
            }
            if ((info_solution == 0)){
                printf("***************************************************\n");
                printf(" ---- TESTING ZPOTRF + ZPOCON (%s) ........... PASSED !\n", uplostr[u]);
                printf("***************************************************\n");
            }
            else{
                printf("**************************************************\n");
                printf(" - TESTING ZPOTRF + ZPOCON (%s) ... FAILED !\n", uplostr[u]);
                printf("**************************************************\n");
            }
        }
    }

    free(A1); free(A2); free(B1); free(B2);

    return 0;
}