Esempio n. 1
0
  /**
   * lx, ly, lz - Logical (cartesian, not delta) positions in mm
   */
  void Bed_level::apply_leveling(float &lx, float &ly, float &lz) {

    #if HAS_ABL
      if (!abl_enabled) return;
    #endif

    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
      static float z_fade_factor = 1.0, last_raw_lz = -999.0;
      if (z_fade_height) {
        const float raw_lz = RAW_Z_POSITION(lz);
        if (raw_lz >= z_fade_height) return;
        if (last_raw_lz != raw_lz) {
          last_raw_lz = raw_lz;
          z_fade_factor = 1.0 - raw_lz * inverse_z_fade_height;
        }
      }
      else
        z_fade_factor = 1.0;
    #endif

    #if ENABLED(MESH_BED_LEVELING)

      if (mbl.active())
        lz += mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly)
          #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
            , z_fade_factor
          #endif
          );

    #elif ABL_PLANAR

      float dx = RAW_X_POSITION(lx) - (X_TILT_FULCRUM),
            dy = RAW_Y_POSITION(ly) - (Y_TILT_FULCRUM),
            dz = RAW_Z_POSITION(lz);

      apply_rotation_xyz(bed_level_matrix, dx, dy, dz);

      lx = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
      ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
      lz = LOGICAL_Z_POSITION(dz);

    #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)

      float tmp[XYZ] = { lx, ly, 0 };
      lz += bilinear_z_offset(tmp)
        #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
          * z_fade_factor
        #endif
      ;

    #endif
  }
Esempio n. 2
0
  void Bed_level::unapply_leveling(float logical[XYZ]) {

    #if HAS_ABL
      if (!abl_enabled) return;
    #endif

    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
      if (z_fade_height && RAW_Z_POSITION(logical[Z_AXIS]) >= z_fade_height) return;
    #endif

    #if ENABLED(MESH_BED_LEVELING)

      if (mbl.active()) {
        #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
          const float c = mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]), 1.0);
          logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
        #else
          logical[Z_AXIS] -= mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]));
        #endif
      }

    #elif ABL_PLANAR

      matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);

      float dx = RAW_X_POSITION(logical[X_AXIS]) - (X_TILT_FULCRUM),
            dy = RAW_Y_POSITION(logical[Y_AXIS]) - (Y_TILT_FULCRUM),
            dz = RAW_Z_POSITION(logical[Z_AXIS]);

      apply_rotation_xyz(inverse, dx, dy, dz);

      logical[X_AXIS] = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
      logical[Y_AXIS] = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
      logical[Z_AXIS] = LOGICAL_Z_POSITION(dz);

    #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)

      #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
        const float c = bilinear_z_offset(logical);
        logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
      #else
        logical[Z_AXIS] -= bilinear_z_offset(logical);
      #endif

    #endif
  }
Esempio n. 3
0
  void report_current_position_detail() {

    stepper.synchronize();

    SERIAL_PROTOCOLPGM("\nLogical:");
    report_xyze(current_position);

    SERIAL_PROTOCOLPGM("Raw:    ");
    const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
    report_xyz(raw);

    SERIAL_PROTOCOLPGM("Leveled:");
    float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
    planner.apply_leveling(leveled);
    report_xyz(leveled);

    SERIAL_PROTOCOLPGM("UnLevel:");
    float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
    planner.unapply_leveling(unleveled);
    report_xyz(unleveled);

    #if IS_KINEMATIC
      #if IS_SCARA
        SERIAL_PROTOCOLPGM("ScaraK: ");
      #else
        SERIAL_PROTOCOLPGM("DeltaK: ");
      #endif
      inverse_kinematics(leveled);  // writes delta[]
      report_xyz(delta);
    #endif

    SERIAL_PROTOCOLPGM("Stepper:");
    const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
    report_xyze(step_count, 4, 0);

    #if IS_SCARA
      const float deg[XYZ] = {
        stepper.get_axis_position_degrees(A_AXIS),
        stepper.get_axis_position_degrees(B_AXIS)
      };
      SERIAL_PROTOCOLPGM("Degrees:");
      report_xyze(deg, 2);
    #endif

    SERIAL_PROTOCOLPGM("FromStp:");
    get_cartesian_from_steppers();  // writes cartes[XYZ] (with forward kinematics)
    const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
    report_xyze(from_steppers);

    const float diff[XYZE] = {
      from_steppers[X_AXIS] - leveled[X_AXIS],
      from_steppers[Y_AXIS] - leveled[Y_AXIS],
      from_steppers[Z_AXIS] - leveled[Z_AXIS],
      from_steppers[E_AXIS] - current_position[E_AXIS]
    };
    SERIAL_PROTOCOLPGM("Differ: ");
    report_xyze(diff);
  }
Esempio n. 4
0
    // Get the Z adjustment for non-linear bed leveling
    float Bed_level::bilinear_z_offset(const float logical[XYZ]) {

      static float  z1, d2, z3, d4, L, D, ratio_x, ratio_y,
                    last_x = -999.999, last_y = -999.999;

      // Whole units for the grid line indices. Constrained within bounds.
      static int8_t gridx, gridy, nextx, nexty,
                    last_gridx = -99, last_gridy = -99;

      // XY relative to the probed area
      const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
                  y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];

      if (last_x != x) {
        last_x = x;
        ratio_x = x * ABL_BG_FACTOR(X_AXIS);
        const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1);
        ratio_x -= gx;      // Subtract whole to get the ratio within the grid box
        NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
        gridx = gx;
        nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
      }

      if (last_y != y || last_gridx != gridx) {

        if (last_y != y) {
          last_y = y;
          ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
          const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1);
          ratio_y -= gy;
          NOLESS(ratio_y, 0);
          gridy = gy;
          nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
        }

        if (last_gridx != gridx || last_gridy != gridy) {
          last_gridx = gridx;
          last_gridy = gridy;
          // Z at the box corners
          z1 = ABL_BG_GRID(gridx, gridy);       // left-front
          d2 = ABL_BG_GRID(gridx, nexty) - z1;  // left-back (delta)
          z3 = ABL_BG_GRID(nextx, gridy);       // right-front
          d4 = ABL_BG_GRID(nextx, nexty) - z3;  // right-back (delta)
        }

        // Bilinear interpolate. Needed since y or gridx has changed.
                    L = z1 + d2 * ratio_y;   // Linear interp. LF -> LB
        const float R = z3 + d4 * ratio_y;   // Linear interp. RF -> RB

        D = R - L;
      }

      const float offset = L + ratio_x * D;   // the offset almost always changes

      /*
      static float last_offset = 0;
      if (FABS(last_offset - offset) > 0.2) {
        SERIAL_MSG("Sudden Shift at ");
        SERIAL_MV("x=", x);
        SERIAL_MV(" / ", ABL_BG_SPACING(X_AXIS));
        SERIAL_EMV(" -> gridx=", gridx);
        SERIAL_MV(" y=", y);
        SERIAL_MV(" / ", ABL_BG_SPACING(Y_AXIS));
        SERIAL_EMV(" -> gridy=", gridy);
        SERIAL_MV(" ratio_x=", ratio_x);
        SERIAL_EMV(" ratio_y=", ratio_y);
        SERIAL_MV(" z1=", z1);
        SERIAL_MV(" d2=", d2);
        SERIAL_MV(" z3=", z3);
        SERIAL_EMV(" d4=", d4);
        SERIAL_MV(" L=", L);
        SERIAL_MV(" R=", R);
        SERIAL_EMV(" offset=", offset);
      }
      last_offset = offset;
      */

      return offset;
    }
Esempio n. 5
0
/**
 * G26: Mesh Validation Pattern generation.
 *
 * Used to interactively edit the mesh by placing the
 * nozzle in a problem area and doing a G29 P4 R command.
 *
 * Parameters:
 *
 *  B  Bed Temperature
 *  C  Continue from the Closest mesh point
 *  D  Disable leveling before starting
 *  F  Filament diameter
 *  H  Hotend Temperature
 *  K  Keep heaters on when completed
 *  L  Layer Height
 *  O  Ooze extrusion length
 *  P  Prime length
 *  Q  Retraction multiplier
 *  R  Repetitions (number of grid points)
 *  S  Nozzle Size (diameter) in mm
 *  T  Tool index to change to, if included
 *  U  Random deviation (50 if no value given)
 *  X  X position
 *  Y  Y position
 */
void GcodeSuite::G26() {
  SERIAL_ECHOLNPGM("G26 starting...");

  // Don't allow Mesh Validation without homing first,
  // or if the parameter parsing did not go OK, abort
  if (axis_unhomed_error()) return;

  // Change the tool first, if specified
  if (parser.seenval('T')) tool_change(parser.value_int());

  g26_extrusion_multiplier    = EXTRUSION_MULTIPLIER;
  g26_retraction_multiplier   = RETRACTION_MULTIPLIER;
  g26_layer_height            = MESH_TEST_LAYER_HEIGHT;
  g26_prime_length            = PRIME_LENGTH;
  g26_bed_temp                = MESH_TEST_BED_TEMP;
  g26_hotend_temp             = MESH_TEST_HOTEND_TEMP;
  g26_prime_flag              = 0;

  float g26_nozzle            = MESH_TEST_NOZZLE_SIZE,
        g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
        g26_ooze_amount       = parser.linearval('O', OOZE_AMOUNT);

  bool g26_continue_with_closest = parser.boolval('C'),
       g26_keep_heaters_on       = parser.boolval('K');

  if (parser.seenval('B')) {
    g26_bed_temp = parser.value_celsius();
    if (g26_bed_temp && !WITHIN(g26_bed_temp, 40, 140)) {
      SERIAL_ECHOLNPGM("?Specified bed temperature not plausible (40-140C).");
      return;
    }
  }

  if (parser.seenval('L')) {
    g26_layer_height = parser.value_linear_units();
    if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
      SERIAL_ECHOLNPGM("?Specified layer height not plausible.");
      return;
    }
  }

  if (parser.seen('Q')) {
    if (parser.has_value()) {
      g26_retraction_multiplier = parser.value_float();
      if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
        SERIAL_ECHOLNPGM("?Specified Retraction Multiplier not plausible.");
        return;
      }
    }
    else {
      SERIAL_ECHOLNPGM("?Retraction Multiplier must be specified.");
      return;
    }
  }

  if (parser.seenval('S')) {
    g26_nozzle = parser.value_float();
    if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
      SERIAL_ECHOLNPGM("?Specified nozzle size not plausible.");
      return;
    }
  }

  if (parser.seen('P')) {
    if (!parser.has_value()) {
      #if HAS_LCD_MENU
        g26_prime_flag = -1;
      #else
        SERIAL_ECHOLNPGM("?Prime length must be specified when not using an LCD.");
        return;
      #endif
    }
    else {
      g26_prime_flag++;
      g26_prime_length = parser.value_linear_units();
      if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
        SERIAL_ECHOLNPGM("?Specified prime length not plausible.");
        return;
      }
    }
  }

  if (parser.seenval('F')) {
    g26_filament_diameter = parser.value_linear_units();
    if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
      SERIAL_ECHOLNPGM("?Specified filament size not plausible.");
      return;
    }
  }
  g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
                                                                    // scale up or down the length needed to get the
                                                                    // same volume of filament

  g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size

  if (parser.seenval('H')) {
    g26_hotend_temp = parser.value_celsius();
    if (!WITHIN(g26_hotend_temp, 165, 280)) {
      SERIAL_ECHOLNPGM("?Specified nozzle temperature not plausible.");
      return;
    }
  }

  if (parser.seen('U')) {
    randomSeed(millis());
    // This setting will persist for the next G26
    random_deviation = parser.has_value() ? parser.value_float() : 50.0;
  }

  int16_t g26_repeats;
  #if HAS_LCD_MENU
    g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
  #else
    if (!parser.seen('R')) {
      SERIAL_ECHOLNPGM("?(R)epeat must be specified when not using an LCD.");
      return;
    }
    else
      g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
  #endif
  if (g26_repeats < 1) {
    SERIAL_ECHOLNPGM("?(R)epeat value not plausible; must be at least 1.");
    return;
  }

  g26_x_pos = parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position[X_AXIS];
  g26_y_pos = parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position[Y_AXIS];
  if (!position_is_reachable(g26_x_pos, g26_y_pos)) {
    SERIAL_ECHOLNPGM("?Specified X,Y coordinate out of bounds.");
    return;
  }

  /**
   * Wait until all parameters are verified before altering the state!
   */
  set_bed_leveling_enabled(!parser.seen('D'));

  if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
    do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
    set_current_from_destination();
  }

  if (turn_on_heaters() != G26_OK) goto LEAVE;

  current_position[E_AXIS] = 0.0;
  sync_plan_position_e();

  if (g26_prime_flag && prime_nozzle() != G26_OK) goto LEAVE;

  /**
   *  Bed is preheated
   *
   *  Nozzle is at temperature
   *
   *  Filament is primed!
   *
   *  It's  "Show Time" !!!
   */

  ZERO(circle_flags);
  ZERO(horizontal_mesh_line_flags);
  ZERO(vertical_mesh_line_flags);

  // Move nozzle to the specified height for the first layer
  set_destination_from_current();
  destination[Z_AXIS] = g26_layer_height;
  move_to(destination, 0.0);
  move_to(destination, g26_ooze_amount);

  #if HAS_LCD_MENU
    ui.capture();
  #endif

  //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));

  #if DISABLED(ARC_SUPPORT)

    /**
     * Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
     */
    #define A_INT 30
    #define _ANGS (360 / A_INT)
    #define A_CNT (_ANGS / 2)
    #define _IND(A) ((A + _ANGS * 8) % _ANGS)
    #define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
    #define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
    #if A_CNT & 1
      #error "A_CNT must be a positive value. Please change A_INT."
    #endif
    float trig_table[A_CNT];
    for (uint8_t i = 0; i < A_CNT; i++)
      trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));

  #endif // !ARC_SUPPORT

  mesh_index_pair location;
  do {
     location = g26_continue_with_closest
      ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
      : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.

    if (location.x_index >= 0 && location.y_index >= 0) {
      const float circle_x = _GET_MESH_X(location.x_index),
                  circle_y = _GET_MESH_Y(location.y_index);

      // If this mesh location is outside the printable_radius, skip it.
      if (!position_is_reachable(circle_x, circle_y)) continue;

      // Determine where to start and end the circle,
      // which is always drawn counter-clockwise.
      const uint8_t xi = location.x_index, yi = location.y_index;
      const bool f = yi == 0, r = xi >= GRID_MAX_POINTS_X - 1, b = yi >= GRID_MAX_POINTS_Y - 1;

      #if ENABLED(ARC_SUPPORT)

        #define ARC_LENGTH(quarters)  (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
        float sx = circle_x + INTERSECTION_CIRCLE_RADIUS,   // default to full circle
              ex = circle_x + INTERSECTION_CIRCLE_RADIUS,
              sy = circle_y, ey = circle_y,
              arc_length = ARC_LENGTH(4);

        // Figure out where to start and end the arc - we always print counterclockwise
        if (xi == 0) {                             // left edge
          sx = f ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
          ex = b ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
          sy = f ? circle_y : circle_y - (INTERSECTION_CIRCLE_RADIUS);
          ey = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
          arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
        }
        else if (r) {                             // right edge
          sx = b ? circle_x - (INTERSECTION_CIRCLE_RADIUS) : circle_x;
          ex = f ? circle_x - (INTERSECTION_CIRCLE_RADIUS) : circle_x;
          sy = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
          ey = f ? circle_y : circle_y - (INTERSECTION_CIRCLE_RADIUS);
          arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
        }
        else if (f) {
          sx = circle_x + INTERSECTION_CIRCLE_RADIUS;
          ex = circle_x - (INTERSECTION_CIRCLE_RADIUS);
          sy = ey = circle_y;
          arc_length = ARC_LENGTH(2);
        }
        else if (b) {
          sx = circle_x - (INTERSECTION_CIRCLE_RADIUS);
          ex = circle_x + INTERSECTION_CIRCLE_RADIUS;
          sy = ey = circle_y;
          arc_length = ARC_LENGTH(2);
        }
        const float arc_offset[2] = {
          circle_x - sx,
          circle_y - sy
        };

        const float dx_s = current_position[X_AXIS] - sx,   // find our distance from the start of the actual circle
                    dy_s = current_position[Y_AXIS] - sy,
                    dist_start = HYPOT2(dx_s, dy_s);
        const float endpoint[XYZE] = {
          ex, ey,
          g26_layer_height,
          current_position[E_AXIS] + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier)
        };

        if (dist_start > 2.0) {
          retract_filament(destination);
          //todo:  parameterize the bump height with a define
          move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0);  // Z bump to minimize scraping
          move_to(sx, sy, g26_layer_height + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
        }

        move_to(sx, sy, g26_layer_height, 0.0); // Get to the starting point with no extrusion / un-Z bump

        recover_filament(destination);
        const float save_feedrate = feedrate_mm_s;
        feedrate_mm_s = PLANNER_XY_FEEDRATE() / 10.0;

        if (g26_debug_flag) {
          SERIAL_ECHOPAIR(" plan_arc(ex=", endpoint[X_AXIS]);
          SERIAL_ECHOPAIR(", ey=", endpoint[Y_AXIS]);
          SERIAL_ECHOPAIR(", ez=", endpoint[Z_AXIS]);
          SERIAL_ECHOPAIR(", len=", arc_length);
          SERIAL_ECHOPAIR(") -> (ex=", current_position[X_AXIS]);
          SERIAL_ECHOPAIR(", ey=", current_position[Y_AXIS]);
          SERIAL_ECHOPAIR(", ez=", current_position[Z_AXIS]);
          SERIAL_CHAR(')');
          SERIAL_EOL();
        }

        plan_arc(endpoint, arc_offset, false);  // Draw a counter-clockwise arc
        feedrate_mm_s = save_feedrate;
        set_destination_from_current();
        #if HAS_LCD_MENU
          if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
        #endif

      #else // !ARC_SUPPORT

        int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
        if (xi == 0) {                      // Left edge? Just right half.
          start_ind = f ? 0 : -3;           //  03:00 to 12:00 for front-left
          end_ind = b ? 0 : 2;              //  06:00 to 03:00 for back-left
        }
        else if (r) {                       // Right edge? Just left half.
          start_ind = b ? 6 : 3;            //  12:00 to 09:00 for front-right
          end_ind = f ? 5 : 8;              //  09:00 to 06:00 for back-right
        }
        else if (f) {                       // Front edge? Just back half.
          start_ind = 0;                    //  03:00
          end_ind = 5;                      //  09:00
        }
        else if (b) {                       // Back edge? Just front half.
          start_ind = 6;                    //  09:00
          end_ind = 11;                     //  03:00
        }

        for (int8_t ind = start_ind; ind <= end_ind; ind++) {

          #if HAS_LCD_MENU
            if (user_canceled()) goto LEAVE;          // Check if the user wants to stop the Mesh Validation
          #endif

          float rx = circle_x + _COS(ind),            // For speed, these are now a lookup table entry
                ry = circle_y + _SIN(ind),
                xe = circle_x + _COS(ind + 1),
                ye = circle_y + _SIN(ind + 1);

          #if IS_KINEMATIC
            // Check to make sure this segment is entirely on the bed, skip if not.
            if (!position_is_reachable(rx, ry) || !position_is_reachable(xe, ye)) continue;
          #else                                               // not, we need to skip
            rx = constrain(rx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
            ry = constrain(ry, Y_MIN_POS + 1, Y_MAX_POS - 1);
            xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
            ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
          #endif

          print_line_from_here_to_there(rx, ry, g26_layer_height, xe, ye, g26_layer_height);
          SERIAL_FLUSH();  // Prevent host M105 buffer overrun.
        }

      #endif // !ARC_SUPPORT

      if (look_for_lines_to_connect()) goto LEAVE;
    }

    SERIAL_FLUSH(); // Prevent host M105 buffer overrun.

  } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);

  LEAVE:
  ui.set_status_P(PSTR("Leaving G26"), -1);

  retract_filament(destination);
  destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;

  //debug_current_and_destination(PSTR("ready to do Z-Raise."));
  move_to(destination, 0); // Raise the nozzle
  //debug_current_and_destination(PSTR("done doing Z-Raise."));

  destination[X_AXIS] = g26_x_pos;                            // Move back to the starting position
  destination[Y_AXIS] = g26_y_pos;
  //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;         // Keep the nozzle where it is

  move_to(destination, 0);                                    // Move back to the starting position
  //debug_current_and_destination(PSTR("done doing X/Y move."));

  #if HAS_LCD_MENU
    ui.release();                                             // Give back control of the LCD
  #endif

  if (!g26_keep_heaters_on) {
    #if HAS_HEATED_BED
      thermalManager.setTargetBed(0);
    #endif
    thermalManager.setTargetHotend(active_extruder, 0);
  }
}