Esempio n. 1
0
static struct expr *BreakParse(
  void *theEnv,
  struct expr *top,
  char *infile)
  {
   struct token theToken;

   if (ExpressionData(theEnv)->svContexts->brk == FALSE)
     {
      PrintErrorID(theEnv,"PRCDRPSR",2,TRUE);
      EnvPrintRouter(theEnv,WERROR,"The break function not valid in this context.\n");
      ReturnExpression(theEnv,top);
      return(NULL);
     }

   SavePPBuffer(theEnv," ");
   GetToken(theEnv,infile,&theToken);
   if (theToken.type != RPAREN)
     {
      SyntaxErrorMessage(theEnv,"break function");
      ReturnExpression(theEnv,top);
      return(NULL);
     }
   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,")");
   return(top);
  }
Esempio n. 2
0
static struct expr *ReturnParse(
  void *theEnv,
  struct expr *top,
  char *infile)
  {
   int error_flag = FALSE;
   struct token theToken;

   if (ExpressionData(theEnv)->svContexts->rtn == TRUE)
     ExpressionData(theEnv)->ReturnContext = TRUE;
   if (ExpressionData(theEnv)->ReturnContext == FALSE)
     {
      PrintErrorID(theEnv,"PRCDRPSR",2,TRUE);
      EnvPrintRouter(theEnv,WERROR,"The return function is not valid in this context.\n");
      ReturnExpression(theEnv,top);
      return(NULL);
     }
   ExpressionData(theEnv)->ReturnContext = FALSE;

   SavePPBuffer(theEnv," ");

   top->argList = ArgumentParse(theEnv,infile,&error_flag);
   if (error_flag)
     {
      ReturnExpression(theEnv,top);
      return(NULL);
     }
   else if (top->argList == NULL)
     {
      PPBackup(theEnv);
      PPBackup(theEnv);
      SavePPBuffer(theEnv,")");
     }
   else
     {
      SavePPBuffer(theEnv," ");
      GetToken(theEnv,infile,&theToken);
      if (theToken.type != RPAREN)
        {
         SyntaxErrorMessage(theEnv,"return function");
         ReturnExpression(theEnv,top);
         return(NULL);
        }
      PPBackup(theEnv);
      PPBackup(theEnv);
      SavePPBuffer(theEnv,")");
     }
   return(top);
  }
Esempio n. 3
0
/********************************************************************************
  NAME         : ParseSlotOverrides
  DESCRIPTION  : Forms expressions for slot-overrides
  INPUTS       : 1) The logical name of the input
                 2) Caller's buffer for error flkag
  RETURNS      : Address override expressions, NULL
                   if none or error.
  SIDE EFFECTS : Slot-expression built
                 Caller's error flag set
  NOTES        : <slot-override> ::= (<slot-name> <value>*)*

                 goes to

                 <slot-name> --> <dummy-node> --> <slot-name> --> <dummy-node>...
                                       |
                                       V
                               <value-expression> --> <value-expression> --> ...

                 Assumes first token has already been scanned
 ********************************************************************************/
globle EXPRESSION *ParseSlotOverrides(
  void *theEnv,
  const char *readSource,
  int *error)
  {
   EXPRESSION *top = NULL,*bot = NULL,*theExp;
   EXPRESSION *theExpNext;

   while (GetType(DefclassData(theEnv)->ObjectParseToken) == LPAREN)
     {
      *error = FALSE;
      theExp = ArgumentParse(theEnv,readSource,error);
      if (*error == TRUE)
        {
         ReturnExpression(theEnv,top);
         return(NULL);
        }
      else if (theExp == NULL)
        {
         SyntaxErrorMessage(theEnv,"slot-override");
         *error = TRUE;
         ReturnExpression(theEnv,top);
         SetEvaluationError(theEnv,TRUE);
         return(NULL);
        }
      theExpNext = GenConstant(theEnv,SYMBOL,EnvTrueSymbol(theEnv));
      if (CollectArguments(theEnv,theExpNext,readSource) == NULL)
        {
         *error = TRUE;
         ReturnExpression(theEnv,top);
         ReturnExpression(theEnv,theExp);
         return(NULL);
        }
      theExp->nextArg = theExpNext;
      if (top == NULL)
        top = theExp;
      else
        bot->nextArg = theExp;
      bot = theExp->nextArg;
      PPCRAndIndent(theEnv);
      GetToken(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken);
     }
   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,DefclassData(theEnv)->ObjectParseToken.printForm);
   return(top);
  }
Esempio n. 4
0
static struct expr *ParseRuleRHS(
  void *theEnv,
  const char *readSource)
  {
   struct expr *actions;
   struct token theToken;

   /*=========================================================*/
   /* Process the actions on the right hand side of the rule. */
   /*=========================================================*/

   SavePPBuffer(theEnv,"\n   ");
   SetIndentDepth(theEnv,3);

   actions = GroupActions(theEnv,readSource,&theToken,TRUE,NULL,FALSE);

   if (actions == NULL) return(NULL);

   /*=============================*/
   /* Reformat the closing token. */
   /*=============================*/

   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,theToken.printForm);

   /*======================================================*/
   /* Check for the closing right parenthesis of the rule. */
   /*======================================================*/

   if (theToken.type != RPAREN)
     {
      SyntaxErrorMessage(theEnv,"defrule");
      ReturnExpression(theEnv,actions);
      return(NULL);
     }

   /*========================*/
   /* Return the rule's RHS. */
   /*========================*/

   return(actions);
  }
Esempio n. 5
0
/********************************************************************************
  NAME         : ParseSlotOverrides
  DESCRIPTION  : Forms expressions for slot-overrides
  INPUTS       : 1) The logical name of the input
                 2) Caller's buffer for error flkag
  RETURNS      : Address override expressions, NULL
                   if none or error.
  SIDE EFFECTS : Slot-expression built
                 Caller's error flag set
  NOTES        : <slot-override> ::= (<slot-name> <value>*)*

                 goes to

                 <slot-name> --> <dummy-node> --> <slot-name> --> <dummy-node>...
                                       |
                                       V
                               <value-expression> --> <value-expression> --> ...

                 Assumes first token has already been scanned
 ********************************************************************************/
globle EXPRESSION *ParseSlotOverrides(
  char *readSource,
  int *error)
  {
   EXPRESSION *top = NULL,*bot = NULL,*exp;

   while (GetType(ObjectParseToken) == LPAREN)
     {
      *error = FALSE;
      exp = ArgumentParse(readSource,error);
      if (*error == TRUE)
        {
         ReturnExpression(top);
         return(NULL);
        }
      else if (exp == NULL)
        {
         SyntaxErrorMessage("slot-override");
         *error = TRUE;
         ReturnExpression(top);
         SetEvaluationError(TRUE);
         return(NULL);
        }
      exp->nextArg = GenConstant(SYMBOL,TrueSymbol);
      if (CollectArguments(exp->nextArg,readSource) == NULL)
        {
         *error = TRUE;
         ReturnExpression(top);
         return(NULL);
        }
      if (top == NULL)
        top = exp;
      else
        bot->nextArg = exp;
      bot = exp->nextArg;
      PPCRAndIndent();
      GetToken(readSource,&ObjectParseToken);
     }
   PPBackup();
   PPBackup();
   SavePPBuffer(ObjectParseToken.print_rep);
   return(top);
  }
Esempio n. 6
0
static struct expr *PrognParse(
  struct expr *top,
  char *infile)
  {
   struct token tkn;
   struct expr *tmp;

   ReturnExpression(top);
   BreakContext = svContexts->brk;
   ReturnContext = svContexts->rtn;
   IncrementIndentDepth(3);
   PPCRAndIndent();
   tmp = GroupActions(infile,&tkn,TRUE,NULL,FALSE);
   DecrementIndentDepth(3);
   PPBackup();
   PPBackup();
   SavePPBuffer(tkn.printForm);
   return(tmp);
  }
Esempio n. 7
0
globle struct expr *CollectArguments(
  void *theEnv,
  struct expr *top,
  char *logicalName)
  {
   int errorFlag;
   struct expr *lastOne, *nextOne;

   /*========================================*/
   /* Default parsing routine for functions. */
   /*========================================*/

   lastOne = NULL;

   while (TRUE)
     {
      SavePPBuffer(theEnv," ");

      errorFlag = FALSE;
      nextOne = ArgumentParse(theEnv,logicalName,&errorFlag);

      if (errorFlag == TRUE)
        {
         ReturnExpression(theEnv,top);
         return(NULL);
        }

      if (nextOne == NULL)
        {
         PPBackup(theEnv);
         PPBackup(theEnv);
         SavePPBuffer(theEnv,")");
         return(top);
        }

      if (lastOne == NULL)
        { top->argList = nextOne; }
      else
        { lastOne->nextArg = nextOne; }

      lastOne = nextOne;
     }
  }
Esempio n. 8
0
static struct expr *PrognParse(
  void *theEnv,
  struct expr *top,
  char *infile)
  {
   struct token tkn;
   struct expr *tmp;

   ReturnExpression(theEnv,top);
   ExpressionData(theEnv)->BreakContext = ExpressionData(theEnv)->svContexts->brk;
   ExpressionData(theEnv)->ReturnContext = ExpressionData(theEnv)->svContexts->rtn;
   IncrementIndentDepth(theEnv,3);
   PPCRAndIndent(theEnv);
   tmp = GroupActions(theEnv,infile,&tkn,TRUE,NULL,FALSE);
   DecrementIndentDepth(theEnv,3);
   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,tkn.printForm);
   return(tmp);
  }
Esempio n. 9
0
/***************************************************
  NAME         : ReadUntilClosingParen
  DESCRIPTION  : Skips over tokens until a ')' is
                 encountered.
  INPUTS       : 1) The logical input source
                 2) A buffer for scanned tokens
  RETURNS      : TRUE if ')' read, FALSE
                 otherwise
  SIDE EFFECTS : Tokens read
  NOTES        : Expects first token after opening
                 paren has already been scanned
 ***************************************************/
static intBool ReadUntilClosingParen(
  void *theEnv,
  char *readSource,
  struct token *inputToken)
  {
   int cnt = 1,lparen_read = FALSE;

   do
     {
      if (lparen_read == FALSE)
        SavePPBuffer(theEnv," ");
      GetToken(theEnv,readSource,inputToken);
      if (inputToken->type == STOP)
        {
         SyntaxErrorMessage(theEnv,"message-handler declaration");
         return(FALSE);
        }
      else if (inputToken->type == LPAREN)
        {
         lparen_read = TRUE;
         cnt++;
        }
      else if (inputToken->type == RPAREN)
        {
         cnt--;
         if (lparen_read == FALSE)
           {
            PPBackup(theEnv);
            PPBackup(theEnv);
            SavePPBuffer(theEnv,")");
           }
         lparen_read = FALSE;
        }
      else
        lparen_read = FALSE;
     }
   while (cnt > 0);

   return(TRUE);
  }
Esempio n. 10
0
/*************************************************************
  NAME         : ParseDefinstancesName
  DESCRIPTION  : Parses definstance name and optional comment
                 and optional "active" keyword
  INPUTS       : 1) The logical name of the input source
                 2) Buffer to hold flag indicating if
                    definstances should cause pattern-matching
                    to occur during slot-overrides
  RETURNS      : Address of name symbol, or
                   NULL if there was an error
  SIDE EFFECTS : Token after name or comment is scanned
  NOTES        : Assumes "(definstances" has already
                   been scanned.
 *************************************************************/
static SYMBOL_HN *ParseDefinstancesName(
  void *theEnv,
  char *readSource,
  int *active)
  {
   SYMBOL_HN *dname;

   *active = FALSE;
   dname = GetConstructNameAndComment(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken,(char*)"definstances",
                                      EnvFindDefinstances,EnvUndefinstances,(char*)"@",
                                      TRUE,FALSE,TRUE);
   if (dname == NULL)
     return(NULL);

#if DEFRULE_CONSTRUCT
   if ((GetType(DefclassData(theEnv)->ObjectParseToken) != SYMBOL) ? FALSE :
       (strcmp(ValueToString(GetValue(DefclassData(theEnv)->ObjectParseToken)),ACTIVE_RLN) == 0))
     {
      PPBackup(theEnv);
      PPBackup(theEnv);
      SavePPBuffer(theEnv,(char*)" ");
      SavePPBuffer(theEnv,DefclassData(theEnv)->ObjectParseToken.printForm);
      PPCRAndIndent(theEnv);
      GetToken(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken);
      *active = TRUE;
     }
#endif
   if (GetType(DefclassData(theEnv)->ObjectParseToken) == STRING)
     {
      PPBackup(theEnv);
      PPBackup(theEnv);
      SavePPBuffer(theEnv,(char*)" ");
      SavePPBuffer(theEnv,DefclassData(theEnv)->ObjectParseToken.printForm);
      PPCRAndIndent(theEnv);
      GetToken(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken);
     }
   return(dname);
  }
Esempio n. 11
0
static struct lhsParseNode *GetLHSSlots(
  void *theEnv,
  char *readSource,
  struct token *tempToken,
  struct deftemplate *theDeftemplate,
  int *error)
  {
   struct lhsParseNode *firstSlot = NULL, *nextSlot, *lastSlot = NULL;
   struct templateSlot *slotPtr;
   short position;

   /*=======================================================*/
   /* Continue parsing slot definitions until the pattern's */
   /* closing right parenthesis is encountered.             */
   /*=======================================================*/

   while (tempToken->type != RPAREN)
     {
      PPBackup(theEnv);
      SavePPBuffer(theEnv,(char*)" ");
      SavePPBuffer(theEnv,tempToken->printForm);

      /*=================================================*/
      /* Slot definitions begin with a left parenthesis. */
      /*=================================================*/

      if (tempToken->type != LPAREN)
        {
         *error = TRUE;
         SyntaxErrorMessage(theEnv,(char*)"deftemplate patterns");
         ReturnLHSParseNodes(theEnv,firstSlot);
         return(NULL);
        }

      /*====================*/
      /* Get the slot name. */
      /*====================*/

      GetToken(theEnv,readSource,tempToken);
      if (tempToken->type != SYMBOL)
        {
         *error = TRUE;
         SyntaxErrorMessage(theEnv,(char*)"deftemplate patterns");
         ReturnLHSParseNodes(theEnv,firstSlot);
         return(NULL);
        }

      /*==========================================================*/
      /* Determine if the slot name is valid for the deftemplate. */
      /*==========================================================*/

      if ((slotPtr = FindSlot(theDeftemplate,(SYMBOL_HN *) tempToken->value,&position)) == NULL)
        {
         *error = TRUE;
         InvalidDeftemplateSlotMessage(theEnv,ValueToString(tempToken->value),
                                       ValueToString(theDeftemplate->header.name),TRUE);
         ReturnLHSParseNodes(theEnv,firstSlot);
         return(NULL);
        }

      /*============================================*/
      /* Determine if the slot is multiply defined. */
      /*============================================*/

      if (MultiplyDefinedLHSSlots(theEnv,firstSlot,(SYMBOL_HN *) tempToken->value) == TRUE)
        {
         *error = TRUE;
         ReturnLHSParseNodes(theEnv,firstSlot);
         return(NULL);
        }

      /*==============================================================*/
      /* Get the pattern matching values used in the slot definition. */
      /*==============================================================*/

      nextSlot = GetSingleLHSSlot(theEnv,readSource,tempToken,slotPtr,error,(short) (position+1));
      if (*error)
        {
         ReturnLHSParseNodes(theEnv,firstSlot);
         ReturnLHSParseNodes(theEnv,nextSlot);
         return(NULL);
        }

      /*=====================================*/
      /* Add the slot definition to the list */
      /* of slot definitions already parsed. */
      /*=====================================*/

      if (lastSlot == NULL)
        { firstSlot = nextSlot; }
      else
        { lastSlot->right = nextSlot; }

      while (nextSlot->right != NULL) nextSlot = nextSlot->right;
      lastSlot = nextSlot;

      /*==============================*/
      /* Begin parsing the next slot. */
      /*==============================*/

      GetToken(theEnv,readSource,tempToken);
     }

   /*===========================================================*/
   /* Return all the slot definitions found in the lhs pattern. */
   /*===========================================================*/

   return(firstSlot);
  }
Esempio n. 12
0
static struct expr *IfParse(
  void *theEnv,
  struct expr *top,
  char *infile)
  {
   struct token theToken;

   /*============================*/
   /* Process the if expression. */
   /*============================*/

   SavePPBuffer(theEnv," ");

   top->argList = ParseAtomOrExpression(theEnv,infile,NULL);

   if (top->argList == NULL)
     {
      ReturnExpression(theEnv,top);
      return(NULL);
     }

   /*========================================*/
   /* Keyword 'then' must follow expression. */
   /*========================================*/

   IncrementIndentDepth(theEnv,3);
   PPCRAndIndent(theEnv);

   GetToken(theEnv,infile,&theToken);
   if ((theToken.type != SYMBOL) || (strcmp(ValueToString(theToken.value),"then") != 0))
     {
      SyntaxErrorMessage(theEnv,"if function");
      ReturnExpression(theEnv,top);
      return(NULL);
     }

   /*==============================*/
   /* Process the if then actions. */
   /*==============================*/

   PPCRAndIndent(theEnv);
   if (ExpressionData(theEnv)->svContexts->rtn == TRUE)
     ExpressionData(theEnv)->ReturnContext = TRUE;
   if (ExpressionData(theEnv)->svContexts->brk == TRUE)
     ExpressionData(theEnv)->BreakContext = TRUE;
   top->argList->nextArg = GroupActions(theEnv,infile,&theToken,TRUE,"else",FALSE);

   if (top->argList->nextArg == NULL)
     {
      ReturnExpression(theEnv,top);
      return(NULL);
     }

   top->argList->nextArg = RemoveUnneededProgn(theEnv,top->argList->nextArg);

   /*===========================================*/
   /* A ')' signals an if then without an else. */
   /*===========================================*/

   if (theToken.type == RPAREN)
     {
      DecrementIndentDepth(theEnv,3);
      PPBackup(theEnv);
      PPBackup(theEnv);
      SavePPBuffer(theEnv,theToken.printForm);
      return(top);
     }

   /*=============================================*/
   /* Keyword 'else' must follow if then actions. */
   /*=============================================*/

   if ((theToken.type != SYMBOL) || (strcmp(ValueToString(theToken.value),"else") != 0))
     {
      SyntaxErrorMessage(theEnv,"if function");
      ReturnExpression(theEnv,top);
      return(NULL);
     }

   /*==============================*/
   /* Process the if else actions. */
   /*==============================*/

   PPCRAndIndent(theEnv);
   top->argList->nextArg->nextArg = GroupActions(theEnv,infile,&theToken,TRUE,NULL,FALSE);

   if (top->argList->nextArg->nextArg == NULL)
     {
      ReturnExpression(theEnv,top);
      return(NULL);
     }

   top->argList->nextArg->nextArg = RemoveUnneededProgn(theEnv,top->argList->nextArg->nextArg);

   /*======================================================*/
   /* Check for the closing right parenthesis of the if. */
   /*======================================================*/

   if (theToken.type != RPAREN)
     {
      SyntaxErrorMessage(theEnv,"if function");
      ReturnExpression(theEnv,top);
      return(NULL);
     }

   /*===========================================*/
   /* A ')' signals an if then without an else. */
   /*===========================================*/

   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,")");
   DecrementIndentDepth(theEnv,3);
   return(top);
  }
Esempio n. 13
0
globle intBool ParseDefglobal(
  void *theEnv,
  char *readSource)
  {
   int defglobalError = FALSE;
#if (MAC_MCW || IBM_MCW) && (RUN_TIME || BLOAD_ONLY)
#pragma unused(theEnv,readSource)
#endif

#if (! RUN_TIME) && (! BLOAD_ONLY)

   struct token theToken;
   int tokenRead = TRUE;
   struct defmodule *theModule;

   /*=====================================*/
   /* Pretty print buffer initialization. */
   /*=====================================*/

   SetPPBufferStatus(theEnv,ON);
   FlushPPBuffer(theEnv);
   SetIndentDepth(theEnv,3);
   SavePPBuffer(theEnv,"(defglobal ");

   /*=================================================*/
   /* Individual defglobal constructs can't be parsed */
   /* while a binary load is in effect.               */
   /*=================================================*/

#if BLOAD || BLOAD_ONLY || BLOAD_AND_BSAVE
   if ((Bloaded(theEnv) == TRUE) && (! ConstructData(theEnv)->CheckSyntaxMode))
     {
      CannotLoadWithBloadMessage(theEnv,"defglobal");
      return(TRUE);
     }
#endif

   /*===========================*/
   /* Look for the module name. */
   /*===========================*/

   GetToken(theEnv,readSource,&theToken);
   if (theToken.type == SYMBOL)
     {
      /*=================================================*/
      /* The optional module name can't contain a module */
      /* separator like other constructs. For example,   */
      /* (defrule X::foo is OK for rules, but the right  */
      /* syntax for defglobals is (defglobal X ?*foo*.   */
      /*=================================================*/

      tokenRead = FALSE;
      if (FindModuleSeparator(ValueToString(theToken.value)))
        {
         SyntaxErrorMessage(theEnv,"defglobal");
         return(TRUE);
        }

      /*=================================*/
      /* Determine if the module exists. */
      /*=================================*/

      theModule = (struct defmodule *) EnvFindDefmodule(theEnv,ValueToString(theToken.value));
      if (theModule == NULL)
        {
         CantFindItemErrorMessage(theEnv,"defmodule",ValueToString(theToken.value));
         return(TRUE);
        }

      /*=========================================*/
      /* If the module name was OK, then set the */
      /* current module to the specified module. */
      /*=========================================*/

      SavePPBuffer(theEnv," ");
      EnvSetCurrentModule(theEnv,(void *) theModule);
     }

   /*===========================================*/
   /* If the module name wasn't specified, then */
   /* use the current module's name in the      */
   /* defglobal's pretty print representation.  */
   /*===========================================*/

   else
     {
      PPBackup(theEnv);
      SavePPBuffer(theEnv,EnvGetDefmoduleName(theEnv,((struct defmodule *) EnvGetCurrentModule(theEnv))));
      SavePPBuffer(theEnv," ");
      SavePPBuffer(theEnv,theToken.printForm);
     }

   /*======================*/
   /* Parse the variables. */
   /*======================*/

   while (GetVariableDefinition(theEnv,readSource,&defglobalError,tokenRead,&theToken))
     {
      tokenRead = FALSE;

      FlushPPBuffer(theEnv);
      SavePPBuffer(theEnv,"(defglobal ");
      SavePPBuffer(theEnv,EnvGetDefmoduleName(theEnv,((struct defmodule *) EnvGetCurrentModule(theEnv))));
      SavePPBuffer(theEnv," ");
     }

#endif

   /*==================================*/
   /* Return the parsing error status. */
   /*==================================*/

   return(defglobalError);
  }
Esempio n. 14
0
globle struct expr *BuildRHSAssert(
  char *logicalName,
  struct token *theToken,
  int *error,
  int atLeastOne,
  int readFirstParen,
  char *whereParsed)
  {
   struct expr *lastOne, *nextOne, *assertList, *stub;
   *error = FALSE;

   /*===============================================================*/
   /* If the first parenthesis of the RHS fact pattern has not been */
   /* read yet, then get the next token. If a right parenthesis is  */
   /* encountered then exit (however, set the error return value if */
   /* at least one fact was expected).                              */
   /*===============================================================*/

   if (readFirstParen == FALSE)
     {
      if (theToken->type == RPAREN)
        {
         if (atLeastOne)
           {
            *error = TRUE;
            SyntaxErrorMessage(whereParsed);
           }
         return(NULL);
        }
     }

   /*================================================*/
   /* Parse the facts until no more are encountered. */
   /*================================================*/

   lastOne = assertList = NULL;
   while ((nextOne = GetRHSPattern(logicalName,theToken,
                                   error,FALSE,readFirstParen,
                                   TRUE,RPAREN)) != NULL)
     {
      PPCRAndIndent();

      stub = GenConstant(FCALL,(void *) FindFunction("assert"));
      stub->argList = nextOne;
      nextOne = stub;

      if (lastOne == NULL)
        { assertList = nextOne; }
      else
        { lastOne->nextArg = nextOne; }
      lastOne = nextOne;

      readFirstParen = TRUE;
     }

   /*======================================================*/
   /* If an error was detected while parsing, then return. */
   /*======================================================*/

   if (*error)
     {
      ReturnExpression(assertList);
      return(NULL);
     }

   /*======================================*/
   /* Fix the pretty print representation. */
   /*======================================*/

   if (theToken->type == RPAREN)
     {
      PPBackup();
      PPBackup();
      SavePPBuffer(")");
     }

   /*==============================================================*/
   /* If no facts are being asserted then return NULL. In addition */
   /* if at least one fact was required, then signal an error.     */
   /*==============================================================*/

   if (assertList == NULL)
     {
      if (atLeastOne)
        {
         *error = TRUE;
         SyntaxErrorMessage(whereParsed);
        }

      return(NULL);
     }

   /*===============================================*/
   /* If more than one fact is being asserted, then */
   /* wrap the assert commands within a progn call. */
   /*===============================================*/

   if (assertList->nextArg != NULL)
     {
      stub = GenConstant(FCALL,(void *) FindFunction("progn"));
      stub->argList = assertList;
      assertList = stub;
     }

   /*==========================================================*/
   /* Return the expression for asserting the specified facts. */
   /*==========================================================*/

   return(assertList);
  }
Esempio n. 15
0
/***************************************************************************
  NAME         : ParseDeffunction
  DESCRIPTION  : Parses the deffunction construct
  INPUTS       : The input logical name
  RETURNS      : FALSE if successful parse, TRUE otherwise
  SIDE EFFECTS : Creates valid deffunction definition
  NOTES        : H/L Syntax :
                 (deffunction <name> [<comment>]
                    (<single-field-varible>* [<multifield-variable>])
                    <action>*)
 ***************************************************************************/
globle BOOLEAN ParseDeffunction(
  void *theEnv,
  char *readSource)
  {
   SYMBOL_HN *deffunctionName;
   EXPRESSION *actions;
   EXPRESSION *parameterList;
   SYMBOL_HN *wildcard;
   int min,max,lvars,DeffunctionError = FALSE;
   short overwrite = FALSE, owMin = 0, owMax = 0;
   DEFFUNCTION *dptr;

   SetPPBufferStatus(theEnv,ON);

   FlushPPBuffer(theEnv);
   SetIndentDepth(theEnv,3);
   SavePPBuffer(theEnv,"(deffunction ");

#if BLOAD || BLOAD_AND_BSAVE
   if ((Bloaded(theEnv) == TRUE) && (! ConstructData(theEnv)->CheckSyntaxMode))
     {
      CannotLoadWithBloadMessage(theEnv,"deffunctions");
      return(TRUE);
     }
#endif

   /* =====================================================
      Parse the name and comment fields of the deffunction.
      ===================================================== */
   deffunctionName = GetConstructNameAndComment(theEnv,readSource,&DeffunctionData(theEnv)->DFInputToken,"deffunction",
                                                EnvFindDeffunction,NULL,
                                                "!",TRUE,TRUE,TRUE);
   if (deffunctionName == NULL)
     return(TRUE);

   if (ValidDeffunctionName(theEnv,ValueToString(deffunctionName)) == FALSE)
     return(TRUE);

   /*==========================*/
   /* Parse the argument list. */
   /*==========================*/
   parameterList = ParseProcParameters(theEnv,readSource,&DeffunctionData(theEnv)->DFInputToken,NULL,&wildcard,
                                       &min,&max,&DeffunctionError,NULL);
   if (DeffunctionError)
     return(TRUE);

   /*===================================================================*/
   /* Go ahead and add the deffunction so it can be recursively called. */
   /*===================================================================*/

   if (ConstructData(theEnv)->CheckSyntaxMode)
     {
      dptr = (DEFFUNCTION *) EnvFindDeffunction(theEnv,ValueToString(deffunctionName));
      if (dptr == NULL)
        { dptr = AddDeffunction(theEnv,deffunctionName,NULL,min,max,0,TRUE); }
      else
        {
         overwrite = TRUE;
         owMin = (short) dptr->minNumberOfParameters;
         owMax = (short) dptr->maxNumberOfParameters;
         dptr->minNumberOfParameters = min;
         dptr->maxNumberOfParameters = max;
        }
     }
   else
     { dptr = AddDeffunction(theEnv,deffunctionName,NULL,min,max,0,TRUE); }

   if (dptr == NULL)
     {
      ReturnExpression(theEnv,parameterList);
      return(TRUE);
     }

   /*==================================================*/
   /* Parse the actions contained within the function. */
   /*==================================================*/

   PPCRAndIndent(theEnv);

   ExpressionData(theEnv)->ReturnContext = TRUE;
   actions = ParseProcActions(theEnv,"deffunction",readSource,
                              &DeffunctionData(theEnv)->DFInputToken,parameterList,wildcard,
                              NULL,NULL,&lvars,NULL);
   if (actions == NULL)
     {
      ReturnExpression(theEnv,parameterList);
      if (overwrite)
        {
         dptr->minNumberOfParameters = owMin;
         dptr->maxNumberOfParameters = owMax;
        }

      if ((dptr->busy == 0) && (! overwrite))
        {
         RemoveConstructFromModule(theEnv,(struct constructHeader *) dptr);
         RemoveDeffunction(theEnv,dptr);
        }
      return(TRUE);
     }

   /*==============================================*/
   /* If we're only checking syntax, don't add the */
   /* successfully parsed deffunction to the KB.   */
   /*==============================================*/

   if (ConstructData(theEnv)->CheckSyntaxMode)
     {
      ReturnExpression(theEnv,parameterList);
      ReturnPackedExpression(theEnv,actions);
      if (overwrite)
        {
         dptr->minNumberOfParameters = owMin;
         dptr->maxNumberOfParameters = owMax;
        }
      else
        {
         RemoveConstructFromModule(theEnv,(struct constructHeader *) dptr);
         RemoveDeffunction(theEnv,dptr);
        }
      return(FALSE);
     }

   /*=============================*/
   /* Reformat the closing token. */
   /*=============================*/

   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,DeffunctionData(theEnv)->DFInputToken.printForm);
   SavePPBuffer(theEnv,"\n");

   /*======================*/
   /* Add the deffunction. */
   /*======================*/

   AddDeffunction(theEnv,deffunctionName,actions,min,max,lvars,FALSE);

   ReturnExpression(theEnv,parameterList);

   return(DeffunctionError);
  }
Esempio n. 16
0
/*************************************************************************************
  NAME         : ParseInitializeInstance
  DESCRIPTION  : Parses initialize-instance and make-instance function
                   calls into an EXPRESSION form that
                   can later be evaluated with EvaluateExpression(theEnv,)
  INPUTS       : 1) The address of the top node of the expression
                    containing the initialize-instance function call
                 2) The logical name of the input source
  RETURNS      : The address of the modified expression, or NULL
                    if there is an error
  SIDE EFFECTS : The expression is enhanced to include all
                    aspects of the initialize-instance call
                    (slot-overrides etc.)
                 The "top" expression is deleted on errors.
  NOTES        : This function parses a initialize-instance call into
                 an expression of the following form :

                 (initialize-instance <instance-name> <slot-override>*)
                  where <slot-override> ::= (<slot-name> <expression>+)

                  goes to -->

                  initialize-instance
                      |
                      V
                  <instance or name>-><slot-name>-><dummy-node>...
                                                      |
                                                      V
                                               <value-expression>...

                  (make-instance <instance> of <class> <slot-override>*)
                  goes to -->

                  make-instance
                      |
                      V
                  <instance-name>-><class-name>-><slot-name>-><dummy-node>...
                                                                 |
                                                                 V
                                                          <value-expression>...

                  (make-instance of <class> <slot-override>*)
                  goes to -->

                  make-instance
                      |
                      V
                  (gensym*)-><class-name>-><slot-name>-><dummy-node>...
                                                                 |
                                                                 V
                                                          <value-expression>...

                  (modify-instance <instance> <slot-override>*)
                  goes to -->

                  modify-instance
                      |
                      V
                  <instance or name>-><slot-name>-><dummy-node>...
                                                      |
                                                      V
                                               <value-expression>...

                  (duplicate-instance <instance> [to <new-name>] <slot-override>*)
                  goes to -->

                  duplicate-instance
                      |
                      V
                  <instance or name>-><new-name>-><slot-name>-><dummy-node>...
                                          OR                         |
                                      (gensym*)                      V
                                                           <value-expression>...

 *************************************************************************************/
globle EXPRESSION *ParseInitializeInstance(
  void *theEnv,
  EXPRESSION *top,
  const char *readSource)
  {
   int error,fcalltype,readclass;

   if ((top->value == (void *) FindFunction(theEnv,"make-instance")) ||
       (top->value == (void *) FindFunction(theEnv,"active-make-instance")))
     fcalltype = MAKE_TYPE;
   else if ((top->value == (void *) FindFunction(theEnv,"initialize-instance")) ||
            (top->value == (void *) FindFunction(theEnv,"active-initialize-instance")))
     fcalltype = INITIALIZE_TYPE;
   else if ((top->value == (void *) FindFunction(theEnv,"modify-instance")) ||
            (top->value == (void *) FindFunction(theEnv,"active-modify-instance")) ||
            (top->value == (void *) FindFunction(theEnv,"message-modify-instance")) ||
            (top->value == (void *) FindFunction(theEnv,"active-message-modify-instance")))
     fcalltype = MODIFY_TYPE;
   else
     fcalltype = DUPLICATE_TYPE;
   IncrementIndentDepth(theEnv,3);
   error = FALSE;
   if (top->type == UNKNOWN_VALUE)
     top->type = FCALL;
   else
     SavePPBuffer(theEnv," ");
   top->argList = ArgumentParse(theEnv,readSource,&error);
   if (error)
     goto ParseInitializeInstanceError;
   else if (top->argList == NULL)
     {
      SyntaxErrorMessage(theEnv,"instance");
      goto ParseInitializeInstanceError;
     }
   SavePPBuffer(theEnv," ");

   if (fcalltype == MAKE_TYPE)
     {
      /* ======================================
         Handle the case of anonymous instances
         where the name was not specified
         ====================================== */
      if ((top->argList->type != SYMBOL) ? FALSE :
          (strcmp(ValueToString(top->argList->value),CLASS_RLN) == 0))
        {
         top->argList->nextArg = ArgumentParse(theEnv,readSource,&error);
         if (error == TRUE)
           goto ParseInitializeInstanceError;
         if (top->argList->nextArg == NULL)
           {
            SyntaxErrorMessage(theEnv,"instance class");
            goto ParseInitializeInstanceError;
           }
         if ((top->argList->nextArg->type != SYMBOL) ? TRUE :
             (strcmp(ValueToString(top->argList->nextArg->value),CLASS_RLN) != 0))
           {
            top->argList->type = FCALL;
            top->argList->value = (void *) FindFunction(theEnv,"gensym*");
            readclass = FALSE;
           }
         else
           readclass = TRUE;
        }
      else
        {
         GetToken(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken);
         if ((GetType(DefclassData(theEnv)->ObjectParseToken) != SYMBOL) ? TRUE :
             (strcmp(CLASS_RLN,DOToString(DefclassData(theEnv)->ObjectParseToken)) != 0))
           {
            SyntaxErrorMessage(theEnv,"make-instance");
            goto ParseInitializeInstanceError;
           }
         SavePPBuffer(theEnv," ");
         readclass = TRUE;
        }
      if (readclass)
        {
         top->argList->nextArg = ArgumentParse(theEnv,readSource,&error);
         if (error)
           goto ParseInitializeInstanceError;
         if (top->argList->nextArg == NULL)
           {
            SyntaxErrorMessage(theEnv,"instance class");
            goto ParseInitializeInstanceError;
           }
        }

      /* ==============================================
         If the class name is a constant, go ahead and
         look it up now and replace it with the pointer
         ============================================== */
      if (ReplaceClassNameWithReference(theEnv,top->argList->nextArg) == FALSE)
        goto ParseInitializeInstanceError;

      PPCRAndIndent(theEnv);
      GetToken(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken);
      top->argList->nextArg->nextArg =
                  ParseSlotOverrides(theEnv,readSource,&error);
     }
   else
     {
      PPCRAndIndent(theEnv);
      GetToken(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken);
      if (fcalltype == DUPLICATE_TYPE)
        {
         if ((DefclassData(theEnv)->ObjectParseToken.type != SYMBOL) ? FALSE :
             (strcmp(DOToString(DefclassData(theEnv)->ObjectParseToken),DUPLICATE_NAME_REF) == 0))
           {
            PPBackup(theEnv);
            PPBackup(theEnv);
            SavePPBuffer(theEnv,DefclassData(theEnv)->ObjectParseToken.printForm);
            SavePPBuffer(theEnv," ");
            top->argList->nextArg = ArgumentParse(theEnv,readSource,&error);
            if (error)
              goto ParseInitializeInstanceError;
            if (top->argList->nextArg == NULL)
              {
               SyntaxErrorMessage(theEnv,"instance name");
               goto ParseInitializeInstanceError;
              }
            PPCRAndIndent(theEnv);
            GetToken(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken);
           }
         else
           top->argList->nextArg = GenConstant(theEnv,FCALL,(void *) FindFunction(theEnv,"gensym*"));
         top->argList->nextArg->nextArg = ParseSlotOverrides(theEnv,readSource,&error);
        }
      else
        top->argList->nextArg = ParseSlotOverrides(theEnv,readSource,&error);
     }
   if (error)
      goto ParseInitializeInstanceError;
   if (GetType(DefclassData(theEnv)->ObjectParseToken) != RPAREN)
     {
      SyntaxErrorMessage(theEnv,"slot-override");
      goto ParseInitializeInstanceError;
     }
   DecrementIndentDepth(theEnv,3);
   return(top);

ParseInitializeInstanceError:
   SetEvaluationError(theEnv,TRUE);
   ReturnExpression(theEnv,top);
   DecrementIndentDepth(theEnv,3);
   return(NULL);
  }
Esempio n. 17
0
/***************************************************************************************
  NAME         : ParseDefclass
  DESCRIPTION  : (defclass ...) is a construct (as
                 opposed to a function), thus no variables
                 may be used.  This means classes may only
                 be STATICALLY defined (like rules).
  INPUTS       : The logical name of the router
                    for the parser input
  RETURNS      : FALSE if successful parse, TRUE otherwise
  SIDE EFFECTS : Inserts valid class definition into
                 Class Table.
  NOTES        : H/L Syntax :
                 (defclass <name> [<comment>]
                    (is-a <superclass-name>+)
                    <class-descriptor>*)

                 <class-descriptor> :== (slot <name> <slot-descriptor>*) |
                                        (role abstract|concrete) |
                                        (pattern-match reactive|non-reactive)

                                        These are for documentation only:
                                        (message-handler <name> [<type>])

                 <slot-descriptor>  :== (default <default-expression>) |
                                        (default-dynamic <default-expression>) |
                                        (storage shared|local) |
                                        (access read-only|read-write|initialize-only) |
                                        (propagation no-inherit|inherit) |
                                        (source composite|exclusive)
                                        (pattern-match reactive|non-reactive)
                                        (visibility public|private)
                                        (override-message <message-name>)
                                        (type ...) |
                                        (cardinality ...) |
                                        (allowed-symbols ...) |
                                        (allowed-strings ...) |
                                        (allowed-numbers ...) |
                                        (allowed-integers ...) |
                                        (allowed-floats ...) |
                                        (allowed-values ...) |
                                        (allowed-instance-names ...) |
                                        (allowed-classes ...) |
                                        (range ...)

               <default-expression> ::= ?NONE | ?VARIABLE | <expression>*
  ***************************************************************************************/
globle int ParseDefclass(
  void *theEnv,
  char *readSource)
  {
   SYMBOL_HN *cname;
   DEFCLASS *cls;
   PACKED_CLASS_LINKS *sclasses,*preclist;
   TEMP_SLOT_LINK *slots = NULL;
   int roleSpecified = FALSE,
       abstract = FALSE,
       parseError;
#if DEFRULE_CONSTRUCT
   int patternMatchSpecified = FALSE,
       reactive = TRUE;
#endif

   SetPPBufferStatus(theEnv,ON);
   FlushPPBuffer(theEnv);
   SetIndentDepth(theEnv,3);
   SavePPBuffer(theEnv,"(defclass ");

#if BLOAD || BLOAD_ONLY || BLOAD_AND_BSAVE
   if ((Bloaded(theEnv)) && (! ConstructData(theEnv)->CheckSyntaxMode))
     {
      CannotLoadWithBloadMessage(theEnv,"defclass");
      return(TRUE);
     }
#endif

   cname = GetConstructNameAndComment(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken,"defclass",
                                      EnvFindDefclass,NULL,"#",TRUE,
                                      TRUE,TRUE);
   if (cname == NULL)
     return(TRUE);

   if (ValidClassName(theEnv,ValueToString(cname),&cls) == FALSE)
     return(TRUE);

   sclasses = ParseSuperclasses(theEnv,readSource,cname);
   if (sclasses == NULL)
     return(TRUE);
   preclist = FindPrecedenceList(theEnv,cls,sclasses);
   if (preclist == NULL)
     {
      DeletePackedClassLinks(theEnv,sclasses,TRUE);
      return(TRUE);
     }
   parseError = FALSE;
   GetToken(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken);
   while (GetType(DefclassData(theEnv)->ObjectParseToken) != RPAREN)
     {
      if (GetType(DefclassData(theEnv)->ObjectParseToken) != LPAREN)
        {
         SyntaxErrorMessage(theEnv,"defclass");
         parseError = TRUE;
         break;
        }
      PPBackup(theEnv);
      PPCRAndIndent(theEnv);
      SavePPBuffer(theEnv,"(");
      GetToken(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken);
      if (GetType(DefclassData(theEnv)->ObjectParseToken) != SYMBOL)
        {
         SyntaxErrorMessage(theEnv,"defclass");
         parseError = TRUE;
         break;
        }
      if (strcmp(DOToString(DefclassData(theEnv)->ObjectParseToken),ROLE_RLN) == 0)
        {
         if (ParseSimpleQualifier(theEnv,readSource,ROLE_RLN,CONCRETE_RLN,ABSTRACT_RLN,
                                  &roleSpecified,&abstract) == FALSE)
           {
            parseError = TRUE;
            break;
           }
        }
#if DEFRULE_CONSTRUCT
      else if (strcmp(DOToString(DefclassData(theEnv)->ObjectParseToken),MATCH_RLN) == 0)
        {
         if (ParseSimpleQualifier(theEnv,readSource,MATCH_RLN,NONREACTIVE_RLN,REACTIVE_RLN,
                                  &patternMatchSpecified,&reactive) == FALSE)
           {
            parseError = TRUE;
            break;
           }
        }
#endif
      else if (strcmp(DOToString(DefclassData(theEnv)->ObjectParseToken),SLOT_RLN) == 0)
        {
         slots = ParseSlot(theEnv,readSource,slots,preclist,FALSE,FALSE);
         if (slots == NULL)
           {
            parseError = TRUE;
            break;
           }
        }
      else if (strcmp(DOToString(DefclassData(theEnv)->ObjectParseToken),SGL_SLOT_RLN) == 0)
        {
         slots = ParseSlot(theEnv,readSource,slots,preclist,FALSE,TRUE);
         if (slots == NULL)
           {
            parseError = TRUE;
            break;
           }
        }
      else if (strcmp(DOToString(DefclassData(theEnv)->ObjectParseToken),MLT_SLOT_RLN) == 0)
        {
         slots = ParseSlot(theEnv,readSource,slots,preclist,TRUE,TRUE);
         if (slots == NULL)
           {
            parseError = TRUE;
            break;
           }
        }
      else if (strcmp(DOToString(DefclassData(theEnv)->ObjectParseToken),HANDLER_DECL) == 0)
        {
         if (ReadUntilClosingParen(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken) == FALSE)
           {
            parseError = TRUE;
            break;
           }
        }
      else
        {
         SyntaxErrorMessage(theEnv,"defclass");
         parseError = TRUE;
         break;
        }
      GetToken(theEnv,readSource,&DefclassData(theEnv)->ObjectParseToken);
     }

   if ((GetType(DefclassData(theEnv)->ObjectParseToken) != RPAREN) || (parseError == TRUE))
     {
      DeletePackedClassLinks(theEnv,sclasses,TRUE);
      DeletePackedClassLinks(theEnv,preclist,TRUE);
      DeleteSlots(theEnv,slots);
      return(TRUE);
     }
   SavePPBuffer(theEnv,"\n");

   /* =========================================================================
      The abstract/reactive qualities of a class are inherited if not specified
      ========================================================================= */
   if (roleSpecified == FALSE)
     {
      if (preclist->classArray[1]->system &&                             /* Change to cause         */ 
          (DefclassData(theEnv)->ClassDefaultsMode == CONVENIENCE_MODE)) /* default role of         */
        { abstract = FALSE; }                                            /* classes to be concrete. */
      else
        { abstract = preclist->classArray[1]->abstract; }
     }
#if DEFRULE_CONSTRUCT
   if (patternMatchSpecified == FALSE)
     {
      if ((preclist->classArray[1]->system) &&                           /* Change to cause       */
          (! abstract) &&                                                /* default pattern-match */ 
          (DefclassData(theEnv)->ClassDefaultsMode == CONVENIENCE_MODE)) /* of classes to be      */
        { reactive = TRUE; }                                             /* reactive.             */
      else
        { reactive = preclist->classArray[1]->reactive; }
     }

   /* ================================================================
      An abstract class cannot have direct instances, thus it makes no
      sense for it to be reactive since it will have no objects to
      respond to pattern-matching
      ================================================================ */
   if (abstract && reactive)
     {
      PrintErrorID(theEnv,"CLASSPSR",1,FALSE);
      EnvPrintRouter(theEnv,WERROR,"An abstract class cannot be reactive.\n");
      DeletePackedClassLinks(theEnv,sclasses,TRUE);
      DeletePackedClassLinks(theEnv,preclist,TRUE);
      DeleteSlots(theEnv,slots);
      return(TRUE);
     }

#endif

   /* =======================================================
      If we're only checking syntax, don't add the
      successfully parsed defclass to the KB.
      ======================================================= */

   if (ConstructData(theEnv)->CheckSyntaxMode)
     {
      DeletePackedClassLinks(theEnv,sclasses,TRUE);
      DeletePackedClassLinks(theEnv,preclist,TRUE);
      DeleteSlots(theEnv,slots);
      return(FALSE);
     }

   cls = NewClass(theEnv,cname);
   cls->abstract = abstract;
#if DEFRULE_CONSTRUCT
   cls->reactive = reactive;
#endif
   cls->directSuperclasses.classCount = sclasses->classCount;
   cls->directSuperclasses.classArray = sclasses->classArray;

   /* =======================================================
      This is a hack to let functions which need to iterate
      over a class AND its superclasses to conveniently do so

      The real precedence list starts in position 1
      ======================================================= */
   preclist->classArray[0] = cls;
   cls->allSuperclasses.classCount = preclist->classCount;
   cls->allSuperclasses.classArray = preclist->classArray;
   rtn_struct(theEnv,packedClassLinks,sclasses);
   rtn_struct(theEnv,packedClassLinks,preclist);

   /* =================================
      Shove slots into contiguous array
      ================================= */
   if (slots != NULL)
     PackSlots(theEnv,cls,slots);
   AddClass(theEnv,cls);

   return(FALSE);
  }
Esempio n. 18
0
/*************************************************************
  NAME         : ParseQueryActionExpression
  DESCRIPTION  : Parses the action-expression for a query
  INPUTS       : 1) The top node of the query expression
                 2) The logical name of the input
                 3) List of query parameters
  RETURNS      : TRUE if all OK, FALSE otherwise
  SIDE EFFECTS : Entire query-expression deleted on errors
                 Nodes allocated for new expression
                 Action shoved in front of template-restrictions
                    and in back of test-expression on query
                    argument list
  NOTES        : Expects top != NULL && top->argList != NULL
 *************************************************************/
static int ParseQueryActionExpression(
  void *theEnv,
  EXPRESSION *top,
  const char *readSource,
  EXPRESSION *factQuerySetVars,
  struct token *queryInputToken)
  {
   EXPRESSION *qaction,*tmpFactSetVars;
   struct BindInfo *oldBindList,*newBindList,*prev;

   oldBindList = GetParsedBindNames(theEnv);
   SetParsedBindNames(theEnv,NULL);
   
   ExpressionData(theEnv)->BreakContext = TRUE;
   ExpressionData(theEnv)->ReturnContext = ExpressionData(theEnv)->svContexts->rtn;

   qaction = GroupActions(theEnv,readSource,queryInputToken,TRUE,NULL,FALSE);
   
   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,queryInputToken->printForm);

   ExpressionData(theEnv)->BreakContext = FALSE;
   
   if (qaction == NULL)
     {
      ClearParsedBindNames(theEnv);
      SetParsedBindNames(theEnv,oldBindList);
      SyntaxErrorMessage(theEnv,"fact-set query function");
      ReturnExpression(theEnv,top);
      return(FALSE);
     }
     
   qaction->nextArg = top->argList->nextArg;
   top->argList->nextArg = qaction;
   
   newBindList = GetParsedBindNames(theEnv);
   prev = NULL;
   while (newBindList != NULL)
     {
      tmpFactSetVars = factQuerySetVars;
      while (tmpFactSetVars != NULL)
        {
         if (tmpFactSetVars->value == (void *) newBindList->name)
           {
            ClearParsedBindNames(theEnv);
            SetParsedBindNames(theEnv,oldBindList);
            PrintErrorID(theEnv,"FACTQPSR",3,FALSE);
            EnvPrintRouter(theEnv,WERROR,"Cannot rebind fact-set member variable ");
            EnvPrintRouter(theEnv,WERROR,ValueToString(tmpFactSetVars->value));
            EnvPrintRouter(theEnv,WERROR," in function ");
            EnvPrintRouter(theEnv,WERROR,ValueToString(ExpressionFunctionCallName(top)));
            EnvPrintRouter(theEnv,WERROR,".\n");
            ReturnExpression(theEnv,top);
            return(FALSE);
           }
         tmpFactSetVars = tmpFactSetVars->nextArg;
        }
      prev = newBindList;
      newBindList = newBindList->next;
     }
     
   if (prev == NULL)
     { SetParsedBindNames(theEnv,oldBindList); }
   else
     { prev->next = oldBindList; }
   
   return(TRUE);
  }
Esempio n. 19
0
/***************************************************************
  NAME         : ParseQueryRestrictions
  DESCRIPTION  : Parses the template restrictions for a query
  INPUTS       : 1) The top node of the query expression
                 2) The logical name of the input
                 3) Caller's token buffer
  RETURNS      : The fact-variable expressions
  SIDE EFFECTS : Entire query expression deleted on errors
                 Nodes allocated for restrictions and fact
                   variable expressions
                 Template restrictions attached to query-expression
                   as arguments
  NOTES        : Expects top != NULL
 ***************************************************************/
static EXPRESSION *ParseQueryRestrictions(
  void *theEnv,
  EXPRESSION *top,
  const char *readSource,
  struct token *queryInputToken)
  {
   EXPRESSION *factQuerySetVars = NULL,*lastFactQuerySetVars = NULL,
              *templateExp = NULL,*lastTemplateExp,
              *tmp,*lastOne = NULL;
   int error = FALSE;

   SavePPBuffer(theEnv," ");
   
   GetToken(theEnv,readSource,queryInputToken);
   if (queryInputToken->type != LPAREN)
     { goto ParseQueryRestrictionsError1; }
     
   GetToken(theEnv,readSource,queryInputToken);
   if (queryInputToken->type != LPAREN)
     { goto ParseQueryRestrictionsError1; }
     
   while (queryInputToken->type == LPAREN)
     {
      GetToken(theEnv,readSource,queryInputToken);
      if (queryInputToken->type != SF_VARIABLE)
        { goto ParseQueryRestrictionsError1; }
        
      tmp = factQuerySetVars;
      while (tmp != NULL)
        {
         if (tmp->value == queryInputToken->value)
           {
            PrintErrorID(theEnv,"FACTQPSR",1,FALSE);
            EnvPrintRouter(theEnv,WERROR,"Duplicate fact member variable name in function ");
            EnvPrintRouter(theEnv,WERROR,ValueToString(ExpressionFunctionCallName(top)));
            EnvPrintRouter(theEnv,WERROR,".\n");
            goto ParseQueryRestrictionsError2;
           }
           
         tmp = tmp->nextArg;
        }
        
      tmp = GenConstant(theEnv,SF_VARIABLE,queryInputToken->value);
      if (factQuerySetVars == NULL)
        { factQuerySetVars = tmp; }
      else
        { lastFactQuerySetVars->nextArg = tmp; }
      
      lastFactQuerySetVars = tmp;
      SavePPBuffer(theEnv," ");
      
      templateExp = ArgumentParse(theEnv,readSource,&error);
      
      if (error)
        { goto ParseQueryRestrictionsError2; }
      
      if (templateExp == NULL)
        { goto ParseQueryRestrictionsError1; }
      
      if (ReplaceTemplateNameWithReference(theEnv,templateExp) == FALSE)
        { goto ParseQueryRestrictionsError2; }
      
      lastTemplateExp = templateExp;
      SavePPBuffer(theEnv," ");
      
      while ((tmp = ArgumentParse(theEnv,readSource,&error)) != NULL)
        {
         if (ReplaceTemplateNameWithReference(theEnv,tmp) == FALSE)
           goto ParseQueryRestrictionsError2;
         lastTemplateExp->nextArg = tmp;
         lastTemplateExp = tmp;
         SavePPBuffer(theEnv," ");
        }
        
      if (error)
        { goto ParseQueryRestrictionsError2; }
        
      PPBackup(theEnv);
      PPBackup(theEnv);
      SavePPBuffer(theEnv,")");
      
      tmp = GenConstant(theEnv,SYMBOL,(void *) FactQueryData(theEnv)->QUERY_DELIMETER_SYMBOL);
      
      lastTemplateExp->nextArg = tmp;
      lastTemplateExp = tmp;
      
      if (top->argList == NULL)
        { top->argList = templateExp; }
      else
        { lastOne->nextArg = templateExp; }
      
      lastOne = lastTemplateExp;
      templateExp = NULL;
      SavePPBuffer(theEnv," ");
      GetToken(theEnv,readSource,queryInputToken);
     }
     
   if (queryInputToken->type != RPAREN)
     { goto ParseQueryRestrictionsError1; }
     
   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,")");
   return(factQuerySetVars);

ParseQueryRestrictionsError1:
   SyntaxErrorMessage(theEnv,"fact-set query function");

ParseQueryRestrictionsError2:
   ReturnExpression(theEnv,templateExp);
   ReturnExpression(theEnv,top);
   ReturnExpression(theEnv,factQuerySetVars);
   return(NULL);
  }
Esempio n. 20
0
static struct expr *SwitchParse(
  void *theEnv,
  struct expr *top,
  char *infile)
  {
   struct token theToken;
   EXPRESSION *theExp,*chk;
   int default_count = 0;

   /*============================*/
   /* Process the switch value   */
   /*============================*/
   IncrementIndentDepth(theEnv,3);
   SavePPBuffer(theEnv," ");
   top->argList = theExp = ParseAtomOrExpression(theEnv,infile,NULL);
   if (theExp == NULL)
     goto SwitchParseError;

   /*========================*/
   /* Parse case statements. */
   /*========================*/
   GetToken(theEnv,infile,&theToken);
   while (theToken.type != RPAREN)
     {
      PPBackup(theEnv);
      PPCRAndIndent(theEnv);
      SavePPBuffer(theEnv,theToken.printForm);
      if (theToken.type != LPAREN)
        goto SwitchParseErrorAndMessage;
      GetToken(theEnv,infile,&theToken);
      SavePPBuffer(theEnv," ");
      if ((theToken.type == SYMBOL) &&
          (strcmp(ValueToString(theToken.value),"case") == 0))
        {
         if (default_count != 0)
           goto SwitchParseErrorAndMessage;
         theExp->nextArg = ParseAtomOrExpression(theEnv,infile,NULL);
         SavePPBuffer(theEnv," ");
         if (theExp->nextArg == NULL)
           goto SwitchParseError;
         for (chk = top->argList->nextArg ; chk != theExp->nextArg ; chk = chk->nextArg)
           {
            if ((chk->type == theExp->nextArg->type) &&
                (chk->value == theExp->nextArg->value) &&
                IdenticalExpression(chk->argList,theExp->nextArg->argList))
              {
               PrintErrorID(theEnv,"PRCDRPSR",3,TRUE);
               EnvPrintRouter(theEnv,WERROR,"Duplicate case found in switch function.\n");
               goto SwitchParseError;
              }
           }
         GetToken(theEnv,infile,&theToken);
         if ((theToken.type != SYMBOL) ? TRUE :
             (strcmp(ValueToString(theToken.value),"then") != 0))
           goto SwitchParseErrorAndMessage;
        }
      else if ((theToken.type == SYMBOL) &&
               (strcmp(ValueToString(theToken.value),"default") == 0))
        {
         if (default_count)
           goto SwitchParseErrorAndMessage;
         theExp->nextArg = GenConstant(theEnv,RVOID,NULL);
         default_count = 1;
        }
      else
        goto SwitchParseErrorAndMessage;
      theExp = theExp->nextArg;
      if (ExpressionData(theEnv)->svContexts->rtn == TRUE)
        ExpressionData(theEnv)->ReturnContext = TRUE;
      if (ExpressionData(theEnv)->svContexts->brk == TRUE)
        ExpressionData(theEnv)->BreakContext = TRUE;
      IncrementIndentDepth(theEnv,3);
      PPCRAndIndent(theEnv);
      theExp->nextArg = GroupActions(theEnv,infile,&theToken,TRUE,NULL,FALSE);
      DecrementIndentDepth(theEnv,3);
      ExpressionData(theEnv)->ReturnContext = FALSE;
      ExpressionData(theEnv)->BreakContext = FALSE;
      if (theExp->nextArg == NULL)
        goto SwitchParseError;
      theExp = theExp->nextArg;
      PPBackup(theEnv);
      PPBackup(theEnv);
      SavePPBuffer(theEnv,theToken.printForm);
      GetToken(theEnv,infile,&theToken);
     }
   DecrementIndentDepth(theEnv,3);
   return(top);

SwitchParseErrorAndMessage:
   SyntaxErrorMessage(theEnv,"switch function");
SwitchParseError:
   ReturnExpression(theEnv,top);
   DecrementIndentDepth(theEnv,3);
   return(NULL);
  }
Esempio n. 21
0
globle struct lhsParseNode *SequenceRestrictionParse(
  void *theEnv,
  char *readSource,
  struct token *theToken)
  {
   struct lhsParseNode *topNode;
   struct lhsParseNode *nextField;

   /*================================================*/
   /* Create the pattern node for the relation name. */
   /*================================================*/

   topNode = GetLHSParseNode(theEnv);
   topNode->type = SF_WILDCARD;
   topNode->negated = FALSE;
   topNode->exists = FALSE;
   topNode->index = -1;
   topNode->slotNumber = 1;
   topNode->bottom = GetLHSParseNode(theEnv);
   topNode->bottom->type = SYMBOL;
   topNode->bottom->negated = FALSE;
   topNode->bottom->exists = FALSE;
   topNode->bottom->value = (void *) theToken->value;

   /*======================================================*/
   /* Connective constraints cannot be used in conjunction */
   /* with the first field of a pattern.                   */
   /*======================================================*/

   SavePPBuffer(theEnv," ");
   GetToken(theEnv,readSource,theToken);
   if ((theToken->type == OR_CONSTRAINT) || (theToken->type == AND_CONSTRAINT))
     {
      ReturnLHSParseNodes(theEnv,topNode);
      SyntaxErrorMessage(theEnv,"the first field of a pattern");
      return(NULL);
     }

   /*============================================================*/
   /* Treat the remaining constraints of an ordered fact pattern */
   /* as if they were contained in a multifield slot.            */
   /*============================================================*/

   nextField = RestrictionParse(theEnv,readSource,theToken,TRUE,NULL,1,NULL,1);
   if (nextField == NULL)
     {
      ReturnLHSParseNodes(theEnv,topNode);
      return(NULL);
     }
   topNode->right = nextField;

   /*================================================*/
   /* The pattern must end with a right parenthesis. */
   /*================================================*/

   if (theToken->type != RPAREN)
     {
      PPBackup(theEnv);
      SavePPBuffer(theEnv," ");
      SavePPBuffer(theEnv,theToken->printForm);
      SyntaxErrorMessage(theEnv,"fact patterns");
      ReturnLHSParseNodes(theEnv,topNode);
      return(NULL);
     }

   /*====================================*/
   /* Fix the pretty print output if the */
   /* slot contained no restrictions.    */
   /*====================================*/

   if (nextField->bottom == NULL)
     {
      PPBackup(theEnv);
      PPBackup(theEnv);
      SavePPBuffer(theEnv,")");
     }

   /*===================================*/
   /* If no errors, return the pattern. */
   /*===================================*/

   return(topNode);
  }
Esempio n. 22
0
static intBool ParseAllowedValuesAttribute(
  void *theEnv,
  char *readSource,
  char *constraintName,
  CONSTRAINT_RECORD *constraints,
  CONSTRAINT_PARSE_RECORD *parsedConstraints)
  {
   struct token inputToken;
   int expectedType, restrictionType, error = FALSE;
   struct expr *newValue, *lastValue;
   int constantParsed = FALSE, variableParsed = FALSE;
   char *tempPtr = NULL;

   /*======================================================*/
   /* The allowed-values attribute is not allowed if other */
   /* allowed-... attributes have already been parsed.     */
   /*======================================================*/

   if ((strcmp(constraintName,"allowed-values") == 0) &&
       ((parsedConstraints->allowedSymbols) ||
        (parsedConstraints->allowedStrings) ||
        (parsedConstraints->allowedLexemes) ||
        (parsedConstraints->allowedIntegers) ||
        (parsedConstraints->allowedFloats) ||
        (parsedConstraints->allowedNumbers) ||
        (parsedConstraints->allowedInstanceNames)))
     {
      if (parsedConstraints->allowedSymbols) tempPtr = "allowed-symbols";
      else if (parsedConstraints->allowedStrings) tempPtr = "allowed-strings";
      else if (parsedConstraints->allowedLexemes) tempPtr = "allowed-lexemes";
      else if (parsedConstraints->allowedIntegers) tempPtr = "allowed-integers";
      else if (parsedConstraints->allowedFloats) tempPtr = "allowed-floats";
      else if (parsedConstraints->allowedNumbers) tempPtr = "allowed-numbers";
      else if (parsedConstraints->allowedInstanceNames) tempPtr = "allowed-instance-names";
      NoConjunctiveUseError(theEnv,"allowed-values",tempPtr);
      return(FALSE);
     }

   /*=======================================================*/
   /* The allowed-values/numbers/integers/floats attributes */
   /* are not allowed with the range attribute.             */
   /*=======================================================*/

   if (((strcmp(constraintName,"allowed-values") == 0) ||
        (strcmp(constraintName,"allowed-numbers") == 0) ||
        (strcmp(constraintName,"allowed-integers") == 0) ||
        (strcmp(constraintName,"allowed-floats") == 0)) &&
       (parsedConstraints->range))
     {
      NoConjunctiveUseError(theEnv,constraintName,"range");
      return(FALSE);
     }

   /*===================================================*/
   /* The allowed-... attributes are not allowed if the */
   /* allowed-values attribute has already been parsed. */
   /*===================================================*/

   if ((strcmp(constraintName,"allowed-values") != 0) &&
            (parsedConstraints->allowedValues))
     {
      NoConjunctiveUseError(theEnv,constraintName,"allowed-values");
      return(FALSE);
     }

   /*==================================================*/
   /* The allowed-numbers attribute is not allowed if  */
   /* the allowed-integers or allowed-floats attribute */
   /* has already been parsed.                         */
   /*==================================================*/

   if ((strcmp(constraintName,"allowed-numbers") == 0) &&
       ((parsedConstraints->allowedFloats) || (parsedConstraints->allowedIntegers)))
     {
      if (parsedConstraints->allowedFloats) tempPtr = "allowed-floats";
      else tempPtr = "allowed-integers";
      NoConjunctiveUseError(theEnv,"allowed-numbers",tempPtr);
      return(FALSE);
     }

   /*============================================================*/
   /* The allowed-integers/floats attributes are not allowed if  */
   /* the allowed-numbers attribute has already been parsed.     */
   /*============================================================*/

   if (((strcmp(constraintName,"allowed-integers") == 0) ||
        (strcmp(constraintName,"allowed-floats") == 0)) &&
       (parsedConstraints->allowedNumbers))
     {
      NoConjunctiveUseError(theEnv,constraintName,"allowed-number");
      return(FALSE);
     }

   /*==================================================*/
   /* The allowed-lexemes attribute is not allowed if  */
   /* the allowed-symbols or allowed-strings attribute */
   /* has already been parsed.                         */
   /*==================================================*/

   if ((strcmp(constraintName,"allowed-lexemes") == 0) &&
       ((parsedConstraints->allowedSymbols) || (parsedConstraints->allowedStrings)))
     {
      if (parsedConstraints->allowedSymbols) tempPtr = "allowed-symbols";
      else tempPtr = "allowed-strings";
      NoConjunctiveUseError(theEnv,"allowed-lexemes",tempPtr);
      return(FALSE);
     }

   /*===========================================================*/
   /* The allowed-symbols/strings attributes are not allowed if */
   /* the allowed-lexemes attribute has already been parsed.    */
   /*===========================================================*/

   if (((strcmp(constraintName,"allowed-symbols") == 0) ||
        (strcmp(constraintName,"allowed-strings") == 0)) &&
       (parsedConstraints->allowedLexemes))
     {
      NoConjunctiveUseError(theEnv,constraintName,"allowed-lexemes");
      return(FALSE);
     }

   /*========================*/
   /* Get the expected type. */
   /*========================*/

   restrictionType = GetConstraintTypeFromAllowedName(constraintName);
   SetRestrictionFlag(restrictionType,constraints,TRUE);
   if (strcmp(constraintName,"allowed-classes") == 0)
     { expectedType = SYMBOL; }
   else
     { expectedType = restrictionType; }
   
   /*=================================================*/
   /* Get the last value in the restriction list (the */
   /* allowed values will be appended there).         */
   /*=================================================*/

   if (strcmp(constraintName,"allowed-classes") == 0)
     { lastValue = constraints->classList; }
   else
     { lastValue = constraints->restrictionList; }
     
   if (lastValue != NULL)
     { while (lastValue->nextArg != NULL) lastValue = lastValue->nextArg; }

   /*==================================================*/
   /* Read the allowed values and add them to the list */
   /* until a right parenthesis is encountered.        */
   /*==================================================*/

   SavePPBuffer(theEnv," ");
   GetToken(theEnv,readSource,&inputToken);

   while (inputToken.type != RPAREN)
     {
      SavePPBuffer(theEnv," ");

      /*=============================================*/
      /* Determine the type of the token just parsed */
      /* and if it is an appropriate value.          */
      /*=============================================*/

      switch(inputToken.type)
        {
         case INTEGER:
           if ((expectedType != UNKNOWN_VALUE) &&
               (expectedType != INTEGER) &&
               (expectedType != INTEGER_OR_FLOAT)) error = TRUE;
           constantParsed = TRUE;
           break;

         case FLOAT:
           if ((expectedType != UNKNOWN_VALUE) &&
               (expectedType != FLOAT) &&
               (expectedType != INTEGER_OR_FLOAT)) error = TRUE;
           constantParsed = TRUE;
           break;

         case STRING:
           if ((expectedType != UNKNOWN_VALUE) &&
               (expectedType != STRING) &&
               (expectedType != SYMBOL_OR_STRING)) error = TRUE;
           constantParsed = TRUE;
           break;

         case SYMBOL:
           if ((expectedType != UNKNOWN_VALUE) &&
               (expectedType != SYMBOL) &&
               (expectedType != SYMBOL_OR_STRING)) error = TRUE;
           constantParsed = TRUE;
           break;

#if OBJECT_SYSTEM
         case INSTANCE_NAME:
           if ((expectedType != UNKNOWN_VALUE) &&
               (expectedType != INSTANCE_NAME)) error = TRUE;
           constantParsed = TRUE;
           break;
#endif

         case SF_VARIABLE:
           if (strcmp(inputToken.printForm,"?VARIABLE") == 0)
             { variableParsed = TRUE; }
           else
             {
              char tempBuffer[120];
              gensprintf(tempBuffer,"%s attribute",constraintName);
              SyntaxErrorMessage(theEnv,tempBuffer);
              return(FALSE);
             }

           break;

         default:
           {
            char tempBuffer[120];
            gensprintf(tempBuffer,"%s attribute",constraintName);
            SyntaxErrorMessage(theEnv,tempBuffer);
           }
           return(FALSE);
        }

      /*=====================================*/
      /* Signal an error if an inappropriate */
      /* value was found.                    */
      /*=====================================*/

      if (error)
        {
         PrintErrorID(theEnv,"CSTRNPSR",4,TRUE);
         EnvPrintRouter(theEnv,WERROR,"Value does not match the expected type for the ");
         EnvPrintRouter(theEnv,WERROR,constraintName);
         EnvPrintRouter(theEnv,WERROR," attribute\n");
         return(FALSE);
        }

      /*======================================*/
      /* The ?VARIABLE argument can't be used */
      /* in conjunction with constants.       */
      /*======================================*/

      if (constantParsed && variableParsed)
        {
         char tempBuffer[120];
         gensprintf(tempBuffer,"%s attribute",constraintName);
         SyntaxErrorMessage(theEnv,tempBuffer);
         return(FALSE);
        }

      /*===========================================*/
      /* Add the constant to the restriction list. */
      /*===========================================*/

      newValue = GenConstant(theEnv,inputToken.type,inputToken.value);
      if (lastValue == NULL)
        { 
         if (strcmp(constraintName,"allowed-classes") == 0)
           { constraints->classList = newValue; }
         else
           { constraints->restrictionList = newValue; }
        }
      else
        { lastValue->nextArg = newValue; }
      lastValue = newValue;

      /*=======================================*/
      /* Begin parsing the next allowed value. */
      /*=======================================*/

      GetToken(theEnv,readSource,&inputToken);
     }

   /*======================================================*/
   /* There must be at least one value for this attribute. */
   /*======================================================*/

   if ((! constantParsed) && (! variableParsed))
     {
      char tempBuffer[120];
      gensprintf(tempBuffer,"%s attribute",constraintName);
      SyntaxErrorMessage(theEnv,tempBuffer);
      return(FALSE);
     }

   /*======================================*/
   /* If ?VARIABLE was parsed, then remove */
   /* the restrictions for the type being  */
   /* restricted.                          */
   /*======================================*/

   if (variableParsed)
     {
      switch(restrictionType)
        {
         case UNKNOWN_VALUE:
           constraints->anyRestriction = FALSE;
           break;

         case SYMBOL:
           constraints->symbolRestriction = FALSE;
           break;

         case STRING:
           constraints->stringRestriction = FALSE;
           break;

         case INTEGER:
           constraints->integerRestriction = FALSE;
           break;

         case FLOAT:
           constraints->floatRestriction = FALSE;
           break;

         case INTEGER_OR_FLOAT:
           constraints->floatRestriction = FALSE;
           constraints->integerRestriction = FALSE;
           break;

         case SYMBOL_OR_STRING:
           constraints->symbolRestriction = FALSE;
           constraints->stringRestriction = FALSE;
           break;

         case INSTANCE_NAME:
           constraints->instanceNameRestriction = FALSE;
           break;

         case INSTANCE_OR_INSTANCE_NAME:
           constraints->classRestriction = FALSE;
           break;
        }
     }

   /*=====================================*/
   /* Fix up pretty print representation. */
   /*=====================================*/

   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,")");

   /*=======================================*/
   /* Return TRUE to indicate the attribute */
   /* was successfully parsed.              */
   /*=======================================*/

   return(TRUE);
  }
Esempio n. 23
0
globle struct expr *GetRHSPattern(
  char *readSource,
  struct token *tempToken,
  int *error,
  int constantsOnly,
  int readFirstParen,
  int checkFirstParen,
  int endType)
  {
   struct expr *lastOne = NULL;
   struct expr *nextOne, *firstOne, *argHead = NULL;
   int printError, count;
   struct deftemplate *theDeftemplate;
   struct symbolHashNode *templateName;

   /*=================================================*/
   /* Get the opening parenthesis of the RHS pattern. */
   /*=================================================*/

   *error = FALSE;

   if (readFirstParen) GetToken(readSource,tempToken);

   if (checkFirstParen)
     {
      if (tempToken->type == endType) return(NULL);

      if (tempToken->type != LPAREN)
        {
         SyntaxErrorMessage("RHS patterns");
         *error = TRUE;
         return(NULL);
        }
     }

   /*======================================================*/
   /* The first field of an asserted fact must be a symbol */
   /* (but not = or : which have special significance).    */
   /*======================================================*/

   GetToken(readSource,tempToken);
   if (tempToken->type != SYMBOL)
     {
      SyntaxErrorMessage("first field of a RHS pattern");
      *error = TRUE;
      return(NULL);
     }
   else if ((strcmp(ValueToString(tempToken->value),"=") == 0) ||
            (strcmp(ValueToString(tempToken->value),":") == 0))
     {
      SyntaxErrorMessage("first field of a RHS pattern");
      *error = TRUE;
      return(NULL);
     }

   /*=========================================================*/
   /* Check to see if the relation name is a reserved symbol. */
   /*=========================================================*/

   templateName = (struct symbolHashNode *) tempToken->value;

   if (ReservedPatternSymbol(ValueToString(templateName),NULL))
     {
      ReservedPatternSymbolErrorMsg(ValueToString(templateName),"a relation name");
      *error = TRUE;
      return(NULL);
     }

   /*============================================================*/
   /* A module separator in the name is illegal in this context. */
   /*============================================================*/

   if (FindModuleSeparator(ValueToString(templateName)))
     {
      IllegalModuleSpecifierMessage();

      *error = TRUE;
      return(NULL);
     }

   /*=============================================================*/
   /* Determine if there is an associated deftemplate. If so, let */
   /* the deftemplate parsing functions parse the RHS pattern and */
   /* then return the fact pattern that was parsed.               */
   /*=============================================================*/

   theDeftemplate = (struct deftemplate *)
                    FindImportedConstruct("deftemplate",NULL,ValueToString(templateName),
                                          &count,TRUE,NULL);

   if (count > 1)
     {
      AmbiguousReferenceErrorMessage("deftemplate",ValueToString(templateName));
      *error = TRUE;
      return(NULL);
     }

   /*======================================================*/
   /* If no deftemplate exists with the specified relation */
   /* name, then create an implied deftemplate.            */
   /*======================================================*/

   if (theDeftemplate == NULL)
#if (! BLOAD_ONLY) && (! RUN_TIME)
     {
#if BLOAD || BLOAD_AND_BSAVE
      if ((Bloaded()) && (! CheckSyntaxMode))
        {
         NoSuchTemplateError(ValueToString(templateName));
         *error = TRUE;
         return(NULL);
        }
#endif
#if DEFMODULE_CONSTRUCT
      if (FindImportExportConflict("deftemplate",((struct defmodule *) GetCurrentModule()),ValueToString(templateName)))
        {
         ImportExportConflictMessage("implied deftemplate",ValueToString(templateName),NULL,NULL);
         *error = TRUE;
         return(NULL);
        }
#endif
      if (! CheckSyntaxMode)
        { theDeftemplate = CreateImpliedDeftemplate((SYMBOL_HN *) templateName,TRUE); }
     }
#else
    {
     NoSuchTemplateError(ValueToString(templateName));
     *error = TRUE;
     return(NULL);
    }
#endif

   /*=========================================*/
   /* If an explicit deftemplate exists, then */
   /* parse the fact as a deftemplate fact.   */
   /*=========================================*/

   if ((theDeftemplate != NULL) && (theDeftemplate->implied == FALSE))
     {
      firstOne = GenConstant(DEFTEMPLATE_PTR,theDeftemplate);
      firstOne->nextArg = ParseAssertTemplate(readSource,tempToken,
                                              error,endType,
                                              constantsOnly,theDeftemplate);
      if (*error)
        {
         ReturnExpression(firstOne);
         firstOne = NULL;
        }

      return(firstOne);
     }

   /*========================================*/
   /* Parse the fact as an ordered RHS fact. */
   /*========================================*/

   firstOne = GenConstant(DEFTEMPLATE_PTR,theDeftemplate);

#if (! RUN_TIME) && (! BLOAD_ONLY)
   SavePPBuffer(" ");
#endif

   while ((nextOne = GetAssertArgument(readSource,tempToken,
                                        error,endType,constantsOnly,&printError)) != NULL)
     {
      if (argHead == NULL) argHead = nextOne;
      else lastOne->nextArg = nextOne;
      lastOne = nextOne;
#if (! RUN_TIME) && (! BLOAD_ONLY)
      SavePPBuffer(" ");
#endif
     }

   /*===========================================================*/
   /* If an error occurred, set the error flag and return NULL. */
   /*===========================================================*/

   if (*error)
     {
      if (printError) SyntaxErrorMessage("RHS patterns");
      ReturnExpression(firstOne);
      ReturnExpression(argHead);
      return(NULL);
     }

   /*=====================================*/
   /* Fix the pretty print representation */
   /* of the RHS ordered fact.            */
   /*=====================================*/

#if (! RUN_TIME) && (! BLOAD_ONLY)
   PPBackup();
   PPBackup();
   SavePPBuffer(tempToken->printForm);
#endif

   /*==========================================================*/
   /* Ordered fact assertions are processed by stuffing all of */
   /* the fact's proposition (except the relation name) into a */
   /* single multifield slot.                                  */
   /*==========================================================*/

   firstOne->nextArg = GenConstant(FACT_STORE_MULTIFIELD,AddBitMap("\0",1));
   firstOne->nextArg->argList = argHead;

   /*==============================*/
   /* Return the RHS ordered fact. */
   /*==============================*/

   return(firstOne);
  }
Esempio n. 24
0
static int ParsePortSpecifications(
  void *theEnv,
  char *readSource,
  struct token *theToken,
  struct defmodule *theDefmodule)
  {
   int error;

   /*=============================*/
   /* The import and export lists */
   /* are initially empty.        */
   /*=============================*/

   theDefmodule->importList = NULL;
   theDefmodule->exportList = NULL;

   /*==========================================*/
   /* Parse import/export specifications until */
   /* a right parenthesis is encountered.      */
   /*==========================================*/

   while (theToken->type != RPAREN)
     {
      /*========================================*/
      /* Look for the opening left parenthesis. */
      /*========================================*/

      if (theToken->type != LPAREN)
        {
         SyntaxErrorMessage(theEnv,"defmodule");
         return(TRUE);
        }

      /*====================================*/
      /* Look for the import/export keyword */
      /* and call the appropriate functions */
      /* for parsing the specification.     */
      /*====================================*/

      GetToken(theEnv,readSource,theToken);

      if (theToken->type != SYMBOL)
        {
         SyntaxErrorMessage(theEnv,"defmodule");
         return(TRUE);
        }

      if (strcmp(ValueToString(theToken->value),"import") == 0)
        {
         error = ParseImportSpec(theEnv,readSource,theToken,theDefmodule);
        }
      else if (strcmp(ValueToString(theToken->value),"export") == 0)
        {
         error = ParseExportSpec(theEnv,readSource,theToken,theDefmodule,NULL);
        }
      else
        {
         SyntaxErrorMessage(theEnv,"defmodule");
         return(TRUE);
        }

      if (error) return(TRUE);

      /*============================================*/
      /* Begin parsing the next port specification. */
      /*============================================*/

      PPCRAndIndent(theEnv);
      GetToken(theEnv,readSource,theToken);

      if (theToken->type == RPAREN)
        {
         PPBackup(theEnv);
         PPBackup(theEnv);
         SavePPBuffer(theEnv,")");
        }
     }

   /*===================================*/
   /* Return FALSE to indicate no error */
   /* occurred while parsing the        */
   /* import/export specifications.     */
   /*===================================*/

   return(FALSE);
  }
Esempio n. 25
0
struct lhsParseNode *RestrictionParse(
  char *readSource,
  struct token *theToken,
  int multifieldSlot,
  struct symbolHashNode *theSlot,
  int slotNumber,
  CONSTRAINT_RECORD *theConstraints,
  int position)
  {
   struct lhsParseNode *topNode = NULL, *lastNode = NULL, *nextNode;
   int numberOfSingleFields = 0;
   int numberOfMultifields = 0;
   int startPosition = position;
   int error = FALSE;
   CONSTRAINT_RECORD *tempConstraints;

   /*==================================================*/
   /* Keep parsing fields until a right parenthesis is */
   /* encountered. This will either indicate the end   */
   /* of an instance or deftemplate slot or the end of */
   /* an ordered fact.                                 */
   /*==================================================*/

   while (theToken->type != RPAREN)
     {
      /*========================================*/
      /* Look for either a single or multifield */
      /* wildcard or a conjuctive restriction.  */
      /*========================================*/

      if ((theToken->type == SF_WILDCARD) ||
          (theToken->type == MF_WILDCARD))
        {
         nextNode = GetLHSParseNode();
         nextNode->type = theToken->type;
         nextNode->negated = FALSE;
         GetToken(readSource,theToken);
        }
      else
        {
         nextNode = ConjuctiveRestrictionParse(readSource,theToken,&error);
         if (nextNode == NULL)
           {
            ReturnLHSParseNodes(topNode);
            return(NULL);
           }
        }

      /*========================================================*/
      /* Fix up the pretty print representation of a multifield */
      /* slot so that the fields don't run together.            */
      /*========================================================*/

      if ((theToken->type != RPAREN) && (multifieldSlot == TRUE))
        {
         PPBackup();
         SavePPBuffer(" ");
         SavePPBuffer(theToken->printForm);
        }

      /*========================================*/
      /* Keep track of the number of single and */
      /* multifield restrictions encountered.   */
      /*========================================*/

      if ((nextNode->type == SF_WILDCARD) || (nextNode->type == SF_VARIABLE))
        { numberOfSingleFields++; }
      else
        { numberOfMultifields++; }

      /*===================================*/
      /* Assign the slot name and indices. */
      /*===================================*/

      nextNode->slot = theSlot;
      nextNode->slotNumber = slotNumber;
      nextNode->index = position++;

      /*==============================================*/
      /* If we're not dealing with a multifield slot, */
      /* attach the constraints directly to the node  */
      /* and return.                                  */
      /*==============================================*/

      if (! multifieldSlot)
        {
         if (theConstraints == NULL)
           {
            if (nextNode->type == SF_VARIABLE)
              { nextNode->constraints = GetConstraintRecord(); }
            else nextNode->constraints = NULL;
           }
         else nextNode->constraints = theConstraints;
         return(nextNode);
        }

      /*====================================================*/
      /* Attach the restriction to the list of restrictions */
      /* already parsed for this slot or ordered fact.      */
      /*====================================================*/

      if (lastNode == NULL) topNode = nextNode;
      else lastNode->right = nextNode;

      lastNode = nextNode;
     }

   /*=====================================================*/
   /* Once we're through parsing, check to make sure that */
   /* a single field slot was given a restriction. If the */
   /* following test fails, then we know we're dealing    */
   /* with a multifield slot.                             */
   /*=====================================================*/

   if ((topNode == NULL) && (! multifieldSlot))
     {
      SyntaxErrorMessage("defrule");
      return(NULL);
     }

   /*===============================================*/
   /* Loop through each of the restrictions in the  */
   /* list of restrictions for the multifield slot. */
   /*===============================================*/

   for (nextNode = topNode; nextNode != NULL; nextNode = nextNode->right)
     {
      /*===================================================*/
      /* Assign a constraint record to each constraint. If */
      /* the slot has an explicit constraint, then copy    */
      /* this and store it with the constraint. Otherwise, */
      /* create a constraint record for a single field     */
      /* constraint and skip the constraint modifications  */
      /* for a multifield constraint.                      */
      /*===================================================*/

      if (theConstraints == NULL)
        {
         if (nextNode->type == SF_VARIABLE)
           { nextNode->constraints = GetConstraintRecord(); }
         else
           { continue; }
        }
      else
        { nextNode->constraints = CopyConstraintRecord(theConstraints); }

      /*==========================================*/
      /* Remove the min and max field constraints */
      /* for the entire slot from the constraint  */
      /* record for this single constraint.       */
      /*==========================================*/

      ReturnExpression(nextNode->constraints->minFields);
      ReturnExpression(nextNode->constraints->maxFields);
      nextNode->constraints->minFields = GenConstant(SYMBOL,NegativeInfinity);
      nextNode->constraints->maxFields = GenConstant(SYMBOL,PositiveInfinity);
      nextNode->derivedConstraints = TRUE;

      /*====================================================*/
      /* If we're not dealing with a multifield constraint, */
      /* then no further modifications are needed to the    */
      /* min and max constraints for this constraint.       */
      /*====================================================*/

      if ((nextNode->type != MF_WILDCARD) && (nextNode->type != MF_VARIABLE))
        { continue; }

      /*==========================================================*/
      /* Create a separate constraint record to keep track of the */
      /* cardinality information for this multifield constraint.  */
      /*==========================================================*/

      tempConstraints = GetConstraintRecord();
      SetConstraintType(MULTIFIELD,tempConstraints);
      tempConstraints->singlefieldsAllowed = FALSE;
      tempConstraints->multifield = nextNode->constraints;
      nextNode->constraints = tempConstraints;

      /*=====================================================*/
      /* Adjust the min and max field values for this single */
      /* multifield constraint based on the min and max      */
      /* fields for the entire slot and the number of single */
      /* field values contained in the slot.                 */
      /*=====================================================*/

      if (theConstraints->maxFields->value != PositiveInfinity)
        {
         ReturnExpression(tempConstraints->maxFields);
         tempConstraints->maxFields = GenConstant(INTEGER,AddLong(ValueToLong(theConstraints->maxFields->value) - numberOfSingleFields));
        }

      if ((numberOfMultifields == 1) && (theConstraints->minFields->value != NegativeInfinity))
        {
         ReturnExpression(tempConstraints->minFields);
         tempConstraints->minFields = GenConstant(INTEGER,AddLong(ValueToLong(theConstraints->minFields->value) - numberOfSingleFields));
        }
     }

   /*================================================*/
   /* If a multifield slot is being parsed, place a  */
   /* node on top of the list of constraints parsed. */
   /*================================================*/

   if (multifieldSlot)
     {
      nextNode = GetLHSParseNode();
      nextNode->type = MF_WILDCARD;
      nextNode->multifieldSlot = TRUE;
      nextNode->bottom = topNode;
      nextNode->slot = theSlot;
      nextNode->slotNumber = slotNumber;
      nextNode->index = startPosition;
      nextNode->constraints = theConstraints;
      topNode = nextNode;
      TallyFieldTypes(topNode->bottom);
     }

   /*=================================*/
   /* Return the list of constraints. */
   /*=================================*/

   return(topNode);
  }
Esempio n. 26
0
static struct lhsParseNode *GetSingleLHSSlot(
  void *theEnv,
  char *readSource,
  struct token *tempToken,
  struct templateSlot *slotPtr,
  int *error,
  short position)
  {
   struct lhsParseNode *nextSlot;
   SYMBOL_HN *slotName;

   /*================================================*/
   /* Get the slot name and read in the first token. */
   /*================================================*/

   slotName = (SYMBOL_HN *) tempToken->value;
   SavePPBuffer(theEnv,(char*)" ");
   GetToken(theEnv,readSource,tempToken);

   /*====================================*/
   /* Get value for a single field slot. */
   /*====================================*/

   if (slotPtr->multislot == FALSE)
     {
      /*=======================*/
      /* Get the single value. */
      /*=======================*/

      nextSlot = RestrictionParse(theEnv,readSource,tempToken,FALSE,
                                  slotPtr->slotName,(short) (position - 1),
                                  slotPtr->constraints,0);
      if (nextSlot == NULL)
        {
         *error = TRUE;
         return(NULL);
        }

      /*======================================*/
      /* Multi field wildcards and variables  */
      /* not allowed in a single field slot.  */
      /*======================================*/

      if ((nextSlot->type == MF_VARIABLE) ||
          (nextSlot->type == MULTIFIELD))
        {
         SingleFieldSlotCardinalityError(theEnv,slotPtr->slotName->contents);
         *error = TRUE;
         ReturnLHSParseNodes(theEnv,nextSlot);
         return(NULL);
        }
     }

   /*===================================*/
   /* Get values for a multifield slot. */
   /*===================================*/

   else
     {
      nextSlot = RestrictionParse(theEnv,readSource,tempToken,TRUE,slotName,(short) (position - 1),
                                  slotPtr->constraints,1);
      if (nextSlot == NULL)
        {
         *error = TRUE;
         return(NULL);
        }
     }

   /*========================================================*/
   /* The slot definition must end with a right parenthesis. */
   /*========================================================*/

   if (tempToken->type != RPAREN)
     {
      PPBackup(theEnv);
      SavePPBuffer(theEnv,(char*)" ");
      SavePPBuffer(theEnv,tempToken->printForm);
      SyntaxErrorMessage(theEnv,(char*)"deftemplate patterns");
      *error = TRUE;
      ReturnLHSParseNodes(theEnv,nextSlot);
      return(NULL);
     }

   /*===============================================*/
   /* Fix the pretty print output if the multifield */
   /* slot contained no restrictions.               */
   /*===============================================*/

   if ((nextSlot->bottom == NULL) && slotPtr->multislot)
     {
      PPBackup(theEnv);
      PPBackup(theEnv);
      SavePPBuffer(theEnv,(char*)")");
     }

   /*=================================*/
   /* Add the slot values to the slot */
   /* structure and return it.        */
   /*=================================*/

   return(nextSlot);
  }
Esempio n. 27
0
static intBool ParseTypeAttribute(
  void *theEnv,
  char *readSource,
  CONSTRAINT_RECORD *constraints)
  {
   int typeParsed = FALSE;
   int variableParsed = FALSE;
   int theType;
   struct token inputToken;

   /*======================================*/
   /* Continue parsing types until a right */
   /* parenthesis is encountered.          */
   /*======================================*/

   SavePPBuffer(theEnv," ");
   for (GetToken(theEnv,readSource,&inputToken);
        inputToken.type != RPAREN;
        GetToken(theEnv,readSource,&inputToken))
     {
      SavePPBuffer(theEnv," ");

      /*==================================*/
      /* If the token is a symbol then... */
      /*==================================*/

      if (inputToken.type == SYMBOL)
        {
         /*==============================================*/
         /* ?VARIABLE can't be used with type constants. */
         /*==============================================*/

         if (variableParsed == TRUE)
           {
            SyntaxErrorMessage(theEnv,"type attribute");
            return(FALSE);
           }

         /*========================================*/
         /* Check for an appropriate type constant */
         /* (e.g. SYMBOL, FLOAT, INTEGER, etc.).   */
         /*========================================*/

         theType = GetConstraintTypeFromTypeName(ValueToString(inputToken.value));
         if (theType < 0)
           {
            SyntaxErrorMessage(theEnv,"type attribute");
            return(FALSE);
           }

         /*==================================================*/
         /* Change the type restriction flags to reflect the */
         /* type restriction. If the type restriction was    */
         /* already specified, then a error is generated.    */
         /*==================================================*/

         if (SetConstraintType(theType,constraints))
           {
            SyntaxErrorMessage(theEnv,"type attribute");
            return(FALSE);
           }

         constraints->anyAllowed = FALSE;

         /*===========================================*/
         /* Remember that a type constant was parsed. */
         /*===========================================*/

         typeParsed = TRUE;
        }

      /*==============================================*/
      /* Otherwise if the token is a variable then... */
      /*==============================================*/

      else if (inputToken.type == SF_VARIABLE)
        {
         /*========================================*/
         /* The only variable allowd is ?VARIABLE. */
         /*========================================*/

         if (strcmp(inputToken.printForm,"?VARIABLE") != 0)
           {
            SyntaxErrorMessage(theEnv,"type attribute");
            return(FALSE);
           }

         /*===================================*/
         /* ?VARIABLE can't be used more than */
         /* once or with type constants.      */
         /*===================================*/

         if (typeParsed || variableParsed)
           {
            SyntaxErrorMessage(theEnv,"type attribute");
            return(FALSE);
           }

         /*======================================*/
         /* Remember that a variable was parsed. */
         /*======================================*/

         variableParsed = TRUE;
        }

      /*====================================*/
      /* Otherwise this is an invalid value */
      /* for the type attribute.            */
      /*====================================*/

       else
        {
         SyntaxErrorMessage(theEnv,"type attribute");
         return(FALSE);
        }
     }

   /*=====================================*/
   /* Fix up pretty print representation. */
   /*=====================================*/

   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,")");

   /*=======================================*/
   /* The type attribute must have a value. */
   /*=======================================*/

   if ((! typeParsed) && (! variableParsed))
     {
      SyntaxErrorMessage(theEnv,"type attribute");
      return(FALSE);
     }

   /*===========================================*/
   /* Return TRUE indicating the type attibuted */
   /* was successfully parsed.                  */
   /*===========================================*/

   return(TRUE);
  }
Esempio n. 28
0
static struct expr *WhileParse(
  void *theEnv,
  struct expr *parse,
  char *infile)
  {
   struct token theToken;
   int read_first_paren;

   /*===============================*/
   /* Process the while expression. */
   /*===============================*/

   SavePPBuffer(theEnv," ");

   parse->argList = ParseAtomOrExpression(theEnv,infile,NULL);
   if (parse->argList == NULL)
     {
      ReturnExpression(theEnv,parse);
      return(NULL);
     }

   /*====================================*/
   /* Process the do keyword if present. */
   /*====================================*/

   GetToken(theEnv,infile,&theToken);
   if ((theToken.type == SYMBOL) && (strcmp(ValueToString(theToken.value),"do") == 0))
     {
      read_first_paren = TRUE;
      PPBackup(theEnv);
      SavePPBuffer(theEnv," ");
      SavePPBuffer(theEnv,theToken.printForm);
      IncrementIndentDepth(theEnv,3);
      PPCRAndIndent(theEnv);
     }
   else if (theToken.type == LPAREN)
     {
      read_first_paren = FALSE;
      PPBackup(theEnv);
      IncrementIndentDepth(theEnv,3);
      PPCRAndIndent(theEnv);
      SavePPBuffer(theEnv,theToken.printForm);
     }
   else
     {
      SyntaxErrorMessage(theEnv,"while function");
      ReturnExpression(theEnv,parse);
      return(NULL);
     }

   /*============================*/
   /* Process the while actions. */
   /*============================*/
   if (ExpressionData(theEnv)->svContexts->rtn == TRUE)
     ExpressionData(theEnv)->ReturnContext = TRUE;
   ExpressionData(theEnv)->BreakContext = TRUE;
   parse->argList->nextArg = GroupActions(theEnv,infile,&theToken,read_first_paren,NULL,FALSE);

   if (parse->argList->nextArg == NULL)
     {
      ReturnExpression(theEnv,parse);
      return(NULL);
     }
   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,theToken.printForm);

   /*=======================================================*/
   /* Check for the closing right parenthesis of the while. */
   /*=======================================================*/

   if (theToken.type != RPAREN)
     {
      SyntaxErrorMessage(theEnv,"while function");
      ReturnExpression(theEnv,parse);
      return(NULL);
     }

   DecrementIndentDepth(theEnv,3);

   return(parse);
  }
Esempio n. 29
0
static int ParseExportSpec(
  void *theEnv,
  char *readSource,
  struct token *theToken,
  struct defmodule *newModule,
  struct defmodule *importModule)
  {
   struct portItem *newPort;
   SYMBOL_HN *theConstruct, *moduleName;
   struct portConstructItem *thePortConstruct;
   char *errorMessage;

   /*===========================================*/
   /* Set up some variables for error messages. */
   /*===========================================*/

   if (importModule != NULL)
     {
      errorMessage = "defmodule import specification";
      moduleName = importModule->name;
     }
   else
     {
      errorMessage = "defmodule export specification";
      moduleName = NULL;
     }

   /*=============================================*/
   /* Handle the special variables ?ALL and ?NONE */
   /* in the import/export specification.         */
   /*=============================================*/

   SavePPBuffer(theEnv," ");
   GetToken(theEnv,readSource,theToken);

   if (theToken->type == SF_VARIABLE)
     {
      /*==============================*/
      /* Check to see if the variable */
      /* is either ?ALL or ?NONE.     */
      /*==============================*/

      if (strcmp(ValueToString(theToken->value),"ALL") == 0)
        {
         newPort = (struct portItem *) get_struct(theEnv,portItem);
         newPort->moduleName = moduleName;
         newPort->constructType = NULL;
         newPort->constructName = NULL;
         newPort->next = NULL;
        }
      else if (strcmp(ValueToString(theToken->value),"NONE") == 0)
        { newPort = NULL; }
      else
        {
         SyntaxErrorMessage(theEnv,errorMessage);
         return(TRUE);
        }

      /*=======================================================*/
      /* The export/import specification must end with a right */
      /* parenthesis after ?ALL or ?NONE at this point.        */
      /*=======================================================*/

      GetToken(theEnv,readSource,theToken);

      if (theToken->type != RPAREN)
        {
         if (newPort != NULL) rtn_struct(theEnv,portItem,newPort);
         PPBackup(theEnv);
         SavePPBuffer(theEnv," ");
         SavePPBuffer(theEnv,theToken->printForm);
         SyntaxErrorMessage(theEnv,errorMessage);
         return(TRUE);
        }

      /*=====================================*/
      /* Add the new specification to either */
      /* the import or export list.          */
      /*=====================================*/

      if (newPort != NULL)
        {
         if (importModule != NULL)
           {
            newPort->next = newModule->importList;
            newModule->importList = newPort;
           }
         else
           {
            newPort->next = newModule->exportList;
            newModule->exportList = newPort;
           }
        }

      /*============================================*/
      /* Return FALSE to indicate the import/export */
      /* specification was successfully parsed.     */
      /*============================================*/

      return(FALSE);
     }

   /*========================================================*/
   /* If the ?ALL and ?NONE keywords were not used, then the */
   /* token must be the name of an importable construct.     */
   /*========================================================*/

   if (theToken->type != SYMBOL)
     {
      SyntaxErrorMessage(theEnv,errorMessage);
      return(TRUE);
     }

   theConstruct = (SYMBOL_HN *) theToken->value;

   if ((thePortConstruct = ValidPortConstructItem(theEnv,ValueToString(theConstruct))) == NULL)
     {
      SyntaxErrorMessage(theEnv,errorMessage);
      return(TRUE);
     }

   /*=============================================================*/
   /* If the next token is the special variable ?ALL, then all    */
   /* constructs of the specified type are imported/exported. If  */
   /* the next token is the special variable ?NONE, then no       */
   /* constructs of the specified type will be imported/exported. */
   /*=============================================================*/

   SavePPBuffer(theEnv," ");
   GetToken(theEnv,readSource,theToken);

   if (theToken->type == SF_VARIABLE)
     {
      /*==============================*/
      /* Check to see if the variable */
      /* is either ?ALL or ?NONE.     */
      /*==============================*/

      if (strcmp(ValueToString(theToken->value),"ALL") == 0)
        {
         newPort = (struct portItem *) get_struct(theEnv,portItem);
         newPort->moduleName = moduleName;
         newPort->constructType = theConstruct;
         newPort->constructName = NULL;
         newPort->next = NULL;
        }
      else if (strcmp(ValueToString(theToken->value),"NONE") == 0)
        { newPort = NULL; }
      else
        {
         SyntaxErrorMessage(theEnv,errorMessage);
         return(TRUE);
        }

      /*=======================================================*/
      /* The export/import specification must end with a right */
      /* parenthesis after ?ALL or ?NONE at this point.        */
      /*=======================================================*/

      GetToken(theEnv,readSource,theToken);

      if (theToken->type != RPAREN)
        {
         if (newPort != NULL) rtn_struct(theEnv,portItem,newPort);
         PPBackup(theEnv);
         SavePPBuffer(theEnv," ");
         SavePPBuffer(theEnv,theToken->printForm);
         SyntaxErrorMessage(theEnv,errorMessage);
         return(TRUE);
        }

      /*=====================================*/
      /* Add the new specification to either */
      /* the import or export list.          */
      /*=====================================*/

      if (newPort != NULL)
        {
         if (importModule != NULL)
           {
            newPort->next = newModule->importList;
            newModule->importList = newPort;
           }
         else
           {
            newPort->next = newModule->exportList;
            newModule->exportList = newPort;
           }
        }

      /*============================================*/
      /* Return FALSE to indicate the import/export */
      /* specification was successfully parsed.     */
      /*============================================*/

      return(FALSE);
     }

   /*============================================*/
   /* There must be at least one named construct */
   /* in the import/export list at this point.   */
   /*============================================*/

   if (theToken->type == RPAREN)
     {
      SyntaxErrorMessage(theEnv,errorMessage);
      return(TRUE);
     }

   /*=====================================*/
   /* Read in the list of imported items. */
   /*=====================================*/

   while (theToken->type != RPAREN)
     {
      if (theToken->type != thePortConstruct->typeExpected)
        {
         SyntaxErrorMessage(theEnv,errorMessage);
         return(TRUE);
        }

      /*========================================*/
      /* Create the data structure to represent */
      /* the import/export specification for    */
      /* the named construct.                   */
      /*========================================*/

      newPort = (struct portItem *) get_struct(theEnv,portItem);
      newPort->moduleName = moduleName;
      newPort->constructType = theConstruct;
      newPort->constructName = (SYMBOL_HN *) theToken->value;

      /*=====================================*/
      /* Add the new specification to either */
      /* the import or export list.          */
      /*=====================================*/

      if (importModule != NULL)
        {
         newPort->next = newModule->importList;
         newModule->importList = newPort;
        }
      else
        {
         newPort->next = newModule->exportList;
         newModule->exportList = newPort;
        }

      /*===================================*/
      /* Move on to the next import/export */
      /* specification.                    */
      /*===================================*/

      SavePPBuffer(theEnv," ");
      GetToken(theEnv,readSource,theToken);
     }

   /*=============================*/
   /* Fix up pretty print buffer. */
   /*=============================*/

   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,")");

   /*============================================*/
   /* Return FALSE to indicate the import/export */
   /* specification was successfully parsed.     */
   /*============================================*/

   return(FALSE);
  }
Esempio n. 30
0
static struct expr *LoopForCountParse(
  void *theEnv,
  struct expr *parse,
  char *infile)
  {
   struct token theToken;
   SYMBOL_HN *loopVar = NULL;
   EXPRESSION *tmpexp;
   int read_first_paren;
   struct BindInfo *oldBindList,*newBindList,*prev;

   /*======================================*/
   /* Process the loop counter expression. */
   /*======================================*/

   SavePPBuffer(theEnv," ");
   GetToken(theEnv,infile,&theToken);

   /* ==========================================
      Simple form: loop-for-count <end> [do] ...
      ========================================== */
   if (theToken.type != LPAREN)
     {
      parse->argList = GenConstant(theEnv,INTEGER,EnvAddLong(theEnv,1L));
      parse->argList->nextArg = ParseAtomOrExpression(theEnv,infile,&theToken);
      if (parse->argList->nextArg == NULL)
        {
         ReturnExpression(theEnv,parse);
         return(NULL);
        }
     }
   else
     {
      GetToken(theEnv,infile,&theToken);
      if (theToken.type != SF_VARIABLE)
        {
         if (theToken.type != SYMBOL)
           goto LoopForCountParseError;
         parse->argList = GenConstant(theEnv,INTEGER,EnvAddLong(theEnv,1L));
         parse->argList->nextArg = Function2Parse(theEnv,infile,ValueToString(theToken.value));
         if (parse->argList->nextArg == NULL)
           {
            ReturnExpression(theEnv,parse);
            return(NULL);
           }
        }

      /* =============================================================
         Complex form: loop-for-count (<var> [<start>] <end>) [do] ...
         ============================================================= */
      else
        {
         loopVar = (SYMBOL_HN *) theToken.value;
         SavePPBuffer(theEnv," ");
         parse->argList = ParseAtomOrExpression(theEnv,infile,NULL);
         if (parse->argList == NULL)
           {
            ReturnExpression(theEnv,parse);
            return(NULL);
           }
         if (CheckArgumentAgainstRestriction(theEnv,parse->argList,(int) 'i'))
           goto LoopForCountParseError;
         SavePPBuffer(theEnv," ");
         GetToken(theEnv,infile,&theToken);
         if (theToken.type == RPAREN)
           {
            PPBackup(theEnv);
            PPBackup(theEnv);
            SavePPBuffer(theEnv,theToken.printForm);
            tmpexp = GenConstant(theEnv,INTEGER,EnvAddLong(theEnv,1L));
            tmpexp->nextArg = parse->argList;
            parse->argList = tmpexp;
           }
         else
          {
            parse->argList->nextArg = ParseAtomOrExpression(theEnv,infile,&theToken);
            if (parse->argList->nextArg == NULL)
              {
               ReturnExpression(theEnv,parse);
               return(NULL);
              }
            GetToken(theEnv,infile,&theToken);
            if (theToken.type != RPAREN)
              goto LoopForCountParseError;
           }
         SavePPBuffer(theEnv," ");
        }
     }

   if (CheckArgumentAgainstRestriction(theEnv,parse->argList->nextArg,(int) 'i'))
     goto LoopForCountParseError;

   /*====================================*/
   /* Process the do keyword if present. */
   /*====================================*/

   GetToken(theEnv,infile,&theToken);
   if ((theToken.type == SYMBOL) && (strcmp(ValueToString(theToken.value),"do") == 0))
     {
      read_first_paren = TRUE;
      PPBackup(theEnv);
      SavePPBuffer(theEnv," ");
      SavePPBuffer(theEnv,theToken.printForm);
      IncrementIndentDepth(theEnv,3);
      PPCRAndIndent(theEnv);
     }
   else if (theToken.type == LPAREN)
     {
      read_first_paren = FALSE;
      PPBackup(theEnv);
      IncrementIndentDepth(theEnv,3);
      PPCRAndIndent(theEnv);
      SavePPBuffer(theEnv,theToken.printForm);
     }
   else
     goto LoopForCountParseError;

   /*=====================================*/
   /* Process the loop-for-count actions. */
   /*=====================================*/
   if (ExpressionData(theEnv)->svContexts->rtn == TRUE)
     ExpressionData(theEnv)->ReturnContext = TRUE;
   ExpressionData(theEnv)->BreakContext = TRUE;
   oldBindList = GetParsedBindNames(theEnv);
   SetParsedBindNames(theEnv,NULL);
   parse->argList->nextArg->nextArg =
      GroupActions(theEnv,infile,&theToken,read_first_paren,NULL,FALSE);

   if (parse->argList->nextArg->nextArg == NULL)
     {
      SetParsedBindNames(theEnv,oldBindList);
      ReturnExpression(theEnv,parse);
      return(NULL);
     }
   newBindList = GetParsedBindNames(theEnv);
   prev = NULL;
   while (newBindList != NULL)
     {
      if ((loopVar == NULL) ? FALSE :
          (strcmp(ValueToString(newBindList->name),ValueToString(loopVar)) == 0))
        {
         ClearParsedBindNames(theEnv);
         SetParsedBindNames(theEnv,oldBindList);
         PrintErrorID(theEnv,"PRCDRPSR",1,TRUE);
         EnvPrintRouter(theEnv,WERROR,"Cannot rebind loop variable in function loop-for-count.\n");
         ReturnExpression(theEnv,parse);
         return(NULL);
        }
      prev = newBindList;
      newBindList = newBindList->next;
     }
   if (prev == NULL)
     SetParsedBindNames(theEnv,oldBindList);
   else
     prev->next = oldBindList;
   if (loopVar != NULL)
     ReplaceLoopCountVars(theEnv,loopVar,parse->argList->nextArg->nextArg,0);
   PPBackup(theEnv);
   PPBackup(theEnv);
   SavePPBuffer(theEnv,theToken.printForm);

   /*================================================================*/
   /* Check for the closing right parenthesis of the loop-for-count. */
   /*================================================================*/

   if (theToken.type != RPAREN)
     {
      SyntaxErrorMessage(theEnv,"loop-for-count function");
      ReturnExpression(theEnv,parse);
      return(NULL);
     }

   DecrementIndentDepth(theEnv,3);

   return(parse);

LoopForCountParseError:
   SyntaxErrorMessage(theEnv,"loop-for-count function");
   ReturnExpression(theEnv,parse);
   return(NULL);
  }