//removes the children of any node with less than limit work void SolverPNS2::garbage_collect(PNSNode * node){ PNSNode * child = node->children.begin(); PNSNode * end = node->children.end(); for( ; child != end; child++){ if(child->terminal()){ //solved //log heavy nodes? PLUS(nodes, -child->dealloc(ctmem)); }else if(child->work < gclimit){ //low work, ignore solvedness since it's trivial to re-solve PLUS(nodes, -child->dealloc(ctmem)); }else if(child->children.num() > 0){ garbage_collect(child); } } }
void main(void) { int delay; char ch; delay = DEF_TIME; m.load(word_list); if (setup()) return; while(kbhit()) getch(); do { while (! kbhit()) message(delay); ch = getch(); if (MINUS(ch) && (delay >= MIN_TIME)) delay -= INC_TIME; if (PLUS(ch) && (delay <= MAX_TIME)) delay += INC_TIME; } while (ch == '-' || ch == '+'); cleanup(); cputs("\n\n\n(C) 1995 N.A.A. MATHEWSON"); }
void AgentMCTS::create_children_simple(const Board & board, Node * node){ assert(node->children.empty()); node->children.alloc(board.moves_avail(), ctmem); Node * child = node->children.begin(), * end = node->children.end(); MoveIterator moveit(board, prunesymmetry); int nummoves = 0; for(; !moveit.done() && child != end; ++moveit, ++child){ *child = Node(*moveit); nummoves++; } if(prunesymmetry) node->children.shrink(nummoves); //shrink the node to ignore the extra moves else //both end conditions should happen in parallel assert(moveit.done() && child == end); PLUS(nodes, node->children.num()); }
bool AgentPNS::PNSThread::pns(const Board & board, Node * node, int depth, uint32_t tp, uint32_t td){ iters++; if(agent->maxdepth < depth) agent->maxdepth = depth; if(node->children.empty()){ if(node->terminal()) return true; if(agent->ctmem.memalloced() >= agent->memlimit) return false; if(!node->children.lock()) return false; int numnodes = board.moves_avail(); CompactTree<Node>::Children temp; temp.alloc(numnodes, agent->ctmem); unsigned int i = 0; unsigned int seen = 0; for(MoveIterator move(board); !move.done(); ++move){ int outcome = solve1ply(move.board(), seen); unsigned int pd = 1; temp[i] = Node(*move).outcome(outcome, board.toplay(), agent->ties, pd); i++; } PLUS(agent->nodes, i); temp.shrink(i); //if symmetry, there may be extra moves to ignore node->children.swap(temp); assert(temp.unlock()); PLUS(agent->nodes_seen, seen); updatePDnum(node); return true; } bool mem; do{ Node * child = node->children.begin(), * child2 = node->children.begin(), * childend = node->children.end(); uint32_t tpc, tdc; if(agent->df){ for(Node * i = node->children.begin(); i != childend; i++){ if(i->refdelta() <= child->refdelta()){ child2 = child; child = i; }else if(i->refdelta() < child2->refdelta()){ child2 = i; } } tpc = min(INF32/2, (td + child->phi - node->delta)); tdc = min(tp, (uint32_t)(child2->delta*(1.0 + agent->epsilon) + 1)); }else{ tpc = tdc = 0; for(Node * i = node->children.begin(); i != childend; i++) if(child->refdelta() > i->refdelta()) child = i; } Board next = board; next.move(child->move); child->ref(); uint64_t itersbefore = iters; mem = pns(next, child, depth + 1, tpc, tdc); child->deref(); PLUS(child->work, iters - itersbefore); if(updatePDnum(node) && !agent->df) break; }while(!agent->timeout && mem && (!agent->df || (node->phi < tp && node->delta < td))); return mem; }
static void salsa20_wordtobyte(u8 output[64],const u32 input[16]) { u32 x[16]; unsigned int i; for (i = 0;i < 16;++i) x[i] = input[i]; for (i = 20;i > 0;i -= 2) { x[ 4] = XOR(x[ 4],ROTATE(PLUS(x[ 0],x[12]), 7)); x[ 8] = XOR(x[ 8],ROTATE(PLUS(x[ 4],x[ 0]), 9)); x[12] = XOR(x[12],ROTATE(PLUS(x[ 8],x[ 4]),13)); x[ 0] = XOR(x[ 0],ROTATE(PLUS(x[12],x[ 8]),18)); x[ 9] = XOR(x[ 9],ROTATE(PLUS(x[ 5],x[ 1]), 7)); x[13] = XOR(x[13],ROTATE(PLUS(x[ 9],x[ 5]), 9)); x[ 1] = XOR(x[ 1],ROTATE(PLUS(x[13],x[ 9]),13)); x[ 5] = XOR(x[ 5],ROTATE(PLUS(x[ 1],x[13]),18)); x[14] = XOR(x[14],ROTATE(PLUS(x[10],x[ 6]), 7)); x[ 2] = XOR(x[ 2],ROTATE(PLUS(x[14],x[10]), 9)); x[ 6] = XOR(x[ 6],ROTATE(PLUS(x[ 2],x[14]),13)); x[10] = XOR(x[10],ROTATE(PLUS(x[ 6],x[ 2]),18)); x[ 3] = XOR(x[ 3],ROTATE(PLUS(x[15],x[11]), 7)); x[ 7] = XOR(x[ 7],ROTATE(PLUS(x[ 3],x[15]), 9)); x[11] = XOR(x[11],ROTATE(PLUS(x[ 7],x[ 3]),13)); x[15] = XOR(x[15],ROTATE(PLUS(x[11],x[ 7]),18)); x[ 1] = XOR(x[ 1],ROTATE(PLUS(x[ 0],x[ 3]), 7)); x[ 2] = XOR(x[ 2],ROTATE(PLUS(x[ 1],x[ 0]), 9)); x[ 3] = XOR(x[ 3],ROTATE(PLUS(x[ 2],x[ 1]),13)); x[ 0] = XOR(x[ 0],ROTATE(PLUS(x[ 3],x[ 2]),18)); x[ 6] = XOR(x[ 6],ROTATE(PLUS(x[ 5],x[ 4]), 7)); x[ 7] = XOR(x[ 7],ROTATE(PLUS(x[ 6],x[ 5]), 9)); x[ 4] = XOR(x[ 4],ROTATE(PLUS(x[ 7],x[ 6]),13)); x[ 5] = XOR(x[ 5],ROTATE(PLUS(x[ 4],x[ 7]),18)); x[11] = XOR(x[11],ROTATE(PLUS(x[10],x[ 9]), 7)); x[ 8] = XOR(x[ 8],ROTATE(PLUS(x[11],x[10]), 9)); x[ 9] = XOR(x[ 9],ROTATE(PLUS(x[ 8],x[11]),13)); x[10] = XOR(x[10],ROTATE(PLUS(x[ 9],x[ 8]),18)); x[12] = XOR(x[12],ROTATE(PLUS(x[15],x[14]), 7)); x[13] = XOR(x[13],ROTATE(PLUS(x[12],x[15]), 9)); x[14] = XOR(x[14],ROTATE(PLUS(x[13],x[12]),13)); x[15] = XOR(x[15],ROTATE(PLUS(x[14],x[13]),18)); } for (i = 0;i < 16;++i) x[i] = PLUS(x[i],input[i]); for (i = 0;i < 16;++i) U32TO8_LITTLE(output + 4 * i,x[i]); }
PEG_FUNC(parse_peg_open); PEG_FUNC(parse_peg_close); PEG_FUNC(parse_peg_dot); PEG_FUNC(parse_peg_spacing); PEG_FUNC(parse_peg_comment); PEG_FUNC(parse_peg_space); PEG_FUNC(parse_peg_eol); PEG_FUNC(parse_peg_eof); PEG_FUNC(parse_peg_hide); /*************************************************/ /* grammar */ PEG_PARSE(parse_peg_grammar, PEG_GRAMMAR_NODE, L"PEG grammar", SEQ(T(parse_peg_spacing), SEQ(PLUS(T(parse_peg_rule)), T(parse_peg_eof)))); PEG_PARSE(parse_peg_rule, PEG_RULE_NODE, L"PEG rule", SEQ(T(parse_peg_identifier), SEQ(QUES(T(parse_peg_literal)), SEQ(T(parse_peg_left_arrow), T(parse_peg_disjunction))))); PEG_PARSE(parse_peg_disjunction, PEG_DISJ_NODE, L"expression", SEQ(T(parse_peg_conjunction), STAR(SEQ(T(parse_peg_slash), T(parse_peg_conjunction))))); PEG_PARSE(parse_peg_conjunction, PEG_CONJ_NODE, L"term", PLUS(T(parse_peg_prefix_exp))); PEG_PARSE(parse_peg_prefix_exp, PEG_PREFIX_EXP_NODE, L"term", SEQ(QUES(DISJ(T(parse_peg_and), DISJ(T(parse_peg_not), T(parse_peg_hide)))), T(parse_peg_suffix_exp))); PEG_PARSE(parse_peg_suffix_exp, PEG_SUFFIX_EXP_NODE, L"term", SEQ(T(parse_peg_term), QUES(DISJ(DISJ(T(parse_peg_question),
static void salsa20_wordtobyte(u8 output[64], const u32 input[16]) { u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; int i; x0 = input[0]; x1 = input[1]; x2 = input[2]; x3 = input[3]; x4 = input[4]; x5 = input[5]; x6 = input[6]; x7 = input[7]; x8 = input[8]; x9 = input[9]; x10 = input[10]; x11 = input[11]; x12 = input[12]; x13 = input[13]; x14 = input[14]; x15 = input[15]; for( i=20; i>0; i-=2 ) { QUARTERROUND( x0, x4, x8,x12); QUARTERROUND( x1, x5, x9,x13); QUARTERROUND( x2, x6,x10,x14); QUARTERROUND( x3, x7,x11,x15); QUARTERROUND( x0, x5,x10,x15); QUARTERROUND( x1, x6,x11,x12); QUARTERROUND( x2, x7, x8,x13); QUARTERROUND( x3, x4, x9,x14); } x0 = PLUS(x0, input[0]); x1 = PLUS(x1, input[1]); x2 = PLUS(x2, input[2]); x3 = PLUS(x3, input[3]); x4 = PLUS(x4, input[4]); x5 = PLUS(x5, input[5]); x6 = PLUS(x6, input[6]); x7 = PLUS(x7, input[7]); x8 = PLUS(x8, input[8]); x9 = PLUS(x9, input[9]); x10 = PLUS(x10, input[10]); x11 = PLUS(x11, input[11]); x12 = PLUS(x12, input[12]); x13 = PLUS(x13, input[13]); x14 = PLUS(x14, input[14]); x15 = PLUS(x15, input[15]); U32TO8_LITTLE(output + 0,x0); U32TO8_LITTLE(output + 4,x1); U32TO8_LITTLE(output + 8,x2); U32TO8_LITTLE(output + 12,x3); U32TO8_LITTLE(output + 16,x4); U32TO8_LITTLE(output + 20,x5); U32TO8_LITTLE(output + 24,x6); U32TO8_LITTLE(output + 28,x7); U32TO8_LITTLE(output + 32,x8); U32TO8_LITTLE(output + 36,x9); U32TO8_LITTLE(output + 40,x10); U32TO8_LITTLE(output + 44,x11); U32TO8_LITTLE(output + 48,x12); U32TO8_LITTLE(output + 52,x13); U32TO8_LITTLE(output + 56,x14); U32TO8_LITTLE(output + 60,x15); }
bool SolverPNS2::SolverThread::pns(const Board & board, PNSNode * node, int depth, uint32_t tp, uint32_t td){ iters++; if(solver->maxdepth < depth) solver->maxdepth = depth; if(node->children.empty()){ if(node->terminal()) return true; if(solver->ctmem.memalloced() >= solver->memlimit) return false; if(!node->children.lock()) return false; int numnodes = board.movesremain(); CompactTree<PNSNode>::Children temp; temp.alloc(numnodes, solver->ctmem); PLUS(solver->nodes, numnodes); if(solver->lbdist) dists.run(&board); int i = 0; for(Board::MoveIterator move = board.moveit(true); !move.done(); ++move){ int outcome, pd; if(solver->ab){ Board next = board; next.move(*move); pd = 0; outcome = (solver->ab == 1 ? solve1ply(next, pd) : solve2ply(next, pd)); PLUS(solver->nodes_seen, pd); }else{ outcome = board.test_win(*move); pd = 1; } if(solver->lbdist && outcome < 0) pd = dists.get(*move); temp[i] = PNSNode(*move).outcome(outcome, board.toplay(), solver->ties, pd); i++; } temp.shrink(i); //if symmetry, there may be extra moves to ignore node->children.swap(temp); assert(temp.unlock()); PLUS(solver->nodes_seen, i); updatePDnum(node); return true; } bool mem; do{ PNSNode * child = node->children.begin(), * child2 = node->children.begin(), * childend = node->children.end(); uint32_t tpc, tdc; if(solver->df){ for(PNSNode * i = node->children.begin(); i != childend; i++){ if(i->refdelta() <= child->refdelta()){ child2 = child; child = i; }else if(i->refdelta() < child2->refdelta()){ child2 = i; } } tpc = min(INF32/2, (td + child->phi - node->delta)); tdc = min(tp, (uint32_t)(child2->delta*(1.0 + solver->epsilon) + 1)); }else{ tpc = tdc = 0; for(PNSNode * i = node->children.begin(); i != childend; i++) if(child->refdelta() > i->refdelta()) child = i; } Board next = board; next.move(child->move); child->ref(); uint64_t itersbefore = iters; mem = pns(next, child, depth + 1, tpc, tdc); child->deref(); PLUS(child->work, iters - itersbefore); if(updatePDnum(node) && !solver->df) break; }while(!solver->timeout && mem && (!solver->df || (node->phi < tp && node->delta < td))); return mem; }
#define X() 1 #define PLUS() + #define MINUS() - #define DOT() . #define GREATER() > #define LESS() < //R #line 23 "t_9_003.cpp" X()2 //R 1 2 STRINGIZE( X()2 ) //R "12" //R X() 2 //R 1 2 STRINGIZE( X() 2 ) //R "1 2" //R PLUS()MINUS() //R +- STRINGIZE( PLUS()MINUS() ) //R "+-" //R PLUS()PLUS() //R + + STRINGIZE( PLUS()PLUS() ) //R "++" //R MINUS()MINUS() //R - - STRINGIZE( MINUS()MINUS() ) //R "--" //R DOT()DOT()DOT() //R .. . STRINGIZE( DOT()DOT()DOT() ) //R "..." // the following are regressions reported by Stefan Seefeld //R #line 43 "t_9_003.cpp" GREATER()GREATER() //R > > STRINGIZE( GREATER()GREATER() ) //R ">>" //R
/* SIMD format-compatible scalar code. This should be replaced by more efficient code, but so far this is a proof of concept. */ static void salsa20_wordtobyte_tr(u8 output[64],const u32 input[16]) { u32 x[16]; int i; for (i = 0;i < 16;++i) x[tr[i]] = input[tr[i]]; for (i = 20;i > 0;i -= 2) { x[tr[ 4]] = XOR(x[tr[ 4]],ROTATE(PLUS(x[tr[ 0]],x[tr[12]]), 7)); x[tr[ 8]] = XOR(x[tr[ 8]],ROTATE(PLUS(x[tr[ 4]],x[tr[ 0]]), 9)); x[tr[12]] = XOR(x[tr[12]],ROTATE(PLUS(x[tr[ 8]],x[tr[ 4]]),13)); x[tr[ 0]] = XOR(x[tr[ 0]],ROTATE(PLUS(x[tr[12]],x[tr[ 8]]),18)); x[tr[ 9]] = XOR(x[tr[ 9]],ROTATE(PLUS(x[tr[ 5]],x[tr[ 1]]), 7)); x[tr[13]] = XOR(x[tr[13]],ROTATE(PLUS(x[tr[ 9]],x[tr[ 5]]), 9)); x[tr[ 1]] = XOR(x[tr[ 1]],ROTATE(PLUS(x[tr[13]],x[tr[ 9]]),13)); x[tr[ 5]] = XOR(x[tr[ 5]],ROTATE(PLUS(x[tr[ 1]],x[tr[13]]),18)); x[tr[14]] = XOR(x[tr[14]],ROTATE(PLUS(x[tr[10]],x[tr[ 6]]), 7)); x[tr[ 2]] = XOR(x[tr[ 2]],ROTATE(PLUS(x[tr[14]],x[tr[10]]), 9)); x[tr[ 6]] = XOR(x[tr[ 6]],ROTATE(PLUS(x[tr[ 2]],x[tr[14]]),13)); x[tr[10]] = XOR(x[tr[10]],ROTATE(PLUS(x[tr[ 6]],x[tr[ 2]]),18)); x[tr[ 3]] = XOR(x[tr[ 3]],ROTATE(PLUS(x[tr[15]],x[tr[11]]), 7)); x[tr[ 7]] = XOR(x[tr[ 7]],ROTATE(PLUS(x[tr[ 3]],x[tr[15]]), 9)); x[tr[11]] = XOR(x[tr[11]],ROTATE(PLUS(x[tr[ 7]],x[tr[ 3]]),13)); x[tr[15]] = XOR(x[tr[15]],ROTATE(PLUS(x[tr[11]],x[tr[ 7]]),18)); x[tr[ 1]] = XOR(x[tr[ 1]],ROTATE(PLUS(x[tr[ 0]],x[tr[ 3]]), 7)); x[tr[ 2]] = XOR(x[tr[ 2]],ROTATE(PLUS(x[tr[ 1]],x[tr[ 0]]), 9)); x[tr[ 3]] = XOR(x[tr[ 3]],ROTATE(PLUS(x[tr[ 2]],x[tr[ 1]]),13)); x[tr[ 0]] = XOR(x[tr[ 0]],ROTATE(PLUS(x[tr[ 3]],x[tr[ 2]]),18)); x[tr[ 6]] = XOR(x[tr[ 6]],ROTATE(PLUS(x[tr[ 5]],x[tr[ 4]]), 7)); x[tr[ 7]] = XOR(x[tr[ 7]],ROTATE(PLUS(x[tr[ 6]],x[tr[ 5]]), 9)); x[tr[ 4]] = XOR(x[tr[ 4]],ROTATE(PLUS(x[tr[ 7]],x[tr[ 6]]),13)); x[tr[ 5]] = XOR(x[tr[ 5]],ROTATE(PLUS(x[tr[ 4]],x[tr[ 7]]),18)); x[tr[11]] = XOR(x[tr[11]],ROTATE(PLUS(x[tr[10]],x[tr[ 9]]), 7)); x[tr[ 8]] = XOR(x[tr[ 8]],ROTATE(PLUS(x[tr[11]],x[tr[10]]), 9)); x[tr[ 9]] = XOR(x[tr[ 9]],ROTATE(PLUS(x[tr[ 8]],x[tr[11]]),13)); x[tr[10]] = XOR(x[tr[10]],ROTATE(PLUS(x[tr[ 9]],x[tr[ 8]]),18)); x[tr[12]] = XOR(x[tr[12]],ROTATE(PLUS(x[tr[15]],x[tr[14]]), 7)); x[tr[13]] = XOR(x[tr[13]],ROTATE(PLUS(x[tr[12]],x[tr[15]]), 9)); x[tr[14]] = XOR(x[tr[14]],ROTATE(PLUS(x[tr[13]],x[tr[12]]),13)); x[tr[15]] = XOR(x[tr[15]],ROTATE(PLUS(x[tr[14]],x[tr[13]]),18)); } for (i = 0;i < 16;++i) x[tr[i]] = PLUS(x[tr[i]],input[tr[i]]); for (i = 0;i < 16;++i) U32TO8_LITTLE(output + 4 * i,x[tr[i]]); }
void ECRYPT_encrypt_bytes(ECRYPT_ctx *x,const u8 *m,u8 *c,u32 bytes) { u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; u32 j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15; u8 *ctarget; u8 tmp[64]; int i; if (!bytes) return; j0 = x->input[0]; j1 = x->input[1]; j2 = x->input[2]; j3 = x->input[3]; j4 = x->input[4]; j5 = x->input[5]; j6 = x->input[6]; j7 = x->input[7]; j8 = x->input[8]; j9 = x->input[9]; j10 = x->input[10]; j11 = x->input[11]; j12 = x->input[12]; j13 = x->input[13]; j14 = x->input[14]; j15 = x->input[15]; for (;;) { if (bytes < 64) { for (i = 0;i < bytes;++i) tmp[i] = m[i]; m = tmp; ctarget = c; c = tmp; } x0 = j0; x1 = j1; x2 = j2; x3 = j3; x4 = j4; x5 = j5; x6 = j6; x7 = j7; x8 = j8; x9 = j9; x10 = j10; x11 = j11; x12 = j12; x13 = j13; x14 = j14; x15 = j15; for (i = 8;i > 0;i -= 2) { x4 = XOR( x4,ROTATE(PLUS( x0,x12), 7)); x8 = XOR( x8,ROTATE(PLUS( x4, x0), 9)); x12 = XOR(x12,ROTATE(PLUS( x8, x4),13)); x0 = XOR( x0,ROTATE(PLUS(x12, x8),18)); x9 = XOR( x9,ROTATE(PLUS( x5, x1), 7)); x13 = XOR(x13,ROTATE(PLUS( x9, x5), 9)); x1 = XOR( x1,ROTATE(PLUS(x13, x9),13)); x5 = XOR( x5,ROTATE(PLUS( x1,x13),18)); x14 = XOR(x14,ROTATE(PLUS(x10, x6), 7)); x2 = XOR( x2,ROTATE(PLUS(x14,x10), 9)); x6 = XOR( x6,ROTATE(PLUS( x2,x14),13)); x10 = XOR(x10,ROTATE(PLUS( x6, x2),18)); x3 = XOR( x3,ROTATE(PLUS(x15,x11), 7)); x7 = XOR( x7,ROTATE(PLUS( x3,x15), 9)); x11 = XOR(x11,ROTATE(PLUS( x7, x3),13)); x15 = XOR(x15,ROTATE(PLUS(x11, x7),18)); x1 = XOR( x1,ROTATE(PLUS( x0, x3), 7)); x2 = XOR( x2,ROTATE(PLUS( x1, x0), 9)); x3 = XOR( x3,ROTATE(PLUS( x2, x1),13)); x0 = XOR( x0,ROTATE(PLUS( x3, x2),18)); x6 = XOR( x6,ROTATE(PLUS( x5, x4), 7)); x7 = XOR( x7,ROTATE(PLUS( x6, x5), 9)); x4 = XOR( x4,ROTATE(PLUS( x7, x6),13)); x5 = XOR( x5,ROTATE(PLUS( x4, x7),18)); x11 = XOR(x11,ROTATE(PLUS(x10, x9), 7)); x8 = XOR( x8,ROTATE(PLUS(x11,x10), 9)); x9 = XOR( x9,ROTATE(PLUS( x8,x11),13)); x10 = XOR(x10,ROTATE(PLUS( x9, x8),18)); x12 = XOR(x12,ROTATE(PLUS(x15,x14), 7)); x13 = XOR(x13,ROTATE(PLUS(x12,x15), 9)); x14 = XOR(x14,ROTATE(PLUS(x13,x12),13)); x15 = XOR(x15,ROTATE(PLUS(x14,x13),18)); } x0 = PLUS(x0,j0); x1 = PLUS(x1,j1); x2 = PLUS(x2,j2); x3 = PLUS(x3,j3); x4 = PLUS(x4,j4); x5 = PLUS(x5,j5); x6 = PLUS(x6,j6); x7 = PLUS(x7,j7); x8 = PLUS(x8,j8); x9 = PLUS(x9,j9); x10 = PLUS(x10,j10); x11 = PLUS(x11,j11); x12 = PLUS(x12,j12); x13 = PLUS(x13,j13); x14 = PLUS(x14,j14); x15 = PLUS(x15,j15); x0 = XOR(x0,U8TO32_LITTLE(m + 0)); x1 = XOR(x1,U8TO32_LITTLE(m + 4)); x2 = XOR(x2,U8TO32_LITTLE(m + 8)); x3 = XOR(x3,U8TO32_LITTLE(m + 12)); x4 = XOR(x4,U8TO32_LITTLE(m + 16)); x5 = XOR(x5,U8TO32_LITTLE(m + 20)); x6 = XOR(x6,U8TO32_LITTLE(m + 24)); x7 = XOR(x7,U8TO32_LITTLE(m + 28)); x8 = XOR(x8,U8TO32_LITTLE(m + 32)); x9 = XOR(x9,U8TO32_LITTLE(m + 36)); x10 = XOR(x10,U8TO32_LITTLE(m + 40)); x11 = XOR(x11,U8TO32_LITTLE(m + 44)); x12 = XOR(x12,U8TO32_LITTLE(m + 48)); x13 = XOR(x13,U8TO32_LITTLE(m + 52)); x14 = XOR(x14,U8TO32_LITTLE(m + 56)); x15 = XOR(x15,U8TO32_LITTLE(m + 60)); j8 = PLUSONE(j8); if (!j8) { j9 = PLUSONE(j9); /* stopping at 2^70 bytes per nonce is user's responsibility */ } U32TO8_LITTLE(c + 0,x0); U32TO8_LITTLE(c + 4,x1); U32TO8_LITTLE(c + 8,x2); U32TO8_LITTLE(c + 12,x3); U32TO8_LITTLE(c + 16,x4); U32TO8_LITTLE(c + 20,x5); U32TO8_LITTLE(c + 24,x6); U32TO8_LITTLE(c + 28,x7); U32TO8_LITTLE(c + 32,x8); U32TO8_LITTLE(c + 36,x9); U32TO8_LITTLE(c + 40,x10); U32TO8_LITTLE(c + 44,x11); U32TO8_LITTLE(c + 48,x12); U32TO8_LITTLE(c + 52,x13); U32TO8_LITTLE(c + 56,x14); U32TO8_LITTLE(c + 60,x15); if (bytes <= 64) { if (bytes < 64) { for (i = 0;i < bytes;++i) ctarget[i] = c[i]; } x->input[8] = j8; x->input[9] = j9; return; } bytes -= 64; c += 64; m += 64; } }
void dfsch_salsa20_get_keystream_block(dfsch_salsa20_state_t* st, uint8_t output[64]){ uint32_t x[16]; int i; for (i = 0;i < 16;++i) x[i] = st->input[i]; for (i = 20;i > 0;i -= 2) { x[ 4] = XOR(x[ 4],ROTATE(PLUS(x[ 0],x[12]), 7)); x[ 8] = XOR(x[ 8],ROTATE(PLUS(x[ 4],x[ 0]), 9)); x[12] = XOR(x[12],ROTATE(PLUS(x[ 8],x[ 4]),13)); x[ 0] = XOR(x[ 0],ROTATE(PLUS(x[12],x[ 8]),18)); x[ 9] = XOR(x[ 9],ROTATE(PLUS(x[ 5],x[ 1]), 7)); x[13] = XOR(x[13],ROTATE(PLUS(x[ 9],x[ 5]), 9)); x[ 1] = XOR(x[ 1],ROTATE(PLUS(x[13],x[ 9]),13)); x[ 5] = XOR(x[ 5],ROTATE(PLUS(x[ 1],x[13]),18)); x[14] = XOR(x[14],ROTATE(PLUS(x[10],x[ 6]), 7)); x[ 2] = XOR(x[ 2],ROTATE(PLUS(x[14],x[10]), 9)); x[ 6] = XOR(x[ 6],ROTATE(PLUS(x[ 2],x[14]),13)); x[10] = XOR(x[10],ROTATE(PLUS(x[ 6],x[ 2]),18)); x[ 3] = XOR(x[ 3],ROTATE(PLUS(x[15],x[11]), 7)); x[ 7] = XOR(x[ 7],ROTATE(PLUS(x[ 3],x[15]), 9)); x[11] = XOR(x[11],ROTATE(PLUS(x[ 7],x[ 3]),13)); x[15] = XOR(x[15],ROTATE(PLUS(x[11],x[ 7]),18)); x[ 1] = XOR(x[ 1],ROTATE(PLUS(x[ 0],x[ 3]), 7)); x[ 2] = XOR(x[ 2],ROTATE(PLUS(x[ 1],x[ 0]), 9)); x[ 3] = XOR(x[ 3],ROTATE(PLUS(x[ 2],x[ 1]),13)); x[ 0] = XOR(x[ 0],ROTATE(PLUS(x[ 3],x[ 2]),18)); x[ 6] = XOR(x[ 6],ROTATE(PLUS(x[ 5],x[ 4]), 7)); x[ 7] = XOR(x[ 7],ROTATE(PLUS(x[ 6],x[ 5]), 9)); x[ 4] = XOR(x[ 4],ROTATE(PLUS(x[ 7],x[ 6]),13)); x[ 5] = XOR(x[ 5],ROTATE(PLUS(x[ 4],x[ 7]),18)); x[11] = XOR(x[11],ROTATE(PLUS(x[10],x[ 9]), 7)); x[ 8] = XOR(x[ 8],ROTATE(PLUS(x[11],x[10]), 9)); x[ 9] = XOR(x[ 9],ROTATE(PLUS(x[ 8],x[11]),13)); x[10] = XOR(x[10],ROTATE(PLUS(x[ 9],x[ 8]),18)); x[12] = XOR(x[12],ROTATE(PLUS(x[15],x[14]), 7)); x[13] = XOR(x[13],ROTATE(PLUS(x[12],x[15]), 9)); x[14] = XOR(x[14],ROTATE(PLUS(x[13],x[12]),13)); x[15] = XOR(x[15],ROTATE(PLUS(x[14],x[13]),18)); } for (i = 0;i < 16;++i) x[i] = PLUS(x[i],st->input[i]); for (i = 0;i < 16;++i) U32TO8_LITTLE(output + 4 * i,x[i]); st->input[8]++; if (!st->input[8]){ st->input[9]++; } }
bool Player::PlayerUCT::create_children(Board & board, Node * node, int toplay){ if(!node->children.lock()) return false; if(player->dists || player->detectdraw){ dists.run(&board, (player->dists > 0), (player->detectdraw ? 0 : toplay)); if(player->detectdraw){ // assert(node->outcome == -3); node->outcome = dists.isdraw(); //could be winnable by only one side if(node->outcome == 0){ //proven draw, neither side can influence the outcome node->bestmove = *(board.moveit()); //just choose the first move since all are equal at this point node->children.unlock(); return true; } } } CompactTree<Node>::Children temp; temp.alloc(board.movesremain(), player->ctmem); int losses = 0; Node * child = temp.begin(), * end = temp.end(), * loss = NULL; Board::MoveIterator move = board.moveit(player->prunesymmetry); int nummoves = 0; for(; !move.done() && child != end; ++move, ++child){ *child = Node(*move); if(player->minimax){ child->outcome = board.test_win(*move); if(player->minimax >= 2 && board.test_win(*move, 3 - board.toplay()) > 0){ losses++; loss = child; } if(child->outcome == toplay){ //proven win from here, don't need children node->outcome = child->outcome; node->proofdepth = 1; node->bestmove = *move; node->children.unlock(); temp.dealloc(player->ctmem); return true; } } if(player->knowledge) add_knowledge(board, node, child); nummoves++; } if(player->prunesymmetry) temp.shrink(nummoves); //shrink the node to ignore the extra moves else //both end conditions should happen in parallel assert(move.done() && child == end); //Make a macro move, add experience to the move so the current simulation continues past this move if(losses == 1){ Node macro = *loss; temp.dealloc(player->ctmem); temp.alloc(1, player->ctmem); macro.exp.addwins(player->visitexpand); *(temp.begin()) = macro; }else if(losses >= 2){ //proven loss, but at least try to block one of them node->outcome = 3 - toplay; node->proofdepth = 2; node->bestmove = loss->move; node->children.unlock(); temp.dealloc(player->ctmem); return true; } if(player->dynwiden > 0) //sort in decreasing order by knowledge sort(temp.begin(), temp.end(), sort_node_know); PLUS(player->nodes, temp.num()); node->children.swap(temp); assert(temp.unlock()); return true; }
static void _salsa20_block(int rounds, uint32_t *input, uint8_t *output) { uint32_t x0, x1, x2, x3, x4, x5, x6, x7; uint32_t x8, x9, x10, x11, x12, x13, x14, x15; uint8_t i; x0 = input[0]; x1 = input[1]; x2 = input[2]; x3 = input[3]; x4 = input[4]; x5 = input[5]; x6 = input[6]; x7 = input[7]; x8 = input[8]; x9 = input[9]; x10 = input[10]; x11 = input[11]; x12 = input[12]; x13 = input[13]; x14 = input[14]; x15 = input[15]; for (i = rounds; i > 0; i -= 2) { /* Column round */ x4 = XOR ( x4, ROTATE (PLUS ( x0,x12), 7)); x8 = XOR ( x8, ROTATE (PLUS ( x4, x0), 9)); x12 = XOR (x12, ROTATE (PLUS ( x8, x4),13)); x0 = XOR ( x0, ROTATE (PLUS (x12, x8),18)); x9 = XOR ( x9, ROTATE (PLUS ( x5, x1), 7)); x13 = XOR (x13, ROTATE (PLUS ( x9, x5), 9)); x1 = XOR ( x1, ROTATE (PLUS (x13, x9),13)); x5 = XOR ( x5, ROTATE (PLUS ( x1,x13),18)); x14 = XOR (x14, ROTATE (PLUS (x10, x6), 7)); x2 = XOR ( x2, ROTATE (PLUS (x14,x10), 9)); x6 = XOR ( x6, ROTATE (PLUS ( x2,x14),13)); x10 = XOR (x10, ROTATE (PLUS ( x6, x2),18)); x3 = XOR ( x3, ROTATE (PLUS (x15,x11), 7)); x7 = XOR ( x7, ROTATE (PLUS ( x3,x15), 9)); x11 = XOR (x11, ROTATE (PLUS ( x7, x3),13)); x15 = XOR (x15, ROTATE (PLUS (x11, x7),18)); /* Row round */ x1 = XOR ( x1, ROTATE (PLUS ( x0, x3), 7)); x2 = XOR ( x2, ROTATE (PLUS ( x1, x0), 9)); x3 = XOR ( x3, ROTATE (PLUS ( x2, x1),13)); x0 = XOR ( x0, ROTATE (PLUS ( x3, x2),18)); x6 = XOR ( x6, ROTATE (PLUS ( x5, x4), 7)); x7 = XOR ( x7, ROTATE (PLUS ( x6, x5), 9)); x4 = XOR ( x4, ROTATE (PLUS ( x7, x6),13)); x5 = XOR ( x5, ROTATE (PLUS ( x4, x7),18)); x11 = XOR (x11, ROTATE (PLUS (x10, x9), 7)); x8 = XOR ( x8, ROTATE (PLUS (x11,x10), 9)); x9 = XOR ( x9, ROTATE (PLUS ( x8,x11),13)); x10 = XOR (x10, ROTATE (PLUS ( x9, x8),18)); x12 = XOR (x12, ROTATE (PLUS (x15,x14), 7)); x13 = XOR (x13, ROTATE (PLUS (x12,x15), 9)); x14 = XOR (x14, ROTATE (PLUS (x13,x12),13)); x15 = XOR (x15, ROTATE (PLUS (x14,x13),18)); } x0 = PLUS (x0, input[0]); x1 = PLUS (x1, input[1]); x2 = PLUS (x2, input[2]); x3 = PLUS (x3, input[3]); x4 = PLUS (x4, input[4]); x5 = PLUS (x5, input[5]); x6 = PLUS (x6, input[6]); x7 = PLUS (x7, input[7]); x8 = PLUS (x8, input[8]); x9 = PLUS (x9, input[9]); x10 = PLUS (x10, input[10]); x11 = PLUS (x11, input[11]); x12 = PLUS (x12, input[12]); x13 = PLUS (x13, input[13]); x14 = PLUS (x14, input[14]); x15 = PLUS (x15, input[15]); U32TO8_LITTLE (output + 0, x0); U32TO8_LITTLE (output + 4, x1); U32TO8_LITTLE (output + 8, x2); U32TO8_LITTLE (output + 12, x3); U32TO8_LITTLE (output + 16, x4); U32TO8_LITTLE (output + 20, x5); U32TO8_LITTLE (output + 24, x6); U32TO8_LITTLE (output + 28, x7); U32TO8_LITTLE (output + 32, x8); U32TO8_LITTLE (output + 36, x9); U32TO8_LITTLE (output + 40, x10); U32TO8_LITTLE (output + 44, x11); U32TO8_LITTLE (output + 48, x12); U32TO8_LITTLE (output + 52, x13); U32TO8_LITTLE (output + 56, x14); U32TO8_LITTLE (output + 60, x15); /* Increment block counter */ input[8] = PLUSONE (input[8]); if (!input[8]) { input[9] = PLUSONE (input[9]); /* stopping at 2^70 bytes per nonce is user's responsibility */ } }