Esempio n. 1
0
int EKFINS::get_euler(float *euler)
{

	Quaternion2RPY(&x[0], euler);

	return 0;
}
Esempio n. 2
0
/**
 * @brief Quickly initialize INS assuming stationary and gravity is down
 *
 * Currently this is done iteratively but I'm sure it can be directly computed
 * when I sit down and work it out
 */
void converge_insgps()
{
	AHRSCalibrationData calibration;
	AHRSCalibrationGet( &calibration );
	float pos[3] = { 0, 0, 0 }, vel[3] = {
		0, 0, 0
	}, BaroAlt = 0, mag[3], accel[3], temp_gyro[3] = {
		0, 0, 0
	};
	INSGPSInit();
	INSSetAccelVar( calibration.accel_var );
	INSSetGyroBias( temp_gyro );	// set this to zero - crude bias corrected from downsample_data
	INSSetGyroVar( calibration.gyro_var );
	INSSetMagVar( calibration.mag_var );

	float temp_var[3] = { 10, 10, 10 };
	INSSetGyroVar( temp_var );	// ignore gyro's

	accel[0] = accel_data.filtered.x;
	accel[1] = accel_data.filtered.y;
	accel[2] = accel_data.filtered.z;

	// Iteratively constrain pitch and roll while updating yaw to align magnetic axis.
	for( int i = 0; i < 50; i++ ) {
		// This should be done directly but I'm too dumb.
		float rpy[3];
		Quaternion2RPY( Nav.q, rpy );
		rpy[1] =
			-atan2( accel_data.filtered.x,
					accel_data.filtered.z ) * 180 / M_PI;
		rpy[0] =
			-atan2( accel_data.filtered.y,
					accel_data.filtered.z ) * 180 / M_PI;
		// Get magnetic readings
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
		PIOS_HMC5843_ReadMag( mag_data.raw.axis );
#endif
		mag[0] = -mag_data.raw.axis[1];
		mag[1] = -mag_data.raw.axis[0];
		mag[2] = -mag_data.raw.axis[2];

		RPY2Quaternion( rpy, Nav.q );
		INSStatePrediction( temp_gyro, accel, 1 / ( float )EKF_RATE );
		INSCovariancePrediction( 1 / ( float )EKF_RATE );
		FullCorrection( mag, pos, vel, BaroAlt );
	}

	INSSetGyroVar( calibration.gyro_var );

}
Esempio n. 3
0
void updateAttitude(void)
{
    updateSensors();

    static uint32_t now, last;
    float dT;

    now = micros();
    dT = (float)(now - last) * 1e-6f;
    last = now;

    AHRSUpdate( stateData.gyro[ROLL],   -stateData.gyro[PITCH],  stateData.gyro[YAW],
                stateData.accel[X], stateData.accel[Y], stateData.accel[Z],
                stateData.mag[X],    stateData.mag[Y],    stateData.mag[Z],
                dT);

    zeroSensorAccumulators();

    Quaternion2RPY(stateData.q, &stateData.roll, &stateData.pitch, &stateData.yaw);

    stateData.heading += cfg.magDeclination * DEG2RAD;
}
Esempio n. 4
0
/**
 * Module task
 */
static void stabilizationTask(void* parameters)
{
	portTickType lastSysTime;
	portTickType thisSysTime;
	UAVObjEvent ev;


	ActuatorDesiredData actuatorDesired;
	StabilizationDesiredData stabDesired;
	RateDesiredData rateDesired;
	AttitudeActualData attitudeActual;
	AttitudeRawData attitudeRaw;
	SystemSettingsData systemSettings;
	FlightStatusData flightStatus;

	SettingsUpdatedCb((UAVObjEvent *) NULL);

	// Main task loop
	lastSysTime = xTaskGetTickCount();
	ZeroPids();
	while(1) {
		PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);

		// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
		if ( xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE )
		{
			AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_WARNING);
			continue;
		}

		// Check how long since last update
		thisSysTime = xTaskGetTickCount();
		if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
			dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
		lastSysTime = thisSysTime;

		FlightStatusGet(&flightStatus);
		StabilizationDesiredGet(&stabDesired);
		AttitudeActualGet(&attitudeActual);
		AttitudeRawGet(&attitudeRaw);
		RateDesiredGet(&rateDesired);
		SystemSettingsGet(&systemSettings);

#if defined(PIOS_QUATERNION_STABILIZATION)
		// Quaternion calculation of error in each axis.  Uses more memory.
		float rpy_desired[3];
		float q_desired[4];
		float q_error[4];
		float local_error[3];

		// Essentially zero errors for anything in rate or none
		if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
			rpy_desired[0] = stabDesired.Roll;
		else
			rpy_desired[0] = attitudeActual.Roll;

		if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
			rpy_desired[1] = stabDesired.Pitch;
		else
			rpy_desired[1] = attitudeActual.Pitch;

		if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
			rpy_desired[2] = stabDesired.Yaw;
		else
			rpy_desired[2] = attitudeActual.Yaw;

		RPY2Quaternion(rpy_desired, q_desired);
		quat_inverse(q_desired);
		quat_mult(q_desired, &attitudeActual.q1, q_error);
		quat_inverse(q_error);
		Quaternion2RPY(q_error, local_error);

#else
		// Simpler algorithm for CC, less memory
		float local_error[3] = {stabDesired.Roll - attitudeActual.Roll,
			stabDesired.Pitch - attitudeActual.Pitch,
			stabDesired.Yaw - attitudeActual.Yaw};
		local_error[2] = fmod(local_error[2] + 180, 360) - 180;
#endif


		for(uint8_t i = 0; i < MAX_AXES; i++) {
			gyro_filtered[i] = gyro_filtered[i] * gyro_alpha + attitudeRaw.gyros[i] * (1 - gyro_alpha);
		}

		float *attitudeDesiredAxis = &stabDesired.Roll;
		float *actuatorDesiredAxis = &actuatorDesired.Roll;
		float *rateDesiredAxis = &rateDesired.Roll;

		//Calculate desired rate
		for(uint8_t i=0; i< MAX_AXES; i++)
		{
			switch(stabDesired.StabilizationMode[i])
			{
				case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
					rateDesiredAxis[i] = attitudeDesiredAxis[i];
					axis_lock_accum[i] = 0;
					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
				{
					float weak_leveling = local_error[i] * weak_leveling_kp;

					if(weak_leveling > weak_leveling_max)
						weak_leveling = weak_leveling_max;
					if(weak_leveling < -weak_leveling_max)
						weak_leveling = -weak_leveling_max;

					rateDesiredAxis[i] = attitudeDesiredAxis[i] + weak_leveling;

					axis_lock_accum[i] = 0;
					break;
				}
				case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
					rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], local_error[i]);
					axis_lock_accum[i] = 0;
					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
					if(fabs(attitudeDesiredAxis[i]) > max_axislock_rate) {
						// While getting strong commands act like rate mode
						rateDesiredAxis[i] = attitudeDesiredAxis[i];
						axis_lock_accum[i] = 0;
					} else {
						// For weaker commands or no command simply attitude lock (almost) on no gyro change
						axis_lock_accum[i] += (attitudeDesiredAxis[i] - gyro_filtered[i]) * dT;
						if(axis_lock_accum[i] > max_axis_lock)
							axis_lock_accum[i] = max_axis_lock;
						else if(axis_lock_accum[i] < -max_axis_lock)
							axis_lock_accum[i] = -max_axis_lock;

						rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], axis_lock_accum[i]);
					}
					break;
			}
		}

		uint8_t shouldUpdate = 1;
		RateDesiredSet(&rateDesired);
		ActuatorDesiredGet(&actuatorDesired);
		//Calculate desired command
		for(int8_t ct=0; ct< MAX_AXES; ct++)
		{
			if(rateDesiredAxis[ct] > settings.MaximumRate[ct])
				rateDesiredAxis[ct] = settings.MaximumRate[ct];
			else if(rateDesiredAxis[ct] < -settings.MaximumRate[ct])
				rateDesiredAxis[ct] = -settings.MaximumRate[ct];

			switch(stabDesired.StabilizationMode[ct])
			{
				case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
				case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
				case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
				case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
				{
					float command = ApplyPid(&pids[PID_RATE_ROLL + ct],  rateDesiredAxis[ct] - gyro_filtered[ct]);
					actuatorDesiredAxis[ct] = bound(command);
					break;
				}
				case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE:
					switch (ct)
				{
					case ROLL:
						actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
						shouldUpdate = 1;
						break;
					case PITCH:
						actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
						shouldUpdate = 1;
						break;
					case YAW:
						actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
						shouldUpdate = 1;
						break;
				}
					break;

			}
		}

		// Save dT
		actuatorDesired.UpdateTime = dT * 1000;

		if(PARSE_FLIGHT_MODE(flightStatus.FlightMode) == FLIGHTMODE_MANUAL)
			shouldUpdate = 0;

		if(shouldUpdate)
		{
			actuatorDesired.Throttle = stabDesired.Throttle;
			if(dT > 15)
				actuatorDesired.NumLongUpdates++;
			ActuatorDesiredSet(&actuatorDesired);
		}

		if(flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED ||
		   (lowThrottleZeroIntegral && stabDesired.Throttle < 0) ||
		   !shouldUpdate)
		{
			ZeroPids();
		}


		// Clear alarms
		AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
	}
}
Esempio n. 5
0
/**
 * @brief
 */
__attribute__((optimize("O3"))) void attitudeUpdate(PIMUStruct pIMU) {
  float accelErr[3] = {0.0f};
  float mag;
  float dq[4];

  pIMU->accelData[0] -= pIMU->accelBias[0];
  pIMU->accelData[1] -= pIMU->accelBias[1];
  pIMU->accelData[2] -= pIMU->accelBias[2];

  // Account for accel's magnitude.
  mag = QInvSqrtf(pIMU->accelData[0]*pIMU->accelData[0] + pIMU->accelData[1]*pIMU->accelData[1] + pIMU->accelData[2]*pIMU->accelData[2]);

  if ((mag > 0.0724f) && (mag < 0.1724f)) {
    float v2[3];

    /* Compute estimated direction of gravity halved.
     *
     * Rotated gravity vector v2 is calculated by multiplying gravity
     * vector v={0,0,1} by conjugate (q`) of attitude quaternion (q) (v2=q`vq),
     * because MPU6050 senses gravity in opposite direction.
     */
    v2[0] = (pIMU->qIMU[1]*pIMU->qIMU[3] - pIMU->qIMU[0]*pIMU->qIMU[2]);
    v2[1] = (pIMU->qIMU[2]*pIMU->qIMU[3] + pIMU->qIMU[0]*pIMU->qIMU[1]);
    v2[2] = (pIMU->qIMU[0]*pIMU->qIMU[0] + pIMU->qIMU[3]*pIMU->qIMU[3]) - 0.5f;

    // Apply smoothing to accel values, to reduce vibration noise before main calculations.
    accelFilterApply(pIMU->accelData, pIMU->accelFiltered);
    // Apply the same filtering to the estimated direction of gravity to match phase shift.
    accelFilterApply(v2, pIMU->v2Filtered);
    // Compute the error between the predicted direction of gravity and smoothed acceleration.
    CrossProduct(pIMU->accelFiltered, pIMU->v2Filtered, accelErr);

    // Normalize accel_error.
    accelErr[0] *= mag;
    accelErr[1] *= mag;
    accelErr[2] *= mag;
  }

  // Correct rates based on error.
  pIMU->gyroBias[0] -= accelErr[0]*accel2Ki;
  pIMU->gyroBias[1] -= accelErr[1]*accel2Ki;
  pIMU->gyroBias[2] -= accelErr[2]*accel2Ki;

  pIMU->gyroData[0] -= pIMU->gyroBias[0];
  pIMU->gyroData[1] -= pIMU->gyroBias[1];
  pIMU->gyroData[2] -= pIMU->gyroBias[2];

  // Correct rates based on error.
  pIMU->gyroData[0] += accelErr[0]*accel2Kp;
  pIMU->gyroData[1] += accelErr[1]*accel2Kp;
  pIMU->gyroData[2] += accelErr[2]*accel2Kp;

  dq[0] = (-pIMU->qIMU[1]*pIMU->gyroData[0] - pIMU->qIMU[2]*pIMU->gyroData[1] - pIMU->qIMU[3]*pIMU->gyroData[2])*(FIXED_DT_STEP*DEG2RAD*0.5f);
  dq[1] = ( pIMU->qIMU[0]*pIMU->gyroData[0] - pIMU->qIMU[3]*pIMU->gyroData[1] + pIMU->qIMU[2]*pIMU->gyroData[2])*(FIXED_DT_STEP*DEG2RAD*0.5f);
  dq[2] = ( pIMU->qIMU[3]*pIMU->gyroData[0] + pIMU->qIMU[0]*pIMU->gyroData[1] - pIMU->qIMU[1]*pIMU->gyroData[2])*(FIXED_DT_STEP*DEG2RAD*0.5f);
  dq[3] = (-pIMU->qIMU[2]*pIMU->gyroData[0] + pIMU->qIMU[1]*pIMU->gyroData[1] + pIMU->qIMU[0]*pIMU->gyroData[2])*(FIXED_DT_STEP*DEG2RAD*0.5f);

  pIMU->qIMU[0] += dq[0];
  pIMU->qIMU[1] += dq[1];
  pIMU->qIMU[2] += dq[2];
  pIMU->qIMU[3] += dq[3];

  // Normalize attitude quaternion.
  mag = QInvSqrtf(pIMU->qIMU[0]*pIMU->qIMU[0] + pIMU->qIMU[1]*pIMU->qIMU[1] + pIMU->qIMU[2]*pIMU->qIMU[2] + pIMU->qIMU[3]*pIMU->qIMU[3]);
  pIMU->qIMU[0] *= mag;
  pIMU->qIMU[1] *= mag;
  pIMU->qIMU[2] *= mag;
  pIMU->qIMU[3] *= mag;

  // Convert attitude into Euler angles;
  Quaternion2RPY(pIMU->qIMU, pIMU->rpy);
}
Esempio n. 6
0
static void updateAttitude(AttitudeRawData * attitudeRaw)
{
	AttitudeActualData attitudeActual;
	AttitudeActualGet(&attitudeActual);
		
	static portTickType lastSysTime = 0;
	static portTickType thisSysTime;
	
	static float dT = 0;
	
	thisSysTime = xTaskGetTickCount();
	if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
		dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
	lastSysTime = thisSysTime;
	
	// Bad practice to assume structure order, but saves memory
	float * q = &attitudeActual.q1;
	float gyro[3];
	gyro[0] = attitudeRaw->gyros[0];
	gyro[1] = attitudeRaw->gyros[1];
	gyro[2] = attitudeRaw->gyros[2];
	
	{
		float * accels = attitudeRaw->accels;
		float grot[3];
		float accel_err[3];
		
		// Rotate gravity to body frame and cross with accels
		grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
		grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
		grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]);
		CrossProduct((const float *) accels, (const float *) grot, accel_err);
		
		// Account for accel magnitude 
		float accel_mag = sqrt(accels[0]*accels[0] + accels[1]*accels[1] + accels[2]*accels[2]);
		accel_err[0] /= accel_mag;
		accel_err[1] /= accel_mag;
		accel_err[2] /= accel_mag;
		
		// Accumulate integral of error.  Scale here so that units are (rad/s) but Ki has units of s
		gyro_correct_int[0] += accel_err[0] * accelKi;
		gyro_correct_int[1] += accel_err[1] * accelKi;
		//gyro_correct_int[2] += accel_err[2] * settings.AccelKI * dT;
		
		// Correct rates based on error, integral component dealt with in updateSensors
		gyro[0] += accel_err[0] * accelKp / dT;
		gyro[1] += accel_err[1] * accelKp / dT;
		gyro[2] += accel_err[2] * accelKp / dT;
	}
	
	{ // scoping variables to save memory
		// Work out time derivative from INSAlgo writeup
		// Also accounts for the fact that gyros are in deg/s
		float qdot[4];
		qdot[0] = (-q[1] * gyro[0] - q[2] * gyro[1] - q[3] * gyro[2]) * dT * M_PI / 180 / 2;
		qdot[1] = (q[0] * gyro[0] - q[3] * gyro[1] + q[2] * gyro[2]) * dT * M_PI / 180 / 2;
		qdot[2] = (q[3] * gyro[0] + q[0] * gyro[1] - q[1] * gyro[2]) * dT * M_PI / 180 / 2;
		qdot[3] = (-q[2] * gyro[0] + q[1] * gyro[1] + q[0] * gyro[2]) * dT * M_PI / 180 / 2;
		
		// Take a time step
		q[0] = q[0] + qdot[0];
		q[1] = q[1] + qdot[1];
		q[2] = q[2] + qdot[2];
		q[3] = q[3] + qdot[3];
	}
	
	// Renomalize
	float qmag = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
	q[0] = q[0] / qmag;
	q[1] = q[1] / qmag;
	q[2] = q[2] / qmag;
	q[3] = q[3] / qmag;
	
	attitudeActual.q1 = q[0];
	attitudeActual.q2 = q[1];
	attitudeActual.q3 = q[2];
	attitudeActual.q4 = q[3];
	
	// Convert into eueler degrees (makes assumptions about RPY order)
	Quaternion2RPY(q,&attitudeActual.Roll);	

	AttitudeActualSet(&attitudeActual);
}
Esempio n. 7
0
static void updateAttitude(AttitudeRawData * attitudeRaw)
{
	float dT;
	portTickType thisSysTime = xTaskGetTickCount();
	static portTickType lastSysTime = 0;

	dT = (thisSysTime == lastSysTime) ? 0.001 : (portMAX_DELAY & (thisSysTime - lastSysTime)) / portTICK_RATE_MS / 1000.0f;
	lastSysTime = thisSysTime;

	// Bad practice to assume structure order, but saves memory
	float gyro[3];
	gyro[0] = attitudeRaw->gyros[0];
	gyro[1] = attitudeRaw->gyros[1];
	gyro[2] = attitudeRaw->gyros[2];

	{
		float * accels = attitudeRaw->accels;
		float grot[3];
		float accel_err[3];

		// Rotate gravity to body frame and cross with accels
		grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
		grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
		grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]);
		CrossProduct((const float *) accels, (const float *) grot, accel_err);

		// Account for accel magnitude
		float accel_mag = sqrt(accels[0]*accels[0] + accels[1]*accels[1] + accels[2]*accels[2]);
		accel_err[0] /= accel_mag;
		accel_err[1] /= accel_mag;
		accel_err[2] /= accel_mag;

		// Accumulate integral of error.  Scale here so that units are (deg/s) but Ki has units of s
		gyro_correct_int[0] += accel_err[0] * accelKi;
		gyro_correct_int[1] += accel_err[1] * accelKi;
		//gyro_correct_int[2] += accel_err[2] * settings.AccelKI * dT;

		// Correct rates based on error, integral component dealt with in updateSensors
		gyro[0] += accel_err[0] * accelKp / dT;
		gyro[1] += accel_err[1] * accelKp / dT;
		gyro[2] += accel_err[2] * accelKp / dT;
	}

	{ // scoping variables to save memory
		// Work out time derivative from INSAlgo writeup
		// Also accounts for the fact that gyros are in deg/s
		float qdot[4];
		qdot[0] = (-q[1] * gyro[0] - q[2] * gyro[1] - q[3] * gyro[2]) * dT * M_PI / 180 / 2;
		qdot[1] = (q[0] * gyro[0] - q[3] * gyro[1] + q[2] * gyro[2]) * dT * M_PI / 180 / 2;
		qdot[2] = (q[3] * gyro[0] + q[0] * gyro[1] - q[1] * gyro[2]) * dT * M_PI / 180 / 2;
		qdot[3] = (-q[2] * gyro[0] + q[1] * gyro[1] + q[0] * gyro[2]) * dT * M_PI / 180 / 2;

		// Take a time step
		q[0] = q[0] + qdot[0];
		q[1] = q[1] + qdot[1];
		q[2] = q[2] + qdot[2];
		q[3] = q[3] + qdot[3];
	}

	// Renomalize
	float qmag = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
	q[0] = q[0] / qmag;
	q[1] = q[1] / qmag;
	q[2] = q[2] / qmag;
	q[3] = q[3] / qmag;

	// If quaternion has become inappropriately short or is nan reinit.
	// THIS SHOULD NEVER ACTUALLY HAPPEN
	if((fabs(qmag) < 1e-3) || (qmag != qmag)) {
		q[0] = 1;
		q[1] = 0;
		q[2] = 0;
		q[3] = 0;
	}

	AttitudeActualData attitudeActual;
	AttitudeActualGet(&attitudeActual);

	quat_copy(q, &attitudeActual.q1);

	// Convert into eueler degrees (makes assumptions about RPY order)
	Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll);

	AttitudeActualSet(&attitudeActual);
}
Esempio n. 8
0
/**
 * This method performs a simple simulation of a car
 * 
 * It takes in the ActuatorDesired command to rotate the aircraft and performs
 * a simple kinetic model where the throttle increases the energy and drag decreases
 * it.  Changing altitude moves energy from kinetic to potential.
 *
 * 1. Update attitude based on ActuatorDesired
 * 2. Update position based on velocity
 */
static void simulateModelCar()
{
	static double pos[3] = {0,0,0};
	static double vel[3] = {0,0,0};
	static double ned_accel[3] = {0,0,0};
	static float q[4] = {1,0,0,0};
	static float rpy[3] = {0,0,0}; // Low pass filtered actuator
	static float baro_offset = 0.0f;
	float Rbe[3][3];
	
	const float ACTUATOR_ALPHA = 0.8;
	const float MAX_THRUST = 9.81 * 0.5;
	const float K_FRICTION = 0.2;
	const float GPS_PERIOD = 0.1;
	const float MAG_PERIOD = 1.0 / 75.0;
	const float BARO_PERIOD = 1.0 / 20.0;
	
	static uint32_t last_time;
	
	float dT = (PIOS_DELAY_DiffuS(last_time) / 1e6);
	if(dT < 1e-3)
		dT = 2e-3;
	last_time = PIOS_DELAY_GetRaw();
	
	FlightStatusData flightStatus;
	FlightStatusGet(&flightStatus);
	ActuatorDesiredData actuatorDesired;
	ActuatorDesiredGet(&actuatorDesired);
	
	float thrust = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) ? actuatorDesired.Throttle * MAX_THRUST : 0;
	if (thrust < 0)
		thrust = 0;
	
	if (thrust != thrust)
		thrust = 0;
	
	//	float control_scaling = thrust * thrustToDegs;
	//	// In rad/s
	//	rpy[0] = control_scaling * actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
	//	rpy[1] = control_scaling * actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
	//	rpy[2] = control_scaling * actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
	//	
	//	GyrosData gyrosData; // Skip get as we set all the fields
	//	gyrosData.x = rpy[0] * 180 / M_PI + rand_gauss();
	//	gyrosData.y = rpy[1] * 180 / M_PI + rand_gauss();
	//	gyrosData.z = rpy[2] * 180 / M_PI + rand_gauss();
	
	/**** 1. Update attitude ****/
	RateDesiredData rateDesired;
	RateDesiredGet(&rateDesired);
	
	// Need to get roll angle for easy cross coupling
	AttitudeActualData attitudeActual;
	AttitudeActualGet(&attitudeActual);

	rpy[0] = 0; // cannot roll
	rpy[1] = 0; // cannot pitch
	rpy[2] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
	

	GyrosData gyrosData; // Skip get as we set all the fields
	gyrosData.x = rpy[0] + rand_gauss();
	gyrosData.y = rpy[1] + rand_gauss();
	gyrosData.z = rpy[2] + rand_gauss();
	GyrosSet(&gyrosData);
	
	// Predict the attitude forward in time
	float qdot[4];
	qdot[0] = (-q[1] * rpy[0] - q[2] * rpy[1] - q[3] * rpy[2]) * dT * DEG2RAD / 2;
	qdot[1] = (q[0] * rpy[0] - q[3] * rpy[1] + q[2] * rpy[2]) * dT * DEG2RAD / 2;
	qdot[2] = (q[3] * rpy[0] + q[0] * rpy[1] - q[1] * rpy[2]) * dT * DEG2RAD / 2;
	qdot[3] = (-q[2] * rpy[0] + q[1] * rpy[1] + q[0] * rpy[2]) * dT * DEG2RAD / 2;
	
	// Take a time step
	q[0] = q[0] + qdot[0];
	q[1] = q[1] + qdot[1];
	q[2] = q[2] + qdot[2];
	q[3] = q[3] + qdot[3];
	
	float qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
	q[0] = q[0] / qmag;
	q[1] = q[1] / qmag;
	q[2] = q[2] / qmag;
	q[3] = q[3] / qmag;
	
	if(overideAttitude){
		AttitudeActualData attitudeActual;
		AttitudeActualGet(&attitudeActual);
		attitudeActual.q1 = q[0];
		attitudeActual.q2 = q[1];
		attitudeActual.q3 = q[2];
		attitudeActual.q4 = q[3];
		AttitudeActualSet(&attitudeActual);
	}
	
	/**** 2. Update position based on velocity ****/
	// Rbe takes a vector from body to earth.  If we take (1,0,0)^T through this and then dot with airspeed
	// we get forward airspeed		
	Quaternion2R(q,Rbe);

	double groundspeed[3] = {vel[0], vel[1], vel[2] };
	double forwardSpeed = Rbe[0][0] * groundspeed[0] + Rbe[0][1] * groundspeed[1] + Rbe[0][2] * groundspeed[2];
	double sidewaysSpeed = Rbe[1][0] * groundspeed[0] + Rbe[1][1] * groundspeed[1] + Rbe[1][2] * groundspeed[2];

	/* Compute aerodynamic forces in body referenced frame.  Later use more sophisticated equations  */
	/* TODO: This should become more accurate.  Use the force equations to calculate lift from the   */
	/* various surfaces based on AoA and airspeed.  From that compute torques and forces.  For later */
	double forces[3]; // X, Y, Z
	forces[0] = thrust - forwardSpeed * K_FRICTION;         // Friction is applied in all directions in NED
	forces[1] = 0 - sidewaysSpeed * K_FRICTION * 100;      // No side slip
	forces[2] = 0;
	
	// Negate force[2] as NED defines down as possitive, aircraft convention is Z up is positive (?)
	ned_accel[0] = forces[0] * Rbe[0][0] + forces[1] * Rbe[1][0] - forces[2] * Rbe[2][0];
	ned_accel[1] = forces[0] * Rbe[0][1] + forces[1] * Rbe[1][1] - forces[2] * Rbe[2][1];
	ned_accel[2] = 0;

	// Apply acceleration based on velocity
	ned_accel[0] -= K_FRICTION * (vel[0]);
	ned_accel[1] -= K_FRICTION * (vel[1]);
	
	// Predict the velocity forward in time
	vel[0] = vel[0] + ned_accel[0] * dT;
	vel[1] = vel[1] + ned_accel[1] * dT;
	vel[2] = vel[2] + ned_accel[2] * dT;
	
	// Predict the position forward in time
	pos[0] = pos[0] + vel[0] * dT;
	pos[1] = pos[1] + vel[1] * dT;
	pos[2] = pos[2] + vel[2] * dT;
	
	// Simulate hitting ground
	if(pos[2] > 0) {
		pos[2] = 0;
		vel[2] = 0;
		ned_accel[2] = 0;
	}
	
	// Sensor feels gravity (when not acceleration in ned frame e.g. ned_accel[2] = 0)
	ned_accel[2] -= GRAVITY;
	
	// Transform the accels back in to body frame
	AccelsData accelsData; // Skip get as we set all the fields
	accelsData.x = ned_accel[0] * Rbe[0][0] + ned_accel[1] * Rbe[0][1] + ned_accel[2] * Rbe[0][2] + accel_bias[0];
	accelsData.y = ned_accel[0] * Rbe[1][0] + ned_accel[1] * Rbe[1][1] + ned_accel[2] * Rbe[1][2] + accel_bias[1];
	accelsData.z = ned_accel[0] * Rbe[2][0] + ned_accel[1] * Rbe[2][1] + ned_accel[2] * Rbe[2][2] + accel_bias[2];
	accelsData.temperature = 30;
	AccelsSet(&accelsData);
	
	if(baro_offset == 0) {
		// Hacky initialization
		baro_offset = 50;// * rand_gauss();
	} else {
		// Very small drift process
		baro_offset += rand_gauss() / 100;
	}
	// Update baro periodically	
	static uint32_t last_baro_time = 0;
	if(PIOS_DELAY_DiffuS(last_baro_time) / 1.0e6 > BARO_PERIOD) {
		BaroAltitudeData baroAltitude;
		BaroAltitudeGet(&baroAltitude);
		baroAltitude.Altitude = -pos[2] + baro_offset;
		BaroAltitudeSet(&baroAltitude);
		last_baro_time = PIOS_DELAY_GetRaw();
	}
	
	HomeLocationData homeLocation;
	HomeLocationGet(&homeLocation);
	
	static float gps_vel_drift[3] = {0,0,0};
	gps_vel_drift[0] = gps_vel_drift[0] * 0.65 + rand_gauss() / 5.0;
	gps_vel_drift[1] = gps_vel_drift[1] * 0.65 + rand_gauss() / 5.0;
	gps_vel_drift[2] = gps_vel_drift[2] * 0.65 + rand_gauss() / 5.0;
	
	// Update GPS periodically	
	static uint32_t last_gps_time = 0;
	if(PIOS_DELAY_DiffuS(last_gps_time) / 1.0e6 > GPS_PERIOD) {
		// Use double precision here as simulating what GPS produces
		double T[3];
		T[0] = homeLocation.Altitude+6.378137E6f * DEG2RAD;
		T[1] = cosf(homeLocation.Latitude / 10e6 * DEG2RAD)*(homeLocation.Altitude+6.378137E6) * DEG2RAD;
		T[2] = -1.0;
		
		static float gps_drift[3] = {0,0,0};
		gps_drift[0] = gps_drift[0] * 0.95 + rand_gauss() / 10.0;
		gps_drift[1] = gps_drift[1] * 0.95 + rand_gauss() / 10.0;
		gps_drift[2] = gps_drift[2] * 0.95 + rand_gauss() / 10.0;
		
		GPSPositionData gpsPosition;
		GPSPositionGet(&gpsPosition);
		gpsPosition.Latitude = homeLocation.Latitude + ((pos[0] + gps_drift[0]) / T[0] * 10.0e6);
		gpsPosition.Longitude = homeLocation.Longitude + ((pos[1] + gps_drift[1])/ T[1] * 10.0e6);
		gpsPosition.Altitude = homeLocation.Altitude + ((pos[2] + gps_drift[2]) / T[2]);
		gpsPosition.Groundspeed = sqrtf(pow(vel[0] + gps_vel_drift[0],2) + pow(vel[1] + gps_vel_drift[1],2));
		gpsPosition.Heading = 180 / M_PI * atan2f(vel[1] + gps_vel_drift[1],vel[0] + gps_vel_drift[0]);
		gpsPosition.Satellites = 7;
		gpsPosition.PDOP = 1;
		GPSPositionSet(&gpsPosition);
		last_gps_time = PIOS_DELAY_GetRaw();
	}
	
	// Update GPS Velocity measurements
	static uint32_t last_gps_vel_time = 1000; // Delay by a millisecond
	if(PIOS_DELAY_DiffuS(last_gps_vel_time) / 1.0e6 > GPS_PERIOD) {
		GPSVelocityData gpsVelocity;
		GPSVelocityGet(&gpsVelocity);
		gpsVelocity.North = vel[0] + gps_vel_drift[0];
		gpsVelocity.East = vel[1] + gps_vel_drift[1];
		gpsVelocity.Down = vel[2] + gps_vel_drift[2];
		GPSVelocitySet(&gpsVelocity);
		last_gps_vel_time = PIOS_DELAY_GetRaw();
	}
	
	// Update mag periodically
	static uint32_t last_mag_time = 0;
	if(PIOS_DELAY_DiffuS(last_mag_time) / 1.0e6 > MAG_PERIOD) {
		MagnetometerData mag;
		mag.x = 100+homeLocation.Be[0] * Rbe[0][0] + homeLocation.Be[1] * Rbe[0][1] + homeLocation.Be[2] * Rbe[0][2];
		mag.y = 100+homeLocation.Be[0] * Rbe[1][0] + homeLocation.Be[1] * Rbe[1][1] + homeLocation.Be[2] * Rbe[1][2];
		mag.z = 100+homeLocation.Be[0] * Rbe[2][0] + homeLocation.Be[1] * Rbe[2][1] + homeLocation.Be[2] * Rbe[2][2];
		magOffsetEstimation(&mag);
		MagnetometerSet(&mag);
		last_mag_time = PIOS_DELAY_GetRaw();
	}
	
	AttitudeSimulatedData attitudeSimulated;
	AttitudeSimulatedGet(&attitudeSimulated);
	attitudeSimulated.q1 = q[0];
	attitudeSimulated.q2 = q[1];
	attitudeSimulated.q3 = q[2];
	attitudeSimulated.q4 = q[3];
	Quaternion2RPY(q,&attitudeSimulated.Roll);
	attitudeSimulated.Position[0] = pos[0];
	attitudeSimulated.Position[1] = pos[1];
	attitudeSimulated.Position[2] = pos[2];
	attitudeSimulated.Velocity[0] = vel[0];
	attitudeSimulated.Velocity[1] = vel[1];
	attitudeSimulated.Velocity[2] = vel[2];
	AttitudeSimulatedSet(&attitudeSimulated);
}
Esempio n. 9
0
static void simulateModelQuadcopter()
{
	static double pos[3] = {0,0,0};
	static double vel[3] = {0,0,0};
	static double ned_accel[3] = {0,0,0};
	static float q[4] = {1,0,0,0};
	static float rpy[3] = {0,0,0}; // Low pass filtered actuator
	static float baro_offset = 0.0f;
	static float temperature = 20;
	float Rbe[3][3];
	
	const float ACTUATOR_ALPHA = 0.8;
	const float MAX_THRUST = GRAVITY * 2;
	const float K_FRICTION = 1;
	const float GPS_PERIOD = 0.1;
	const float MAG_PERIOD = 1.0 / 75.0;
	const float BARO_PERIOD = 1.0 / 20.0;
	
	static uint32_t last_time;
	
	float dT = (PIOS_DELAY_DiffuS(last_time) / 1e6);
	if(dT < 1e-3)
		dT = 2e-3;
	last_time = PIOS_DELAY_GetRaw();
	
	FlightStatusData flightStatus;
	FlightStatusGet(&flightStatus);
	ActuatorDesiredData actuatorDesired;
	ActuatorDesiredGet(&actuatorDesired);

	float thrust = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) ? actuatorDesired.Throttle * MAX_THRUST : 0;
	if (thrust < 0)
		thrust = 0;
	
	if (thrust != thrust)
		thrust = 0;
	
//	float control_scaling = thrust * thrustToDegs;
//	// In rad/s
//	rpy[0] = control_scaling * actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
//	rpy[1] = control_scaling * actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
//	rpy[2] = control_scaling * actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
//	
//	GyrosData gyrosData; // Skip get as we set all the fields
//	gyrosData.x = rpy[0] * 180 / M_PI + rand_gauss();
//	gyrosData.y = rpy[1] * 180 / M_PI + rand_gauss();
//	gyrosData.z = rpy[2] * 180 / M_PI + rand_gauss();
	
	RateDesiredData rateDesired;
	RateDesiredGet(&rateDesired);
	
	rpy[0] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
	rpy[1] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
	rpy[2] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
	

	temperature = 20;
	GyrosData gyrosData; // Skip get as we set all the fields
	gyrosData.x = rpy[0] + rand_gauss() + (temperature - 20) * 1 + powf(temperature - 20,2) * 0.11; // - powf(temperature - 20,3) * 0.05;;
	gyrosData.y = rpy[1] + rand_gauss() + (temperature - 20) * 1 + powf(temperature - 20,2) * 0.11;;
	gyrosData.z = rpy[2] + rand_gauss() + (temperature - 20) * 1 + powf(temperature - 20,2) * 0.11;;
	gyrosData.temperature = temperature;
	GyrosSet(&gyrosData);
	
	// Predict the attitude forward in time
	float qdot[4];
	qdot[0] = (-q[1] * rpy[0] - q[2] * rpy[1] - q[3] * rpy[2]) * dT * DEG2RAD / 2;
	qdot[1] = (q[0] * rpy[0] - q[3] * rpy[1] + q[2] * rpy[2]) * dT * DEG2RAD / 2;
	qdot[2] = (q[3] * rpy[0] + q[0] * rpy[1] - q[1] * rpy[2]) * dT * DEG2RAD / 2;
	qdot[3] = (-q[2] * rpy[0] + q[1] * rpy[1] + q[0] * rpy[2]) * dT * DEG2RAD / 2;
	
	// Take a time step
	q[0] = q[0] + qdot[0];
	q[1] = q[1] + qdot[1];
	q[2] = q[2] + qdot[2];
	q[3] = q[3] + qdot[3];
	
	float qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
	q[0] = q[0] / qmag;
	q[1] = q[1] / qmag;
	q[2] = q[2] / qmag;
	q[3] = q[3] / qmag;
	
	if(overideAttitude){
		AttitudeActualData attitudeActual;
		AttitudeActualGet(&attitudeActual);
		attitudeActual.q1 = q[0];
		attitudeActual.q2 = q[1];
		attitudeActual.q3 = q[2];
		attitudeActual.q4 = q[3];
		AttitudeActualSet(&attitudeActual);
	}
	
	static float wind[3] = {0,0,0};
	wind[0] = wind[0] * 0.95 + rand_gauss() / 10.0;
	wind[1] = wind[1] * 0.95 + rand_gauss() / 10.0;
	wind[2] = wind[2] * 0.95 + rand_gauss() / 10.0;
	
	Quaternion2R(q,Rbe);
	// Make thrust negative as down is positive
	ned_accel[0] = -thrust * Rbe[2][0];
	ned_accel[1] = -thrust * Rbe[2][1];
	// Gravity causes acceleration of 9.81 in the down direction
	ned_accel[2] = -thrust * Rbe[2][2] + GRAVITY;
	
	// Apply acceleration based on velocity
	ned_accel[0] -= K_FRICTION * (vel[0] - wind[0]);
	ned_accel[1] -= K_FRICTION * (vel[1] - wind[1]);
	ned_accel[2] -= K_FRICTION * (vel[2] - wind[2]);

	// Predict the velocity forward in time
	vel[0] = vel[0] + ned_accel[0] * dT;
	vel[1] = vel[1] + ned_accel[1] * dT;
	vel[2] = vel[2] + ned_accel[2] * dT;

	// Predict the position forward in time
	pos[0] = pos[0] + vel[0] * dT;
	pos[1] = pos[1] + vel[1] * dT;
	pos[2] = pos[2] + vel[2] * dT;

	// Simulate hitting ground
	if(pos[2] > 0) {
		pos[2] = 0;
		vel[2] = 0;
		ned_accel[2] = 0;
	}
		
	// Sensor feels gravity (when not acceleration in ned frame e.g. ned_accel[2] = 0)
	ned_accel[2] -= 9.81;
	
	// Transform the accels back in to body frame
	AccelsData accelsData; // Skip get as we set all the fields
	accelsData.x = ned_accel[0] * Rbe[0][0] + ned_accel[1] * Rbe[0][1] + ned_accel[2] * Rbe[0][2] + accel_bias[0];
	accelsData.y = ned_accel[0] * Rbe[1][0] + ned_accel[1] * Rbe[1][1] + ned_accel[2] * Rbe[1][2] + accel_bias[1];
	accelsData.z = ned_accel[0] * Rbe[2][0] + ned_accel[1] * Rbe[2][1] + ned_accel[2] * Rbe[2][2] + accel_bias[2];
	accelsData.temperature = 30;
	AccelsSet(&accelsData);

	if(baro_offset == 0) {
		// Hacky initialization
		baro_offset = 50;// * rand_gauss();
	} else {
		// Very small drift process
		baro_offset += rand_gauss() / 100;
	}
	// Update baro periodically	
	static uint32_t last_baro_time = 0;
	if(PIOS_DELAY_DiffuS(last_baro_time) / 1.0e6 > BARO_PERIOD) {
		BaroAltitudeData baroAltitude;
		BaroAltitudeGet(&baroAltitude);
		baroAltitude.Altitude = -pos[2] + baro_offset;
		BaroAltitudeSet(&baroAltitude);
		last_baro_time = PIOS_DELAY_GetRaw();
	}
	
	HomeLocationData homeLocation;
	HomeLocationGet(&homeLocation);

	static float gps_vel_drift[3] = {0,0,0};
	gps_vel_drift[0] = gps_vel_drift[0] * 0.65 + rand_gauss() / 5.0;
	gps_vel_drift[1] = gps_vel_drift[1] * 0.65 + rand_gauss() / 5.0;
	gps_vel_drift[2] = gps_vel_drift[2] * 0.65 + rand_gauss() / 5.0;

	// Update GPS periodically	
	static uint32_t last_gps_time = 0;
	if(PIOS_DELAY_DiffuS(last_gps_time) / 1.0e6 > GPS_PERIOD) {
		// Use double precision here as simulating what GPS produces
		double T[3];
		T[0] = homeLocation.Altitude+6.378137E6f * DEG2RAD;
		T[1] = cosf(homeLocation.Latitude / 10e6 * DEG2RAD)*(homeLocation.Altitude+6.378137E6) * DEG2RAD;
		T[2] = -1.0;
		
		static float gps_drift[3] = {0,0,0};
		gps_drift[0] = gps_drift[0] * 0.95 + rand_gauss() / 10.0;
		gps_drift[1] = gps_drift[1] * 0.95 + rand_gauss() / 10.0;
		gps_drift[2] = gps_drift[2] * 0.95 + rand_gauss() / 10.0;

		GPSPositionData gpsPosition;
		GPSPositionGet(&gpsPosition);
		gpsPosition.Latitude = homeLocation.Latitude + ((pos[0] + gps_drift[0]) / T[0] * 10.0e6);
		gpsPosition.Longitude = homeLocation.Longitude + ((pos[1] + gps_drift[1])/ T[1] * 10.0e6);
		gpsPosition.Altitude = homeLocation.Altitude + ((pos[2] + gps_drift[2]) / T[2]);
		gpsPosition.Groundspeed = sqrtf(pow(vel[0] + gps_vel_drift[0],2) + pow(vel[1] + gps_vel_drift[1],2));
		gpsPosition.Heading = 180 / M_PI * atan2f(vel[1] + gps_vel_drift[1],vel[0] + gps_vel_drift[0]);
		gpsPosition.Satellites = 7;
		gpsPosition.PDOP = 1;
		gpsPosition.Status = GPSPOSITION_STATUS_FIX3D;
		GPSPositionSet(&gpsPosition);
		last_gps_time = PIOS_DELAY_GetRaw();
	}
	
	// Update GPS Velocity measurements
	static uint32_t last_gps_vel_time = 1000; // Delay by a millisecond
	if(PIOS_DELAY_DiffuS(last_gps_vel_time) / 1.0e6 > GPS_PERIOD) {
		GPSVelocityData gpsVelocity;
		GPSVelocityGet(&gpsVelocity);
		gpsVelocity.North = vel[0] + gps_vel_drift[0];
		gpsVelocity.East = vel[1] + gps_vel_drift[1];
		gpsVelocity.Down = vel[2] + gps_vel_drift[2];
		GPSVelocitySet(&gpsVelocity);
		last_gps_vel_time = PIOS_DELAY_GetRaw();
	}

	// Update mag periodically
	static uint32_t last_mag_time = 0;
	if(PIOS_DELAY_DiffuS(last_mag_time) / 1.0e6 > MAG_PERIOD) {
		MagnetometerData mag;
		mag.x = homeLocation.Be[0] * Rbe[0][0] + homeLocation.Be[1] * Rbe[0][1] + homeLocation.Be[2] * Rbe[0][2];
		mag.y = homeLocation.Be[0] * Rbe[1][0] + homeLocation.Be[1] * Rbe[1][1] + homeLocation.Be[2] * Rbe[1][2];
		mag.z = homeLocation.Be[0] * Rbe[2][0] + homeLocation.Be[1] * Rbe[2][1] + homeLocation.Be[2] * Rbe[2][2];

		// Run the offset compensation algorithm from the firmware
		magOffsetEstimation(&mag);

		MagnetometerSet(&mag);
		last_mag_time = PIOS_DELAY_GetRaw();
	}
	
	AttitudeSimulatedData attitudeSimulated;
	AttitudeSimulatedGet(&attitudeSimulated);
	attitudeSimulated.q1 = q[0];
	attitudeSimulated.q2 = q[1];
	attitudeSimulated.q3 = q[2];
	attitudeSimulated.q4 = q[3];
	Quaternion2RPY(q,&attitudeSimulated.Roll);
	attitudeSimulated.Position[0] = pos[0];
	attitudeSimulated.Position[1] = pos[1];
	attitudeSimulated.Position[2] = pos[2];
	attitudeSimulated.Velocity[0] = vel[0];
	attitudeSimulated.Velocity[1] = vel[1];
	attitudeSimulated.Velocity[2] = vel[2];
	AttitudeSimulatedSet(&attitudeSimulated);
}
Esempio n. 10
0
/**
 * @brief Use the INSGPS fusion algorithm in either indoor or outdoor mode (use GPS)
 * @params[in] first_run This is the first run so trigger reinitialization
 * @params[in] outdoor_mode If true use the GPS for position, if false weakly pull to (0,0)
 * @return 0 for success, -1 for failure
 */
static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode)
{
	UAVObjEvent ev;
	GyrosData gyrosData;
	AccelsData accelsData;
	MagnetometerData magData;
	BaroAltitudeData baroData;
	GPSPositionData gpsData;
	GPSVelocityData gpsVelData;
	GyrosBiasData gyrosBias;

	static bool mag_updated = false;
	static bool baro_updated;
	static bool gps_updated;
	static bool gps_vel_updated;

	static float baroOffset = 0;

	static uint32_t ins_last_time = 0;
	static bool inited;

	float NED[3] = {0.0f, 0.0f, 0.0f};
	float vel[3] = {0.0f, 0.0f, 0.0f};
	float zeros[3] = {0.0f, 0.0f, 0.0f};

	// Perform the update
	uint16_t sensors = 0;
	float dT;

	// Wait until the gyro and accel object is updated, if a timeout then go to failsafe
	if ( (xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE) ||
	     (xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE) )
	{
		// Do not set attitude timeout warnings in simulation mode
		if (!AttitudeActualReadOnly()){
			AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING);
			return -1;
		}
	}

	if (inited) {
		mag_updated = 0;
		baro_updated = 0;
		gps_updated = 0;
		gps_vel_updated = 0;
	}

	if (first_run) {
		inited = false;
		init_stage = 0;

		mag_updated = 0;
		baro_updated = 0;
		gps_updated = 0;
		gps_vel_updated = 0;

		ins_last_time = PIOS_DELAY_GetRaw();

		return 0;
	}

	mag_updated |= (xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE);
	baro_updated |= xQueueReceive(baroQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE;
	gps_updated |= (xQueueReceive(gpsQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode;
	gps_vel_updated |= (xQueueReceive(gpsVelQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode;

	// Get most recent data
	GyrosGet(&gyrosData);
	AccelsGet(&accelsData);
	MagnetometerGet(&magData);
	BaroAltitudeGet(&baroData);
	GPSPositionGet(&gpsData);
	GPSVelocityGet(&gpsVelData);
	GyrosBiasGet(&gyrosBias);

	// Discard mag if it has NAN (normally from bad calibration)
	mag_updated &= (magData.x == magData.x && magData.y == magData.y && magData.z == magData.z);
	// Don't require HomeLocation.Set to be true but at least require a mag configuration (allows easily
	// switching between indoor and outdoor mode with Set = false)
	mag_updated &= (homeLocation.Be[0] != 0 || homeLocation.Be[1] != 0 || homeLocation.Be[2]);

	// Have a minimum requirement for gps usage
	gps_updated &= (gpsData.Satellites >= 7) && (gpsData.PDOP <= 4.0f) && (homeLocation.Set == HOMELOCATION_SET_TRUE);

	if (!inited)
		AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR);
	else if (outdoor_mode && gpsData.Satellites < 7)
		AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR);
	else
		AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
			
	if (!inited && mag_updated && baro_updated && (gps_updated || !outdoor_mode)) {
		// Don't initialize until all sensors are read
		if (init_stage == 0 && !outdoor_mode) {
			float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f};
			float q[4];
			float pos[3] = {0.0f, 0.0f, 0.0f};

			// Initialize barometric offset to homelocation altitude
			baroOffset = -baroData.Altitude;
			pos[2] = -(baroData.Altitude + baroOffset);

			// Reset the INS algorithm
			INSGPSInit();
			INSSetMagVar(revoCalibration.mag_var);
			INSSetAccelVar(revoCalibration.accel_var);
			INSSetGyroVar(revoCalibration.gyro_var);
			INSSetBaroVar(revoCalibration.baro_var);

			// Initialize the gyro bias from the settings
			float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f};
			INSSetGyroBias(gyro_bias);

			xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS);
			MagnetometerGet(&magData);

			// Set initial attitude
			AttitudeActualData attitudeActual;
			attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / F_PI;
			RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1);
			AttitudeActualSet(&attitudeActual);

			q[0] = attitudeActual.q1;
			q[1] = attitudeActual.q2;
			q[2] = attitudeActual.q3;
			q[3] = attitudeActual.q4;
			INSSetState(pos, zeros, q, zeros, zeros);
			INSResetP(Pdiag);
		} else if (init_stage == 0 && outdoor_mode) {
			float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f};
			float q[4];
			float NED[3];

			// Reset the INS algorithm
			INSGPSInit();
			INSSetMagVar(revoCalibration.mag_var);
			INSSetAccelVar(revoCalibration.accel_var);
			INSSetGyroVar(revoCalibration.gyro_var);
			INSSetBaroVar(revoCalibration.baro_var);

			INSSetMagNorth(homeLocation.Be);

			// Initialize the gyro bias from the settings
			float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f};
			INSSetGyroBias(gyro_bias);

			GPSPositionData gpsPosition;
			GPSPositionGet(&gpsPosition);

			// Transform the GPS position into NED coordinates
			getNED(&gpsPosition, NED);
			
			// Initialize barometric offset to cirrent GPS NED coordinate
			baroOffset = -NED[2] - baroData.Altitude;

			xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS);
			MagnetometerGet(&magData);

			// Set initial attitude
			AttitudeActualData attitudeActual;
			attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / F_PI;
			RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1);
			AttitudeActualSet(&attitudeActual);

			q[0] = attitudeActual.q1;
			q[1] = attitudeActual.q2;
			q[2] = attitudeActual.q3;
			q[3] = attitudeActual.q4;

			INSSetState(NED, zeros, q, zeros, zeros);
			INSResetP(Pdiag);
		} else if (init_stage > 0) {
			// Run prediction a bit before any corrections
			dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f;

			GyrosBiasGet(&gyrosBias);
			float gyros[3] = {(gyrosData.x + gyrosBias.x) * F_PI / 180.0f, 
				(gyrosData.y + gyrosBias.y) * F_PI / 180.0f, 
				(gyrosData.z + gyrosBias.z) * F_PI / 180.0f};
			INSStatePrediction(gyros, &accelsData.x, dT);
			
			AttitudeActualData attitude;
			AttitudeActualGet(&attitude);
			attitude.q1 = Nav.q[0];
			attitude.q2 = Nav.q[1];
			attitude.q3 = Nav.q[2];
			attitude.q4 = Nav.q[3];
			Quaternion2RPY(&attitude.q1,&attitude.Roll);
			AttitudeActualSet(&attitude);
		}

		init_stage++;
		if(init_stage > 10)
			inited = true;

		ins_last_time = PIOS_DELAY_GetRaw();	

		return 0;
	}

	if (!inited)
		return 0;

	dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f;
	ins_last_time = PIOS_DELAY_GetRaw();

	// This should only happen at start up or at mode switches
	if(dT > 0.01f)
		dT = 0.01f;
	else if(dT <= 0.001f)
		dT = 0.001f;

	// If the gyro bias setting was updated we should reset
	// the state estimate of the EKF
	if(gyroBiasSettingsUpdated) {
		float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f};
		INSSetGyroBias(gyro_bias);
		gyroBiasSettingsUpdated = false;
	}

	// Because the sensor module remove the bias we need to add it
	// back in here so that the INS algorithm can track it correctly
	float gyros[3] = {gyrosData.x * F_PI / 180.0f, gyrosData.y * F_PI / 180.0f, gyrosData.z * F_PI / 180.0f};
	if (revoCalibration.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE) {
		gyros[0] += gyrosBias.x * F_PI / 180.0f;
		gyros[1] += gyrosBias.y * F_PI / 180.0f;
		gyros[2] += gyrosBias.z * F_PI / 180.0f;
	}

	// Advance the state estimate
	INSStatePrediction(gyros, &accelsData.x, dT);

	// Copy the attitude into the UAVO
	AttitudeActualData attitude;
	AttitudeActualGet(&attitude);
	attitude.q1 = Nav.q[0];
	attitude.q2 = Nav.q[1];
	attitude.q3 = Nav.q[2];
	attitude.q4 = Nav.q[3];
	Quaternion2RPY(&attitude.q1,&attitude.Roll);
	AttitudeActualSet(&attitude);

	// Advance the covariance estimate
	INSCovariancePrediction(dT);

	if(mag_updated)
		sensors |= MAG_SENSORS;

	if(baro_updated)
		sensors |= BARO_SENSOR;

	INSSetMagNorth(homeLocation.Be);
	
	if (gps_updated && outdoor_mode)
	{
		INSSetPosVelVar(revoCalibration.gps_var[REVOCALIBRATION_GPS_VAR_POS], revoCalibration.gps_var[REVOCALIBRATION_GPS_VAR_VEL]);
		sensors |= POS_SENSORS;

		if (0) { // Old code to take horizontal velocity from GPS Position update
			sensors |= HORIZ_SENSORS;
			vel[0] = gpsData.Groundspeed * cosf(gpsData.Heading * F_PI / 180.0f);
			vel[1] = gpsData.Groundspeed * sinf(gpsData.Heading * F_PI / 180.0f);
			vel[2] = 0;
		}
		// Transform the GPS position into NED coordinates
		getNED(&gpsData, NED);

		// Track barometric altitude offset with a low pass filter
		baroOffset = BARO_OFFSET_LOWPASS_ALPHA * baroOffset +
		    (1.0f - BARO_OFFSET_LOWPASS_ALPHA )
		    * ( -NED[2] - baroData.Altitude );

	} else if (!outdoor_mode) {
		INSSetPosVelVar(1e2f, 1e2f);
		vel[0] = vel[1] = vel[2] = 0;
		NED[0] = NED[1] = 0;
		NED[2] = -(baroData.Altitude + baroOffset);
		sensors |= HORIZ_SENSORS | HORIZ_POS_SENSORS;
		sensors |= POS_SENSORS |VERT_SENSORS;
	}

	if (gps_vel_updated && outdoor_mode) {
		sensors |= HORIZ_SENSORS | VERT_SENSORS;
		vel[0] = gpsVelData.North;
		vel[1] = gpsVelData.East;
		vel[2] = gpsVelData.Down;
	}
	
	/*
	 * TODO: Need to add a general sanity check for all the inputs to make sure their kosher
	 * although probably should occur within INS itself
	 */
	if (sensors)
		INSCorrection(&magData.x, NED, vel, ( baroData.Altitude + baroOffset ), sensors);

	// Copy the position and velocity into the UAVO
	PositionActualData positionActual;
	PositionActualGet(&positionActual);
	positionActual.North = Nav.Pos[0];
	positionActual.East = Nav.Pos[1];
	positionActual.Down = Nav.Pos[2];
	PositionActualSet(&positionActual);
	
	VelocityActualData velocityActual;
	VelocityActualGet(&velocityActual);
	velocityActual.North = Nav.Vel[0];
	velocityActual.East = Nav.Vel[1];
	velocityActual.Down = Nav.Vel[2];
	VelocityActualSet(&velocityActual);

	if (revoCalibration.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE && !gyroBiasSettingsUpdated) {
		// Copy the gyro bias into the UAVO except when it was updated
		// from the settings during the calculation, then consume it
		// next cycle
		gyrosBias.x = Nav.gyro_bias[0] * 180.0f / F_PI;
		gyrosBias.y = Nav.gyro_bias[1] * 180.0f / F_PI;
		gyrosBias.z = Nav.gyro_bias[2] * 180.0f / F_PI;
		GyrosBiasSet(&gyrosBias);
	}

	return 0;
}
Esempio n. 11
0
static int32_t updateAttitudeComplementary(bool first_run)
{
	UAVObjEvent ev;
	GyrosData gyrosData;
	AccelsData accelsData;
	static int32_t timeval;
	float dT;
	static uint8_t init = 0;

	// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
	if ( xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE ||
	     xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE )
	{
		// When one of these is updated so should the other
		// Do not set attitude timeout warnings in simulation mode
		if (!AttitudeActualReadOnly()){
			AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING);
			return -1;
		}
	}

	AccelsGet(&accelsData);

	// During initialization and 
	FlightStatusData flightStatus;
	FlightStatusGet(&flightStatus);
	if(first_run) {
#if defined(PIOS_INCLUDE_HMC5883)
		// To initialize we need a valid mag reading
		if ( xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) != pdTRUE )
			return -1;
		MagnetometerData magData;
		MagnetometerGet(&magData);
#else
		MagnetometerData magData;
		magData.x = 100;
		magData.y = 0;
		magData.z = 0;
#endif
		AttitudeActualData attitudeActual;
		AttitudeActualGet(&attitudeActual);
		init = 0;
		attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI;
		attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI;
		attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / F_PI;

		RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1);
		AttitudeActualSet(&attitudeActual);

		timeval = PIOS_DELAY_GetRaw();

		return 0;

	}

	if((init == 0 && xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) {
		// For first 7 seconds use accels to get gyro bias
		attitudeSettings.AccelKp = 1;
		attitudeSettings.AccelKi = 0.9;
		attitudeSettings.YawBiasRate = 0.23;
		magKp = 1;
	} else if ((attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE) && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) {
		attitudeSettings.AccelKp = 1;
		attitudeSettings.AccelKi = 0.9;
		attitudeSettings.YawBiasRate = 0.23;
		magKp = 1;
		init = 0;
	} else if (init == 0) {
		// Reload settings (all the rates)
		AttitudeSettingsGet(&attitudeSettings);
		magKp = 0.01f;
		init = 1;
	}

	GyrosGet(&gyrosData);

	// Compute the dT using the cpu clock
	dT = PIOS_DELAY_DiffuS(timeval) / 1000000.0f;
	timeval = PIOS_DELAY_GetRaw();

	float q[4];

	AttitudeActualData attitudeActual;
	AttitudeActualGet(&attitudeActual);

	float grot[3];
	float accel_err[3];

	// Get the current attitude estimate
	quat_copy(&attitudeActual.q1, q);

	// Rotate gravity to body frame and cross with accels
	grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
	grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
	grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]);
	CrossProduct((const float *) &accelsData.x, (const float *) grot, accel_err);

	// Account for accel magnitude
	accel_mag = accelsData.x*accelsData.x + accelsData.y*accelsData.y + accelsData.z*accelsData.z;
	accel_mag = sqrtf(accel_mag);
	accel_err[0] /= accel_mag;
	accel_err[1] /= accel_mag;
	accel_err[2] /= accel_mag;	

	if ( xQueueReceive(magQueue, &ev, 0) != pdTRUE )
	{
		// Rotate gravity to body frame and cross with accels
		float brot[3];
		float Rbe[3][3];
		MagnetometerData mag;
		
		Quaternion2R(q, Rbe);
		MagnetometerGet(&mag);

		// If the mag is producing bad data don't use it (normally bad calibration)
		if  (mag.x == mag.x && mag.y == mag.y && mag.z == mag.z) {
			rot_mult(Rbe, homeLocation.Be, brot);

			float mag_len = sqrtf(mag.x * mag.x + mag.y * mag.y + mag.z * mag.z);
			mag.x /= mag_len;
			mag.y /= mag_len;
			mag.z /= mag_len;

			float bmag = sqrtf(brot[0] * brot[0] + brot[1] * brot[1] + brot[2] * brot[2]);
			brot[0] /= bmag;
			brot[1] /= bmag;
			brot[2] /= bmag;

			// Only compute if neither vector is null
			if (bmag < 1 || mag_len < 1)
				mag_err[0] = mag_err[1] = mag_err[2] = 0;
			else
				CrossProduct((const float *) &mag.x, (const float *) brot, mag_err);
		}
	} else {
		mag_err[0] = mag_err[1] = mag_err[2] = 0;
	}

	// Accumulate integral of error.  Scale here so that units are (deg/s) but Ki has units of s
	GyrosBiasData gyrosBias;
	GyrosBiasGet(&gyrosBias);
	gyrosBias.x -= accel_err[0] * attitudeSettings.AccelKi;
	gyrosBias.y -= accel_err[1] * attitudeSettings.AccelKi;
	gyrosBias.z -= mag_err[2] * magKi;
	GyrosBiasSet(&gyrosBias);

	// Correct rates based on error, integral component dealt with in updateSensors
	gyrosData.x += accel_err[0] * attitudeSettings.AccelKp / dT;
	gyrosData.y += accel_err[1] * attitudeSettings.AccelKp / dT;
	gyrosData.z += accel_err[2] * attitudeSettings.AccelKp / dT + mag_err[2] * magKp / dT;

	// Work out time derivative from INSAlgo writeup
	// Also accounts for the fact that gyros are in deg/s
	float qdot[4];
	qdot[0] = (-q[1] * gyrosData.x - q[2] * gyrosData.y - q[3] * gyrosData.z) * dT * F_PI / 180 / 2;
	qdot[1] = (q[0] * gyrosData.x - q[3] * gyrosData.y + q[2] * gyrosData.z) * dT * F_PI / 180 / 2;
	qdot[2] = (q[3] * gyrosData.x + q[0] * gyrosData.y - q[1] * gyrosData.z) * dT * F_PI / 180 / 2;
	qdot[3] = (-q[2] * gyrosData.x + q[1] * gyrosData.y + q[0] * gyrosData.z) * dT * F_PI / 180 / 2;

	// Take a time step
	q[0] = q[0] + qdot[0];
	q[1] = q[1] + qdot[1];
	q[2] = q[2] + qdot[2];
	q[3] = q[3] + qdot[3];

	if(q[0] < 0) {
		q[0] = -q[0];
		q[1] = -q[1];
		q[2] = -q[2];
		q[3] = -q[3];
	}

	// Renomalize
	qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
	q[0] = q[0] / qmag;
	q[1] = q[1] / qmag;
	q[2] = q[2] / qmag;
	q[3] = q[3] / qmag;

	// If quaternion has become inappropriately short or is nan reinit.
	// THIS SHOULD NEVER ACTUALLY HAPPEN
	if((fabs(qmag) < 1.0e-3f) || (qmag != qmag)) {
		q[0] = 1;
		q[1] = 0;
		q[2] = 0;
		q[3] = 0;
	}

	quat_copy(q, &attitudeActual.q1);

	// Convert into eueler degrees (makes assumptions about RPY order)
	Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll);

	AttitudeActualSet(&attitudeActual);

	// Flush these queues for avoid errors
	xQueueReceive(baroQueue, &ev, 0);
	if ( xQueueReceive(gpsQueue, &ev, 0) == pdTRUE && homeLocation.Set == HOMELOCATION_SET_TRUE ) {
		float NED[3];
		// Transform the GPS position into NED coordinates
		GPSPositionData gpsPosition;
		GPSPositionGet(&gpsPosition);
		getNED(&gpsPosition, NED);
		
		PositionActualData positionActual;
		PositionActualGet(&positionActual);
		positionActual.North = NED[0];
		positionActual.East = NED[1];
		positionActual.Down = NED[2];
		PositionActualSet(&positionActual);
	}

	if ( xQueueReceive(gpsVelQueue, &ev, 0) == pdTRUE ) {
		// Transform the GPS position into NED coordinates
		GPSVelocityData gpsVelocity;
		GPSVelocityGet(&gpsVelocity);

		VelocityActualData velocityActual;
		VelocityActualGet(&velocityActual);
		velocityActual.North = gpsVelocity.North;
		velocityActual.East = gpsVelocity.East;
		velocityActual.Down = gpsVelocity.Down;
		VelocityActualSet(&velocityActual);
	}


	AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);

	return 0;
}
Esempio n. 12
0
static void updateAttitude(AccelsData * accelsData, GyrosData * gyrosData)
{
    float dT;
    portTickType thisSysTime = xTaskGetTickCount();
    static portTickType lastSysTime = 0;
    static float accels_filtered[3] = {0,0,0};
    static float grot_filtered[3] = {0,0,0};

    dT = (thisSysTime == lastSysTime) ? 0.001f : TICKS2MS(portMAX_DELAY & (thisSysTime - lastSysTime)) / 1000.0f;
    lastSysTime = thisSysTime;

    // Bad practice to assume structure order, but saves memory
    float * gyros = &gyrosData->x;
    float * accels = &accelsData->x;

    float grot[3];
    float accel_err[3];

    // Apply smoothing to accel values, to reduce vibration noise before main calculations.
    apply_accel_filter(accels,accels_filtered);

    // Rotate gravity to body frame, filter and cross with accels
    grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
    grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
    grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]);

    // Apply same filtering to the rotated attitude to match delays
    apply_accel_filter(grot,grot_filtered);

    // Compute the error between the predicted direction of gravity and smoothed acceleration
    CrossProduct((const float *) accels_filtered, (const float *) grot_filtered, accel_err);

    // Account for accel magnitude
    float accel_mag = sqrtf(accels_filtered[0]*accels_filtered[0] + accels_filtered[1]*accels_filtered[1] + accels_filtered[2]*accels_filtered[2]);

    // Account for filtered gravity vector magnitude
    float grot_mag;

    if (accel_filter_enabled)
        grot_mag = sqrtf(grot_filtered[0]*grot_filtered[0] + grot_filtered[1]*grot_filtered[1] + grot_filtered[2]*grot_filtered[2]);
    else
        grot_mag = 1.0f;

    if (grot_mag > 1.0e-3f && accel_mag > 1.0e-3f) {
        accel_err[0] /= (accel_mag*grot_mag);
        accel_err[1] /= (accel_mag*grot_mag);
        accel_err[2] /= (accel_mag*grot_mag);

        // Accumulate integral of error.  Scale here so that units are (deg/s) but Ki has units of s
        gyro_correct_int[0] -= accel_err[0] * accelKi;
        gyro_correct_int[1] -= accel_err[1] * accelKi;

        // Correct rates based on error, integral component dealt with in updateSensors
        gyros[0] += accel_err[0] * accelKp / dT;
        gyros[1] += accel_err[1] * accelKp / dT;
        gyros[2] += accel_err[2] * accelKp / dT;
    }

    {   // scoping variables to save memory
        // Work out time derivative from INSAlgo writeup
        // Also accounts for the fact that gyros are in deg/s
        float qdot[4];
        qdot[0] = (-q[1] * gyros[0] - q[2] * gyros[1] - q[3] * gyros[2]) * dT * DEG2RAD / 2;
        qdot[1] = (q[0] * gyros[0] - q[3] * gyros[1] + q[2] * gyros[2]) * dT * DEG2RAD / 2;
        qdot[2] = (q[3] * gyros[0] + q[0] * gyros[1] - q[1] * gyros[2]) * dT * DEG2RAD / 2;
        qdot[3] = (-q[2] * gyros[0] + q[1] * gyros[1] + q[0] * gyros[2]) * dT * DEG2RAD / 2;

        // Take a time step
        q[0] = q[0] + qdot[0];
        q[1] = q[1] + qdot[1];
        q[2] = q[2] + qdot[2];
        q[3] = q[3] + qdot[3];

        if(q[0] < 0) {
            q[0] = -q[0];
            q[1] = -q[1];
            q[2] = -q[2];
            q[3] = -q[3];
        }
    }

    // Renomalize
    float qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
    q[0] = q[0] / qmag;
    q[1] = q[1] / qmag;
    q[2] = q[2] / qmag;
    q[3] = q[3] / qmag;

    // If quaternion has become inappropriately short or is nan reinit.
    // THIS SHOULD NEVER ACTUALLY HAPPEN
    if((fabs(qmag) < 1e-3) || (qmag != qmag)) {
        q[0] = 1;
        q[1] = 0;
        q[2] = 0;
        q[3] = 0;
    }

    AttitudeActualData attitudeActual;
    AttitudeActualGet(&attitudeActual);

    quat_copy(q, &attitudeActual.q1);

    // Convert into eueler degrees (makes assumptions about RPY order)
    Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll);

    AttitudeActualSet(&attitudeActual);
}