/************************************************************************* * This function performs k-way refinement **************************************************************************/ void MCGreedy_KWayEdgeBalanceHorizontal(CtrlType *ctrl, GraphType *graph, int nparts, float *ubvec, int npasses) { int i, ii, /*iii,*/ j, /*jj,*/ k, /*l,*/ pass, nvtxs, ncon, nbnd, myndegrees, oldgain, gain, nmoves; int from, me, to, oldcut; idxtype *xadj, *adjncy, *adjwgt; idxtype *where, *perm, *bndptr, *bndind, *moved; EDegreeType *myedegrees; RInfoType *myrinfo; PQueueType queue; float *npwgts, *nvwgt, *minwgt, *maxwgt, tvec[MAXNCON]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; adjncy = graph->adjncy; adjwgt = graph->adjwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; npwgts = graph->npwgts; /* Setup the weight intervals of the various subdomains */ minwgt = fwspacemalloc(ctrl, ncon*nparts); maxwgt = fwspacemalloc(ctrl, ncon*nparts); for (i=0; i<nparts; i++) { for (j=0; j<ncon; j++) { maxwgt[i*ncon+j] = ubvec[j]/nparts; minwgt[i*ncon+j] = 1.0/(ubvec[j]*nparts); } } perm = idxwspacemalloc(ctrl, nvtxs); moved = idxwspacemalloc(ctrl, nvtxs); PQueueInit(ctrl, &queue, nvtxs, graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]); if (ctrl->dbglvl&DBG_REFINE) { printf("Partitions: [%5.4f %5.4f], Nv-Nb[%6d %6d]. Cut: %6d, LB: ", npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)], graph->nvtxs, graph->nbnd, graph->mincut); ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); printf("[B]\n"); } for (pass=0; pass<npasses; pass++) { ASSERT(ComputeCut(graph, where) == graph->mincut); /* Check to see if things are out of balance, given the tolerance */ if (MocIsHBalanced(ncon, nparts, npwgts, ubvec)) break; PQueueReset(&queue); idxset(nvtxs, -1, moved); oldcut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; PQueueInsert(&queue, i, graph->rinfo[i].ed - graph->rinfo[i].id); moved[i] = 2; } nmoves = 0; for (;;) { if ((i = PQueueGetMax(&queue)) == -1) break; moved[i] = 1; myrinfo = graph->rinfo+i; from = where[i]; nvwgt = graph->nvwgt+i*ncon; if (AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, -1.0, nvwgt, minwgt+from*ncon)) continue; /* This cannot be moved! */ myedegrees = myrinfo->edegrees; myndegrees = myrinfo->ndegrees; for (k=0; k<myndegrees; k++) { to = myedegrees[k].pid; if (IsHBalanceBetterFT(ncon, nparts, npwgts+from*ncon, npwgts+to*ncon, nvwgt, ubvec)) break; } if (k == myndegrees) continue; /* break out if you did not find a candidate */ for (j=k+1; j<myndegrees; j++) { to = myedegrees[j].pid; if (IsHBalanceBetterTT(ncon, nparts, npwgts+myedegrees[k].pid*ncon, npwgts+to*ncon, nvwgt, ubvec)) k = j; } to = myedegrees[k].pid; j = 0; if (!AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, maxwgt+from*ncon)) j++; if (myedegrees[k].ed-myrinfo->id >= 0) j++; if (!AreAllHVwgtsAbove(ncon, 1.0, npwgts+to*ncon, 0.0, nvwgt, minwgt+to*ncon) && AreAllHVwgtsBelow(ncon, 1.0, npwgts+to*ncon, 1.0, nvwgt, maxwgt+to*ncon)) j++; if (j == 0) continue; /* DELETE if (myedegrees[k].ed-myrinfo->id < 0 && AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, maxwgt+from*ncon) && AreAllHVwgtsAbove(ncon, 1.0, npwgts+to*ncon, 0.0, nvwgt, minwgt+to*ncon) && AreAllHVwgtsBelow(ncon, 1.0, npwgts+to*ncon, 1.0, nvwgt, maxwgt+to*ncon)) continue; */ /*===================================================================== * If we got here, we can now move the vertex from 'from' to 'to' *======================================================================*/ graph->mincut -= myedegrees[k].ed-myrinfo->id; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut)); /* Update where, weight, and ID/ED information of the vertex you moved */ saxpy(ncon, 1.0, nvwgt, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt, 1, npwgts+from*ncon, 1); where[i] = to; myrinfo->ed += myrinfo->id-myedegrees[k].ed; SWAP(myrinfo->id, myedegrees[k].ed, j); if (myedegrees[k].ed == 0) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].pid = from; if (myrinfo->ed == 0) BNDDelete(nbnd, bndind, bndptr, i); /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { ii = adjncy[j]; me = where[ii]; myrinfo = graph->rinfo+ii; if (myrinfo->edegrees == NULL) { myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree; ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii]; } myedegrees = myrinfo->edegrees; ASSERT(CheckRInfo(myrinfo)); oldgain = (myrinfo->ed-myrinfo->id); if (me == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); if (myrinfo->ed > 0 && bndptr[ii] == -1) BNDInsert(nbnd, bndind, bndptr, ii); } else if (me == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); if (myrinfo->ed == 0 && bndptr[ii] != -1) BNDDelete(nbnd, bndind, bndptr, ii); } /* Remove contribution from the .ed of 'from' */ if (me != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == from) { if (myedegrees[k].ed == adjwgt[j]) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].ed -= adjwgt[j]; break; } } } /* Add contribution to the .ed of 'to' */ if (me != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == to) { myedegrees[k].ed += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { myedegrees[myrinfo->ndegrees].pid = to; myedegrees[myrinfo->ndegrees++].ed = adjwgt[j]; } } /* Update the queue */ if (me == to || me == from) { gain = myrinfo->ed-myrinfo->id; if (moved[ii] == 2) { if (myrinfo->ed > 0) PQueueUpdate(&queue, ii, oldgain, gain); else { PQueueDelete(&queue, ii, oldgain); moved[ii] = -1; } } else if (moved[ii] == -1 && myrinfo->ed > 0) { PQueueInsert(&queue, ii, gain); moved[ii] = 2; } } ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]); ASSERT(CheckRInfo(myrinfo)); } nmoves++; } graph->nbnd = nbnd; if (ctrl->dbglvl&DBG_REFINE) { printf("\t [%5.4f %5.4f], Nb: %6d, Nmoves: %5d, Cut: %6d, LB: ", npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)], nbnd, nmoves, graph->mincut); ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); printf("\n"); } if (nmoves == 0) break; } PQueueFree(ctrl, &queue); fwspacefree(ctrl, ncon*nparts); fwspacefree(ctrl, ncon*nparts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs k-way refinement **************************************************************************/ void Greedy_KWayEdgeBalanceMConn(CtrlType *ctrl, GraphType *graph, int nparts, float *tpwgts, float ubfactor, int npasses) { int i, ii, iii, j, jj, k, l, pass, nvtxs, nbnd, tvwgt, myndegrees, oldgain, gain, nmoves; int from, me, to, oldcut, vwgt, maxndoms, nadd; idxtype *xadj, *adjncy, *adjwgt; idxtype *where, *pwgts, *perm, *bndptr, *bndind, *minwgt, *maxwgt, *moved, *itpwgts; idxtype *phtable, *pmat, *pmatptr, *ndoms; EDegreeType *myedegrees; RInfoType *myrinfo; PQueueType queue; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; adjwgt = graph->adjwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; pwgts = graph->pwgts; pmat = ctrl->wspace.pmat; phtable = idxwspacemalloc(ctrl, nparts); ndoms = idxwspacemalloc(ctrl, nparts); ComputeSubDomainGraph(graph, nparts, pmat, ndoms); /* Setup the weight intervals of the various subdomains */ minwgt = idxwspacemalloc(ctrl, nparts); maxwgt = idxwspacemalloc(ctrl, nparts); itpwgts = idxwspacemalloc(ctrl, nparts); tvwgt = idxsum(nparts, pwgts); ASSERT(tvwgt == idxsum(nvtxs, graph->vwgt)); for (i=0; i<nparts; i++) { itpwgts[i] = tpwgts[i]*tvwgt; maxwgt[i] = tpwgts[i]*tvwgt*ubfactor; minwgt[i] = tpwgts[i]*tvwgt*(1.0/ubfactor); } perm = idxwspacemalloc(ctrl, nvtxs); moved = idxwspacemalloc(ctrl, nvtxs); PQueueInit(ctrl, &queue, nvtxs, graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]); IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d]-[%6d %6d], Balance: %5.3f, Nv-Nb[%6d %6d]. Cut: %6d [B]\n", pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], minwgt[0], maxwgt[0], 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nvtxs, graph->nbnd, graph->mincut)); for (pass=0; pass<npasses; pass++) { ASSERT(ComputeCut(graph, where) == graph->mincut); /* Check to see if things are out of balance, given the tolerance */ for (i=0; i<nparts; i++) { if (pwgts[i] > maxwgt[i]) break; } if (i == nparts) /* Things are balanced. Return right away */ break; PQueueReset(&queue); idxset(nvtxs, -1, moved); oldcut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; PQueueInsert(&queue, i, graph->rinfo[i].ed - graph->rinfo[i].id); moved[i] = 2; } maxndoms = ndoms[idxamax(nparts, ndoms)]; for (nmoves=0;;) { if ((i = PQueueGetMax(&queue)) == -1) break; moved[i] = 1; myrinfo = graph->rinfo+i; from = where[i]; vwgt = graph->vwgt[i]; if (pwgts[from]-vwgt < minwgt[from]) continue; /* This cannot be moved! */ myedegrees = myrinfo->edegrees; myndegrees = myrinfo->ndegrees; /* Determine the valid domains */ for (j=0; j<myndegrees; j++) { to = myedegrees[j].pid; phtable[to] = 1; pmatptr = pmat + to*nparts; for (nadd=0, k=0; k<myndegrees; k++) { if (k == j) continue; l = myedegrees[k].pid; if (pmatptr[l] == 0) { if (ndoms[l] > maxndoms-1) { phtable[to] = 0; nadd = maxndoms; break; } nadd++; } } if (ndoms[to]+nadd > maxndoms) phtable[to] = 0; } for (k=0; k<myndegrees; k++) { to = myedegrees[k].pid; if (!phtable[to]) continue; if (pwgts[to]+vwgt <= maxwgt[to] || itpwgts[from]*(pwgts[to]+vwgt) <= itpwgts[to]*pwgts[from]) break; } if (k == myndegrees) continue; /* break out if you did not find a candidate */ for (j=k+1; j<myndegrees; j++) { to = myedegrees[j].pid; if (!phtable[to]) continue; if (itpwgts[myedegrees[k].pid]*pwgts[to] < itpwgts[to]*pwgts[myedegrees[k].pid]) k = j; } to = myedegrees[k].pid; if (pwgts[from] < maxwgt[from] && pwgts[to] > minwgt[to] && myedegrees[k].ed-myrinfo->id < 0) continue; /*===================================================================== * If we got here, we can now move the vertex from 'from' to 'to' *======================================================================*/ graph->mincut -= myedegrees[k].ed-myrinfo->id; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut)); /* Update pmat to reflect the move of 'i' */ pmat[from*nparts+to] += (myrinfo->id-myedegrees[k].ed); pmat[to*nparts+from] += (myrinfo->id-myedegrees[k].ed); if (pmat[from*nparts+to] == 0) { ndoms[from]--; if (ndoms[from]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[to*nparts+from] == 0) { ndoms[to]--; if (ndoms[to]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } /* Update where, weight, and ID/ED information of the vertex you moved */ where[i] = to; INC_DEC(pwgts[to], pwgts[from], vwgt); myrinfo->ed += myrinfo->id-myedegrees[k].ed; SWAP(myrinfo->id, myedegrees[k].ed, j); if (myedegrees[k].ed == 0) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].pid = from; if (myrinfo->ed == 0) BNDDelete(nbnd, bndind, bndptr, i); /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { ii = adjncy[j]; me = where[ii]; myrinfo = graph->rinfo+ii; if (myrinfo->edegrees == NULL) { myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree; ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii]; } myedegrees = myrinfo->edegrees; ASSERT(CheckRInfo(myrinfo)); oldgain = (myrinfo->ed-myrinfo->id); if (me == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); if (myrinfo->ed > 0 && bndptr[ii] == -1) BNDInsert(nbnd, bndind, bndptr, ii); } else if (me == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); if (myrinfo->ed == 0 && bndptr[ii] != -1) BNDDelete(nbnd, bndind, bndptr, ii); } /* Remove contribution from the .ed of 'from' */ if (me != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == from) { if (myedegrees[k].ed == adjwgt[j]) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].ed -= adjwgt[j]; break; } } } /* Add contribution to the .ed of 'to' */ if (me != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == to) { myedegrees[k].ed += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { myedegrees[myrinfo->ndegrees].pid = to; myedegrees[myrinfo->ndegrees++].ed = adjwgt[j]; } } /* Update pmat to reflect the move of 'i' for domains other than 'from' and 'to' */ if (me != from && me != to) { pmat[me*nparts+from] -= adjwgt[j]; pmat[from*nparts+me] -= adjwgt[j]; if (pmat[me*nparts+from] == 0) { ndoms[me]--; if (ndoms[me]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[from*nparts+me] == 0) { ndoms[from]--; if (ndoms[from]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[me*nparts+to] == 0) { ndoms[me]++; if (ndoms[me] > maxndoms) { printf("You just increased the maxndoms: %d %d\n", ndoms[me], maxndoms); maxndoms = ndoms[me]; } } if (pmat[to*nparts+me] == 0) { ndoms[to]++; if (ndoms[to] > maxndoms) { printf("You just increased the maxndoms: %d %d\n", ndoms[to], maxndoms); maxndoms = ndoms[to]; } } pmat[me*nparts+to] += adjwgt[j]; pmat[to*nparts+me] += adjwgt[j]; } /* Update the queue */ if (me == to || me == from) { gain = myrinfo->ed-myrinfo->id; if (moved[ii] == 2) { if (myrinfo->ed > 0) PQueueUpdate(&queue, ii, oldgain, gain); else { PQueueDelete(&queue, ii, oldgain); moved[ii] = -1; } } else if (moved[ii] == -1 && myrinfo->ed > 0) { PQueueInsert(&queue, ii, gain); moved[ii] = 2; } } ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]); ASSERT(CheckRInfo(myrinfo)); } nmoves++; } graph->nbnd = nbnd; IFSET(ctrl->dbglvl, DBG_REFINE, printf("\t[%6d %6d], Balance: %5.3f, Nb: %6d. Nmoves: %5d, Cut: %6d, %d\n", pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nbnd, nmoves, graph->mincut,idxsum(nparts, ndoms))); } PQueueFree(ctrl, &queue); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function balances two partitions by moving the highest gain * (including negative gain) vertices to the other domain. * It is used only when tha unbalance is due to non contigous * subdomains. That is, the are no boundary vertices. * It moves vertices from the domain that is overweight to the one that * is underweight. **************************************************************************/ void MocInit2WayBalance(CtrlType *ctrl, GraphType *graph, float *tpwgts) { int i, ii, j, k, l, kwgt, nvtxs, nbnd, ncon, nswaps, from, to, pass, me, cnum, tmp; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *perm, *qnum; float *nvwgt, *npwgts; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; adjncy = graph->adjncy; nvwgt = graph->nvwgt; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); /* This is called for initial partitioning so we know from where to pick nodes */ from = 1; to = (from+1)%2; if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); } ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); ASSERT(CheckGraph(graph)); /* Compute the queues in which each vertex will be assigned to */ for (i=0; i<nvtxs; i++) qnum[i] = samax(ncon, nvwgt+i*ncon); /* Insert the nodes of the proper partition in the appropriate priority queue */ RandomPermute(nvtxs, perm, 1); for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (where[i] == from) { if (ed[i] > 0) PQueueInsert(&parts[qnum[i]][0], i, ed[i]-id[i]); else PQueueInsert(&parts[qnum[i]][1], i, ed[i]-id[i]); } } mincut = graph->mincut; nbnd = graph->nbnd; for (nswaps=0; nswaps<nvtxs; nswaps++) { if (AreAnyVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, tpwgts[from])) break; if ((cnum = SelectQueueOneWay(ncon, npwgts, tpwgts, from, parts)) == -1) break; if ((higain = PQueueGetMax(&parts[cnum][0])) == -1) higain = PQueueGetMax(&parts[cnum][1]); mincut -= (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); where[higain] = to; if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). [%5d] %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], mincut); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); if (ed[higain] == 0 && id[higain] > 0) printf("\t Pulled from the interior!\n"); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update the queue position */ if (where[k] == from) { if (ed[k] > 0 && bndptr[k] == -1) { /* It moves in boundary */ PQueueDelete(&parts[qnum[k]][1], k, oldgain); PQueueInsert(&parts[qnum[k]][0], k, ed[k]-id[k]); } else { /* It must be in the boundary already */ if (bndptr[k] == -1) printf("What you thought was wrong!\n"); PQueueUpdate(&parts[qnum[k]][0], k, oldgain, ed[k]-id[k]); } } /* Update its boundary information */ if (ed[k] == 0 && bndptr[k] != -1) BNDDelete(nbnd, bndind, bndptr, k); else if (ed[k] > 0 && bndptr[k] == -1) BNDInsert(nbnd, bndind, bndptr, k); } ASSERTP(ComputeCut(graph, where) == mincut, ("%d != %d\n", ComputeCut(graph, where), mincut)); } if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d, NBND: %6d, NPwgts: ", mincut, nbnd); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } graph->mincut = mincut; graph->nbnd = nbnd; for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void MocGeneral2WayBalance2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec) { int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, limit, tmp, cnum; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *moved, *swaps, *perm, *qnum; float *nvwgt, *npwgts, origbal[MAXNCON], minbal[MAXNCON], newbal[MAXNCON]; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut, newcut, mincutorder; float *maxwgt, *minwgt, tvec[MAXNCON]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); limit = amin(amax(0.01*nvtxs, 15), 100); /* Setup the weight intervals of the two subdomains */ minwgt = fwspacemalloc(ctrl, 2*ncon); maxwgt = fwspacemalloc(ctrl, 2*ncon); for (i=0; i<2; i++) { for (j=0; j<ncon; j++) { maxwgt[i*ncon+j] = tpwgts[i]*ubvec[j]; minwgt[i*ncon+j] = tpwgts[i]*(1.0/ubvec[j]); } } /* Initialize the queues */ for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); } for (i=0; i<nvtxs; i++) qnum[i] = samax(ncon, nvwgt+i*ncon); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, origbal); for (i=0; i<ncon; i++) minbal[i] = origbal[i]; newcut = mincut = graph->mincut; mincutorder = -1; if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: ", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut); for (i=0; i<ncon; i++) printf("%.3f ", origbal[i]); printf("[B]\n"); } idxset(nvtxs, -1, moved); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert all nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nvtxs, perm, 1); for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { if (AreAllBelow(ncon, minbal, ubvec)) break; SelectQueue3(ncon, npwgts, tpwgts, &from, &cnum, parts, maxwgt); to = (from+1)%2; if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1) break; saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); newcut -= (ed[higain]-id[higain]); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, newbal); if (IsBetter2wayBalance(ncon, newbal, minbal, ubvec) || (IsBetter2wayBalance(ncon, newbal, origbal, ubvec) && newcut < mincut)) { mincut = newcut; for (i=0; i<ncon; i++) minbal[i] = newbal[i]; mincutorder = nswaps; } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut); for (i=0; i<ncon; i++) printf("(%.3f, %.3f) ", npwgts[i], npwgts[ncon+i]); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec); printf(", LB: "); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); if (mincutorder == nswaps) printf(" *\n"); else printf("\n"); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update the queue position */ if (moved[k] == -1) PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]); /* Update its boundary information */ if (ed[k] == 0 && bndptr[k] != -1) BNDDelete(nbnd, bndind, bndptr, k); else if (ed[k] > 0 && bndptr[k] == -1) BNDInsert(nbnd, bndind, bndptr, k); } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd); for (i=0; i<ncon; i++) printf("(%.3f, %.3f) ", npwgts[i], npwgts[ncon+i]); printf("], LB: "); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); printf("\n"); } graph->mincut = mincut; graph->nbnd = nbnd; for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); fwspacefree(ctrl, 2*ncon); fwspacefree(ctrl, 2*ncon); }
/************************************************************************* * This function performs k-way refinement **************************************************************************/ void Greedy_KWayEdgeRefine(CtrlType *ctrl, GraphType *graph, int nparts, float *tpwgts, float ubfactor, int npasses) { int i, ii, iii, j, jj, k, l, pass, nvtxs, nbnd, tvwgt, myndegrees, oldgain, gain; int from, me, to, oldcut, vwgt; idxtype *xadj, *adjncy, *adjwgt; idxtype *where, *pwgts, *perm, *bndptr, *bndind, *minwgt, *maxwgt, *moved, *itpwgts; EDegreeType *myedegrees; RInfoType *myrinfo; PQueueType queue; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; adjwgt = graph->adjwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; pwgts = graph->pwgts; /* Setup the weight intervals of the various subdomains */ minwgt = idxwspacemalloc(ctrl, nparts); maxwgt = idxwspacemalloc(ctrl, nparts); itpwgts = idxwspacemalloc(ctrl, nparts); tvwgt = idxsum(nparts, pwgts); ASSERT(tvwgt == idxsum(nvtxs, graph->vwgt)); for (i=0; i<nparts; i++) { itpwgts[i] = tpwgts[i]*tvwgt; maxwgt[i] = tpwgts[i]*tvwgt*ubfactor; minwgt[i] = tpwgts[i]*tvwgt*(1.0/ubfactor); } perm = idxwspacemalloc(ctrl, nvtxs); moved = idxwspacemalloc(ctrl, nvtxs); PQueueInit(ctrl, &queue, nvtxs, graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]); IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d]-[%6d %6d], Balance: %5.3f, Nv-Nb[%6d %6d]. Cut: %6d\n", pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], minwgt[0], maxwgt[0], 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nvtxs, graph->nbnd, graph->mincut)); for (pass=0; pass<npasses; pass++) { ASSERT(ComputeCut(graph, where) == graph->mincut); PQueueReset(&queue); idxset(nvtxs, -1, moved); oldcut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; PQueueInsert(&queue, i, graph->rinfo[i].ed - graph->rinfo[i].id); moved[i] = 2; } for (iii=0;; iii++) { if ((i = PQueueGetMax(&queue)) == -1) break; moved[i] = 1; myrinfo = graph->rinfo+i; from = where[i]; vwgt = graph->vwgt[i]; if (pwgts[from]-vwgt < minwgt[from]) continue; /* This cannot be moved! */ myedegrees = myrinfo->edegrees; myndegrees = myrinfo->ndegrees; j = myrinfo->id; for (k=0; k<myndegrees; k++) { to = myedegrees[k].pid; gain = myedegrees[k].ed-j; /* j = myrinfo->id. Allow good nodes to move */ if (pwgts[to]+vwgt <= maxwgt[to]+gain && gain >= 0) break; } if (k == myndegrees) continue; /* break out if you did not find a candidate */ for (j=k+1; j<myndegrees; j++) { to = myedegrees[j].pid; if ((myedegrees[j].ed > myedegrees[k].ed && pwgts[to]+vwgt <= maxwgt[to]) || (myedegrees[j].ed == myedegrees[k].ed && itpwgts[myedegrees[k].pid]*pwgts[to] < itpwgts[to]*pwgts[myedegrees[k].pid])) k = j; } to = myedegrees[k].pid; j = 0; if (myedegrees[k].ed-myrinfo->id > 0) j = 1; else if (myedegrees[k].ed-myrinfo->id == 0) { if ((iii&7) == 0 || pwgts[from] >= maxwgt[from] || itpwgts[from]*(pwgts[to]+vwgt) < itpwgts[to]*pwgts[from]) j = 1; } if (j == 0) continue; /*===================================================================== * If we got here, we can now move the vertex from 'from' to 'to' *======================================================================*/ graph->mincut -= myedegrees[k].ed-myrinfo->id; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut)); /* Update where, weight, and ID/ED information of the vertex you moved */ where[i] = to; INC_DEC(pwgts[to], pwgts[from], vwgt); myrinfo->ed += myrinfo->id-myedegrees[k].ed; SWAP(myrinfo->id, myedegrees[k].ed, j); if (myedegrees[k].ed == 0) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].pid = from; if (myrinfo->ed < myrinfo->id) BNDDelete(nbnd, bndind, bndptr, i); /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { ii = adjncy[j]; me = where[ii]; myrinfo = graph->rinfo+ii; if (myrinfo->edegrees == NULL) { myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree; ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii]; } myedegrees = myrinfo->edegrees; ASSERT(CheckRInfo(myrinfo)); oldgain = (myrinfo->ed-myrinfo->id); if (me == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); if (myrinfo->ed-myrinfo->id >= 0 && bndptr[ii] == -1) BNDInsert(nbnd, bndind, bndptr, ii); } else if (me == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); if (myrinfo->ed-myrinfo->id < 0 && bndptr[ii] != -1) BNDDelete(nbnd, bndind, bndptr, ii); } /* Remove contribution from the .ed of 'from' */ if (me != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == from) { if (myedegrees[k].ed == adjwgt[j]) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].ed -= adjwgt[j]; break; } } } /* Add contribution to the .ed of 'to' */ if (me != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == to) { myedegrees[k].ed += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { myedegrees[myrinfo->ndegrees].pid = to; myedegrees[myrinfo->ndegrees++].ed = adjwgt[j]; } } /* Update the queue */ if (me == to || me == from) { gain = myrinfo->ed-myrinfo->id; if (moved[ii] == 2) { if (gain >= 0) PQueueUpdate(&queue, ii, oldgain, gain); else { PQueueDelete(&queue, ii, oldgain); moved[ii] = -1; } } else if (moved[ii] == -1 && gain >= 0) { PQueueInsert(&queue, ii, gain); moved[ii] = 2; } } ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]); ASSERT(CheckRInfo(myrinfo)); } } graph->nbnd = nbnd; IFSET(ctrl->dbglvl, DBG_REFINE, printf("\t[%6d %6d], Balance: %5.3f, Nb: %6d. Cut: %6d\n", pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nbnd, graph->mincut)); if (graph->mincut == oldcut) break; } PQueueFree(ctrl, &queue); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs a node-based FM refinement **************************************************************************/ void FM_2WayNodeRefineEqWgt(CtrlType *ctrl, GraphType *graph, idxtype npasses) { idxtype i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind; idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr; idxtype *mptr, *mind, *moved, *swaps, *perm; PQueueType parts[2]; NRInfoType *rinfo; idxtype higain, oldgain, mincut, initcut, mincutorder; idxtype pass, to, other, limit; idxtype mindiff, newdiff; idxtype u[2], g[2]; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; vwgt = graph->vwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; pwgts = graph->pwgts; rinfo = graph->nrinfo; i = ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt); PQueueInit(ctrl, &parts[0], nvtxs, i); PQueueInit(ctrl, &parts[1], nvtxs, i); moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); mptr = idxwspacemalloc(ctrl, nvtxs+1); mind = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); IFSET(ctrl->dbglvl, DBG_REFINE, mprintf("Partitions: [%6D %6D] Nv-Nb[%6D %6D]. ISep: %6D\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); for (pass=0; pass<npasses; pass++) { idxset(nvtxs, -1, moved); PQueueReset(&parts[0]); PQueueReset(&parts[1]); mincutorder = -1; initcut = mincut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(where[i] == 2); PQueueInsert(&parts[0], i, vwgt[i]-rinfo[i].edegrees[1]); PQueueInsert(&parts[1], i, vwgt[i]-rinfo[i].edegrees[0]); } ASSERT(CheckNodeBnd(graph, nbnd)); ASSERT(CheckNodePartitionParams(graph)); limit = (ctrl->oflags&OFLAG_COMPRESS ? amin(5*nbnd, 400) : amin(2*nbnd, 300)); /****************************************************** * Get into the FM loop *******************************************************/ mptr[0] = nmind = 0; mindiff = idxtype_abs(pwgts[0]-pwgts[1]); to = (pwgts[0] < pwgts[1] ? 0 : 1); for (nswaps=0; nswaps<nvtxs; nswaps++) { to = (pwgts[0] < pwgts[1] ? 0 : 1); if (pwgts[0] == pwgts[1]) { u[0] = PQueueSeeMax(&parts[0]); u[1] = PQueueSeeMax(&parts[1]); if (u[0] != -1 && u[1] != -1) { g[0] = vwgt[u[0]]-rinfo[u[0]].edegrees[1]; g[1] = vwgt[u[1]]-rinfo[u[1]].edegrees[0]; to = (g[0] > g[1] ? 0 : (g[0] < g[1] ? 1 : pass%2)); } } other = (to+1)%2; if ((higain = PQueueGetMax(&parts[to])) == -1) break; if (moved[higain] == -1) /* Delete if it was in the separator originally */ PQueueDelete(&parts[other], higain, vwgt[higain]-rinfo[higain].edegrees[to]); ASSERT(bndptr[higain] != -1); pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]); newdiff = idxtype_abs(pwgts[to]+vwgt[higain] - (pwgts[other]-rinfo[higain].edegrees[other])); if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) { mincut = pwgts[2]; mincutorder = nswaps; mindiff = newdiff; } else { if (nswaps - mincutorder > limit) { pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[other]); break; /* No further improvement, break out */ } } BNDDelete(nbnd, bndind, bndptr, higain); pwgts[to] += vwgt[higain]; where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; /********************************************************** * Update the degrees of the affected nodes ***********************************************************/ for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */ oldgain = vwgt[k]-rinfo[k].edegrees[to]; rinfo[k].edegrees[to] += vwgt[higain]; if (moved[k] == -1 || moved[k] == -(2+other)) PQueueUpdate(&parts[other], k, oldgain, oldgain-vwgt[higain]); } else if (where[k] == other) { /* This vertex is pulled into the separator */ ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k])); BNDInsert(nbnd, bndind, bndptr, k); mind[nmind++] = k; /* Keep track for rollback */ where[k] = 2; pwgts[other] -= vwgt[k]; edegrees = rinfo[k].edegrees; edegrees[0] = edegrees[1] = 0; for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] != 2) edegrees[where[kk]] += vwgt[kk]; else { oldgain = vwgt[kk]-rinfo[kk].edegrees[other]; rinfo[kk].edegrees[other] -= vwgt[k]; if (moved[kk] == -1 || moved[kk] == -(2+to)) PQueueUpdate(&parts[to], kk, oldgain, oldgain+vwgt[k]); } } /* Insert the new vertex into the priority queue. Only one side! */ if (moved[k] == -1) { PQueueInsert(&parts[to], k, vwgt[k]-edegrees[other]); moved[k] = -(2+to); } } } mptr[nswaps+1] = nmind; IFSET(ctrl->dbglvl, DBG_MOVEINFO, mprintf("Moved %6D to %3D, Gain: %5D [%5D] [%4D %4D] \t[%5D %5D %5D]\n", higain, to, g[to], g[other], vwgt[u[to]], vwgt[u[other]], pwgts[0], pwgts[1], pwgts[2])); } /**************************************************************** * Roll back computation *****************************************************************/ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; ASSERT(CheckNodePartitionParams(graph)); to = where[higain]; other = (to+1)%2; INC_DEC(pwgts[2], pwgts[to], vwgt[higain]); where[higain] = 2; BNDInsert(nbnd, bndind, bndptr, higain); edegrees = rinfo[higain].edegrees; edegrees[0] = edegrees[1] = 0; for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) rinfo[k].edegrees[to] -= vwgt[higain]; else edegrees[where[k]] += vwgt[k]; } /* Push nodes out of the separator */ for (j=mptr[nswaps]; j<mptr[nswaps+1]; j++) { k = mind[j]; ASSERT(where[k] == 2); where[k] = other; INC_DEC(pwgts[other], pwgts[2], vwgt[k]); BNDDelete(nbnd, bndind, bndptr, k); for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] == 2) rinfo[kk].edegrees[other] += vwgt[k]; } } } ASSERT(mincut == pwgts[2]); IFSET(ctrl->dbglvl, DBG_REFINE, mprintf("\tMinimum sep: %6D at %5D, PWGTS: [%6D %6D], NBND: %6D\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd)); graph->mincut = mincut; graph->nbnd = nbnd; if (mincutorder == -1 || mincut >= initcut) break; } PQueueFree(ctrl, &parts[0]); PQueueFree(ctrl, &parts[1]); idxwspacefree(ctrl, nvtxs+1); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void MocGeneral2WayBalance(CtrlType *ctrl, GraphType *graph, float *tpwgts, float lbfactor) { int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, me, limit, tmp, cnum; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *moved, *swaps, *perm, *qnum; float *nvwgt, *npwgts, mindiff[MAXNCON], origbal, minbal, newbal; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut, newcut, mincutorder; int qsizes[MAXNCON][2]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); limit = amin(amax(0.01*nvtxs, 15), 100); /* Initialize the queues */ for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); qsizes[i][0] = qsizes[i][1] = 0; } for (i=0; i<nvtxs; i++) { qnum[i] = samax(ncon, nvwgt+i*ncon); qsizes[qnum[i]][where[i]]++; } /* printf("Weight Distribution: \t"); for (i=0; i<ncon; i++) printf(" [%d %d]", qsizes[i][0], qsizes[i][1]); printf("\n"); */ for (from=0; from<2; from++) { for (j=0; j<ncon; j++) { if (qsizes[j][from] == 0) { for (i=0; i<nvtxs; i++) { if (where[i] != from) continue; k = samax2(ncon, nvwgt+i*ncon); if (k == j && qsizes[qnum[i]][from] > qsizes[j][from] && nvwgt[i*ncon+qnum[i]] < 1.3*nvwgt[i*ncon+j]) { qsizes[qnum[i]][from]--; qsizes[j][from]++; qnum[i] = j; } } } } } /* printf("Weight Distribution (after):\t "); for (i=0; i<ncon; i++) printf(" [%d %d]", qsizes[i][0], qsizes[i][1]); printf("\n"); */ for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); minbal = origbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); newcut = mincut = graph->mincut; mincutorder = -1; if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, origbal); } idxset(nvtxs, -1, moved); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert all nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nvtxs, perm, 1); for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { if (minbal < lbfactor) break; SelectQueue(ncon, npwgts, tpwgts, &from, &cnum, parts); to = (from+1)%2; if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1) break; saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); newcut -= (ed[higain]-id[higain]); newbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); if (newbal < minbal || (newbal == minbal && (newcut < mincut || (newcut == mincut && BetterBalance(ncon, npwgts, tpwgts, mindiff))))) { mincut = newcut; minbal = newbal; mincutorder = nswaps; for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", %.3f LB: %.3f\n", minbal, newbal); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update the queue position */ if (moved[k] == -1) PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]); /* Update its boundary information */ if (ed[k] == 0 && bndptr[k] != -1) BNDDelete(nbnd, bndind, bndptr, k); else if (ed[k] > 0 && bndptr[k] == -1) BNDInsert(nbnd, bndind, bndptr, k); } } /**************************************************************** * Roll back computations *****************************************************************/ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("], LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } graph->mincut = mincut; graph->nbnd = nbnd; for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void FM_2WayEdgeRefine(CtrlType *ctrl, GraphType *graph, int *tpwgts, int npasses) { int i, ii, j, k, kwgt, nvtxs, nbnd, nswaps, from, to, pass, me, limit, tmp; idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind, *pwgts; idxtype *moved, *swaps, *perm; PQueueType parts[2]; int higain, oldgain, mincut, mindiff, origdiff, initcut, newcut, mincutorder, avgvwgt; nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; pwgts = graph->pwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); limit = (int) amin(amax(0.01*nvtxs, 15), 100); avgvwgt = amin((pwgts[0]+pwgts[1])/20, 2*(pwgts[0]+pwgts[1])/nvtxs); tmp = graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]; PQueueInit(ctrl, &parts[0], nvtxs, tmp); PQueueInit(ctrl, &parts[1], nvtxs, tmp); IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d] T[%6d %6d], Nv-Nb[%6d %6d]. ICut: %6d\n", pwgts[0], pwgts[1], tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); origdiff = abs(tpwgts[0]-pwgts[0]); idxset(nvtxs, -1, moved); for (pass=0; pass<npasses; pass++) { /* Do a number of passes */ PQueueReset(&parts[0]); PQueueReset(&parts[1]); mincutorder = -1; newcut = mincut = initcut = graph->mincut; mindiff = abs(tpwgts[0]-pwgts[0]); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert boundary nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = perm[ii]; ASSERT(ed[bndind[i]] > 0 || id[bndind[i]] == 0); ASSERT(bndptr[bndind[i]] != -1); PQueueInsert(&parts[where[bndind[i]]], bndind[i], ed[bndind[i]]-id[bndind[i]]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { from = (tpwgts[0]-pwgts[0] < tpwgts[1]-pwgts[1] ? 0 : 1); to = (from+1)%2; if ((higain = PQueueGetMax(&parts[from])) == -1) break; ASSERT(bndptr[higain] != -1); newcut -= (ed[higain]-id[higain]); INC_DEC(pwgts[to], pwgts[from], vwgt[higain]); if ((newcut < mincut && abs(tpwgts[0]-pwgts[0]) <= origdiff+avgvwgt) || (newcut == mincut && abs(tpwgts[0]-pwgts[0]) < mindiff)) { mincut = newcut; mindiff = abs(tpwgts[0]-pwgts[0]); mincutorder = nswaps; } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); INC_DEC(pwgts[from], pwgts[to], vwgt[higain]); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("Moved %6d from %d. [%3d %3d] %5d [%4d %4d]\n", higain, from, ed[higain]-id[higain], vwgt[higain], newcut, pwgts[0], pwgts[1])); /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1) /* Remove it if in the queues */ PQueueDelete(&parts[where[k]], k, oldgain); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1) PQueueUpdate(&parts[where[k]], k, oldgain, ed[k]-id[k]); } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1) PQueueInsert(&parts[where[k]], k, ed[k]-id[k]); } } } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); INC_DEC(pwgts[to], pwgts[(to+1)%2], vwgt[higain]); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } IFSET(ctrl->dbglvl, DBG_REFINE, printf("\tMinimum cut: %6d at %5d, PWGTS: [%6d %6d], NBND: %6d\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd)); graph->mincut = mincut; graph->nbnd = nbnd; if (mincutorder == -1 || mincut == initcut) break; } PQueueFree(ctrl, &parts[0]); PQueueFree(ctrl, &parts[1]); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void MocFM_2WayEdgeRefine(CtrlType *ctrl, GraphType *graph, float *tpwgts, int npasses) { int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, me, limit, tmp, cnum; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *moved, *swaps, *perm, *qnum; float *nvwgt, *npwgts, mindiff[MAXNCON], origbal, minbal, newbal; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut, initcut, newcut, mincutorder; float rtpwgts[2]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); limit = amin(amax(0.01*nvtxs, 25), 150); /* Initialize the queues */ for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); } for (i=0; i<nvtxs; i++) qnum[i] = samax(ncon, nvwgt+i*ncon); origbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); rtpwgts[0] = origbal*tpwgts[0]; rtpwgts[1] = origbal*tpwgts[1]; /* if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, origbal); } */ idxset(nvtxs, -1, moved); for (pass=0; pass<npasses; pass++) { /* Do a number of passes */ for (i=0; i<ncon; i++) { PQueueReset(&parts[i][0]); PQueueReset(&parts[i][1]); } mincutorder = -1; newcut = mincut = initcut = graph->mincut; for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); minbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert boundary nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(ed[i] > 0 || id[i] == 0); ASSERT(bndptr[i] != -1); PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { SelectQueue(ncon, npwgts, rtpwgts, &from, &cnum, parts); to = (from+1)%2; if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1) break; ASSERT(bndptr[higain] != -1); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); newcut -= (ed[higain]-id[higain]); newbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); if ((newcut < mincut && newbal-origbal <= .00001) || (newcut == mincut && (newbal < minbal || (newbal == minbal && BetterBalance(ncon, npwgts, tpwgts, mindiff))))) { mincut = newcut; minbal = newbal; mincutorder = nswaps; for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; /* if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", %.3f LB: %.3f\n", minbal, newbal); } */ /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1) /* Remove it if in the queues */ PQueueDelete(&parts[qnum[k]][where[k]], k, oldgain); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1) PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]); } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1) PQueueInsert(&parts[qnum[k]][where[k]], k, ed[k]-id[k]); } } } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } /* if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("], LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } */ graph->mincut = mincut; graph->nbnd = nbnd; if (mincutorder == -1 || mincut == initcut) break; } for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
void FM_2WayNodeRefine_TwoSidedP(CtrlType *ctrl, GraphType *graph, idxtype *hmarker, float ubfactor, int npasses) { int i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind; idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr; idxtype *mptr, *mind, *moved, *swaps, *perm; PQueueType parts[2]; NRInfoType *rinfo; int higain, oldgain, mincut, initcut, mincutorder; int pass, to, other, limit; int badmaxpwgt, mindiff, newdiff; int u[2], g[2]; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; vwgt = graph->vwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; pwgts = graph->pwgts; rinfo = graph->nrinfo; i = ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt); PQueueInit(ctrl, &parts[0], nvtxs, i); PQueueInit(ctrl, &parts[1], nvtxs, i); moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); mptr = idxwspacemalloc(ctrl, nvtxs+1); mind = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d] Nv-Nb[%6d %6d]. ISep: %6d\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); badmaxpwgt = (int)(ubfactor*amax(pwgts[0], pwgts[1])); for (pass=0; pass<npasses; pass++) { idxset(nvtxs, -1, moved); PQueueReset(&parts[0]); PQueueReset(&parts[1]); mincutorder = -1; initcut = mincut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(where[i] == 2); if (hmarker[i] == -1) { PQueueInsert(&parts[0], i, vwgt[i]-rinfo[i].edegrees[1]); PQueueInsert(&parts[1], i, vwgt[i]-rinfo[i].edegrees[0]); moved[i] = -5; } else if (hmarker[i] != 2) { PQueueInsert(&parts[hmarker[i]], i, vwgt[i]-rinfo[i].edegrees[(hmarker[i]+1)%2]); moved[i] = -(10+hmarker[i]); } } ASSERT(CheckNodeBnd(graph, nbnd)); ASSERT(CheckNodePartitionParams(graph)); limit = nbnd; /****************************************************** * Get into the FM loop *******************************************************/ mptr[0] = nmind = 0; mindiff = abs(pwgts[0]-pwgts[1]); to = (pwgts[0] < pwgts[1] ? 0 : 1); for (nswaps=0; nswaps<nvtxs; nswaps++) { u[0] = PQueueSeeMax(&parts[0]); u[1] = PQueueSeeMax(&parts[1]); if (u[0] != -1 && u[1] != -1) { g[0] = vwgt[u[0]]-rinfo[u[0]].edegrees[1]; g[1] = vwgt[u[1]]-rinfo[u[1]].edegrees[0]; to = (g[0] > g[1] ? 0 : (g[0] < g[1] ? 1 : pass%2)); if (pwgts[to]+vwgt[u[to]] > badmaxpwgt) to = (to+1)%2; } else if (u[0] == -1 && u[1] == -1) { break; } else if (u[0] != -1 && pwgts[0]+vwgt[u[0]] <= badmaxpwgt) { to = 0; } else if (u[1] != -1 && pwgts[1]+vwgt[u[1]] <= badmaxpwgt) { to = 1; } else break; other = (to+1)%2; higain = PQueueGetMax(&parts[to]); /* Delete its matching entry in the other queue */ if (moved[higain] == -5) PQueueDelete(&parts[other], higain, vwgt[higain]-rinfo[higain].edegrees[to]); ASSERT(bndptr[higain] != -1); pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]); newdiff = abs(pwgts[to]+vwgt[higain] - (pwgts[other]-rinfo[higain].edegrees[other])); if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) { mincut = pwgts[2]; mincutorder = nswaps; mindiff = newdiff; } else { if (nswaps - mincutorder > limit) { pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[other]); break; /* No further improvement, break out */ } } BNDDelete(nbnd, bndind, bndptr, higain); pwgts[to] += vwgt[higain]; where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; /********************************************************** * Update the degrees of the affected nodes ***********************************************************/ for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */ oldgain = vwgt[k]-rinfo[k].edegrees[to]; rinfo[k].edegrees[to] += vwgt[higain]; if (moved[k] == -5 || moved[k] == -(10+other)) PQueueUpdate(&parts[other], k, oldgain, oldgain-vwgt[higain]); } else if (where[k] == other) { /* This vertex is pulled into the separator */ ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k])); BNDInsert(nbnd, bndind, bndptr, k); mind[nmind++] = k; /* Keep track for rollback */ where[k] = 2; pwgts[other] -= vwgt[k]; edegrees = rinfo[k].edegrees; edegrees[0] = edegrees[1] = 0; for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] != 2) edegrees[where[kk]] += vwgt[kk]; else { oldgain = vwgt[kk]-rinfo[kk].edegrees[other]; rinfo[kk].edegrees[other] -= vwgt[k]; if (moved[kk] == -5 || moved[kk] == -(10+to)) PQueueUpdate(&parts[to], kk, oldgain, oldgain+vwgt[k]); } } /* Insert the new vertex into the priority queue (if it has not been moved). */ if (moved[k] == -1 && (hmarker[k] == -1 || hmarker[k] == to)) { PQueueInsert(&parts[to], k, vwgt[k]-edegrees[other]); moved[k] = -(10+to); } #ifdef FULLMOVES /* this does not work as well as the above partial one */ if (moved[k] == -1) { if (hmarker[k] == -1) { PQueueInsert(&parts[0], k, vwgt[k]-edegrees[1]); PQueueInsert(&parts[1], k, vwgt[k]-edegrees[0]); moved[k] = -5; } else if (hmarker[k] != 2) { PQueueInsert(&parts[hmarker[k]], k, vwgt[k]-edegrees[(hmarker[k]+1)%2]); moved[k] = -(10+hmarker[k]); } } #endif } } mptr[nswaps+1] = nmind; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("Moved %6d to %3d, Gain: %5d [%5d] [%4d %4d] \t[%5d %5d %5d]\n", higain, to, g[to], g[other], vwgt[u[to]], vwgt[u[other]], pwgts[0], pwgts[1], pwgts[2])); } /**************************************************************** * Roll back computation *****************************************************************/ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; ASSERT(CheckNodePartitionParams(graph)); to = where[higain]; other = (to+1)%2; INC_DEC(pwgts[2], pwgts[to], vwgt[higain]); where[higain] = 2; BNDInsert(nbnd, bndind, bndptr, higain); edegrees = rinfo[higain].edegrees; edegrees[0] = edegrees[1] = 0; for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) rinfo[k].edegrees[to] -= vwgt[higain]; else edegrees[where[k]] += vwgt[k]; } /* Push nodes out of the separator */ for (j=mptr[nswaps]; j<mptr[nswaps+1]; j++) { k = mind[j]; ASSERT(where[k] == 2); where[k] = other; INC_DEC(pwgts[other], pwgts[2], vwgt[k]); BNDDelete(nbnd, bndind, bndptr, k); for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] == 2) rinfo[kk].edegrees[other] += vwgt[k]; } } } ASSERT(mincut == pwgts[2]); IFSET(ctrl->dbglvl, DBG_REFINE, printf("\tMinimum sep: %6d at %5d, PWGTS: [%6d %6d], NBND: %6d\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd)); graph->mincut = mincut; graph->nbnd = nbnd; if (mincutorder == -1 || mincut >= initcut) break; } PQueueFree(ctrl, &parts[0]); PQueueFree(ctrl, &parts[1]); idxwspacefree(ctrl, nvtxs+1); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function balances two partitions by moving boundary nodes * from the domain that is overweight to the one that is underweight. **************************************************************************/ void Bnd2WayBalance(CtrlType *ctrl, GraphType *graph, int *tpwgts) { int i, ii, j, k, kwgt, nvtxs, nbnd, nswaps, from, to, pass, me, tmp; idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind, *pwgts; idxtype *moved, *perm; PQueueType parts; int higain, oldgain, mincut, mindiff; nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; pwgts = graph->pwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); /* Determine from which domain you will be moving data */ mindiff = abs(tpwgts[0]-pwgts[0]); from = (pwgts[0] < tpwgts[0] ? 1 : 0); to = (from+1)%2; IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d] T[%6d %6d], Nv-Nb[%6d %6d]. ICut: %6d [B]\n", pwgts[0], pwgts[1], tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); tmp = graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]; PQueueInit(ctrl, &parts, nvtxs, tmp); idxset(nvtxs, -1, moved); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert the boundary nodes of the proper partition whose size is OK in the priority queue */ nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = perm[ii]; ASSERT(ed[bndind[i]] > 0 || id[bndind[i]] == 0); ASSERT(bndptr[bndind[i]] != -1); if (where[bndind[i]] == from && vwgt[bndind[i]] <= mindiff) PQueueInsert(&parts, bndind[i], ed[bndind[i]]-id[bndind[i]]); } mincut = graph->mincut; for (nswaps=0; nswaps<nvtxs; nswaps++) { if ((higain = PQueueGetMax(&parts)) == -1) break; ASSERT(bndptr[higain] != -1); if (pwgts[to]+vwgt[higain] > tpwgts[to]) break; mincut -= (ed[higain]-id[higain]); INC_DEC(pwgts[to], pwgts[from], vwgt[higain]); where[higain] = to; moved[higain] = nswaps; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("Moved %6d from %d. [%3d %3d] %5d [%4d %4d]\n", higain, from, ed[higain]-id[higain], vwgt[higain], mincut, pwgts[0], pwgts[1])); /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff) /* Remove it if in the queues */ PQueueDelete(&parts, k, oldgain); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff) PQueueUpdate(&parts, k, oldgain, ed[k]-id[k]); } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff) PQueueInsert(&parts, k, ed[k]-id[k]); } } } } IFSET(ctrl->dbglvl, DBG_REFINE, printf("\tMinimum cut: %6d, PWGTS: [%6d %6d], NBND: %6d\n", mincut, pwgts[0], pwgts[1], nbnd)); graph->mincut = mincut; graph->nbnd = nbnd; PQueueFree(ctrl, &parts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }