Esempio n. 1
0
double qnchisq(double p, double n, double lambda, int lower_tail, int log_p)
{
    const double acu = 1e-12;
    const double Eps = 1e-6; /* must be > acu */

    double ux, lx, nx;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(n) || ISNAN(lambda))
        return p + n + lambda;
#endif
    if (!R_FINITE(n)) ML_ERR_return_NAN;

    n = FLOOR(n + 0.5);
    if (n < 1 || lambda < 0) ML_ERR_return_NAN;

    R_Q_P01_check(p);

    if (p == R_DT_0)
        return 0;

    /* Invert pnchisq(.) finding an upper and lower bound;
       then interval halfing : */

    p = R_D_qIv(p);
    if(lower_tail) {
        for(ux = 1.; pnchisq_raw(ux, n, lambda, Eps, 128) < p * (1 + Eps);
            ux *= 2){}
        for(lx = ux; pnchisq_raw(lx, n, lambda, Eps, 128) > p * (1 - Eps);
            lx *= 0.5){}
    }
    else {
        for(ux = 1.; pnchisq_raw(ux, n, lambda, Eps, 128) + p < 1 + Eps;
            ux *= 2){}
        for(lx = ux; pnchisq_raw(lx, n, lambda, Eps, 128) + p > 1 - Eps;
            lx *= 0.5){}
    }
    p = R_D_Lval(p);
    do {
        nx = 0.5 * (lx + ux);
        if (pnchisq_raw(nx, n, lambda, acu, 1000) > p)
            ux = nx;
        else
            lx = nx;
    }
    while ((ux - lx) / nx > acu);
    return 0.5 * (ux + lx);
}
Esempio n. 2
0
double qnchisq(double p, double df, double ncp, int lower_tail, int log_p)
{
    const static double accu = 1e-13;
    const static double racc = 4*DBL_EPSILON;
    /* these two are for the "search" loops, can have less accuracy: */
    const static double Eps = 1e-11; /* must be > accu */
    const static double rEps= 1e-10; /* relative tolerance ... */

    double ux, lx, ux0, nx, pp;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(df) || ISNAN(ncp))
	return p + df + ncp;
#endif
    if (!R_FINITE(df)) ML_ERR_return_NAN;

    /* Was
     * df = floor(df + 0.5);
     * if (df < 1 || ncp < 0) ML_ERR_return_NAN;
     */
    if (df < 0 || ncp < 0) ML_ERR_return_NAN;

    R_Q_P01_boundaries(p, 0, ML_POSINF);

    /* Invert pnchisq(.) :
     * 1. finding an upper and lower bound */
    {
       /* This is Pearson's (1959) approximation,
          which is usually good to 4 figs or so.  */
	double b, c, ff;
	b = (ncp*ncp)/(df + 3*ncp);
	c = (df + 3*ncp)/(df + 2*ncp);
	ff = (df + 2 * ncp)/(c*c);
	ux = b + c * qchisq(p, ff, lower_tail, log_p);
	if(ux < 0) ux = 1;
	ux0 = ux;
    }
    p = R_D_qIv(p);

    if(!lower_tail && ncp >= 80) {
	/* pnchisq is only for lower.tail = TRUE */
	if(p < 1e-10) ML_ERROR(ME_PRECISION, "qnchisq");
	p = 1. - p;
	lower_tail = TRUE;
    }

    if(lower_tail) {
	if(p > 1 - DBL_EPSILON) return ML_POSINF;
	pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
        for(; ux < DBL_MAX &&
		pnchisq_raw(ux, df, ncp, Eps, rEps, 10000, TRUE) < pp;
	    ux *= 2);
	pp = p * (1 - Eps);
        for(lx = fmin2(ux0, DBL_MAX);
	    lx > DBL_MIN &&
		pnchisq_raw(lx, df, ncp, Eps, rEps, 10000, TRUE) > pp;
	    lx *= 0.5);
    }
    else {
	if(p > 1 - DBL_EPSILON) return 0.0;
	pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
        for(; ux < DBL_MAX &&
		pnchisq_raw(ux, df, ncp, Eps, rEps, 10000, FALSE) > pp;
	    ux *= 2);
	pp = p * (1 - Eps);
        for(lx = fmin2(ux0, DBL_MAX);
	    lx > DBL_MIN &&
		pnchisq_raw(lx, df, ncp, Eps, rEps, 10000, FALSE) < pp;
	    lx *= 0.5);
    }

    /* 2. interval (lx,ux)  halving : */
    if(lower_tail) {
	do {
	    nx = 0.5 * (lx + ux);
	    if (pnchisq_raw(nx, df, ncp, accu, racc, 100000, TRUE) > p)
		ux = nx;
	    else
		lx = nx;
	}
	while ((ux - lx) / nx > accu);
    } else {
	do {
	    nx = 0.5 * (lx + ux);
	    if (pnchisq_raw(nx, df, ncp, accu, racc, 100000, FALSE) < p)
		ux = nx;
	    else
		lx = nx;
	}
	while ((ux - lx) / nx > accu);
    }
    return 0.5 * (ux + lx);
}
Esempio n. 3
0
File: qt.c Progetto: 6e441f9c/julia
double qt(double p, double ndf, int lower_tail, int log_p)
{
    const static double eps = 1.e-12;

    double P, q;
    Rboolean neg;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(ndf))
	return p + ndf;
#endif

    R_Q_P01_boundaries(p, ML_NEGINF, ML_POSINF);

    if (ndf <= 0) ML_ERR_return_NAN;

    if (ndf < 1) { /* based on qnt */
	const static double accu = 1e-13;
	const static double Eps = 1e-11; /* must be > accu */

	double ux, lx, nx, pp;
	
	int iter = 0;

	p = R_DT_qIv(p);

	/* Invert pt(.) :
	 * 1. finding an upper and lower bound */
	if(p > 1 - DBL_EPSILON) return ML_POSINF;
	pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
	for(ux = 1.; ux < DBL_MAX && pt(ux, ndf, TRUE, FALSE) < pp; ux *= 2);
	pp = p * (1 - Eps);
	for(lx =-1.; lx > -DBL_MAX && pt(lx, ndf, TRUE, FALSE) > pp; lx *= 2);

	/* 2. interval (lx,ux)  halving
	   regula falsi failed on qt(0.1, 0.1)
	 */
	do {
	    nx = 0.5 * (lx + ux);
	    if (pt(nx, ndf, TRUE, FALSE) > p) ux = nx; else lx = nx;
	} while ((ux - lx) / fabs(nx) > accu && ++iter < 1000);

	if(iter >= 1000) ML_ERROR(ME_PRECISION, "qt");

	return 0.5 * (lx + ux);
    }

    /* Old comment:
     * FIXME: "This test should depend on  ndf  AND p  !!
     * -----  and in fact should be replaced by
     * something like Abramowitz & Stegun 26.7.5 (p.949)"
     *
     * That would say that if the qnorm value is x then
     * the result is about x + (x^3+x)/4df + (5x^5+16x^3+3x)/96df^2
     * The differences are tiny even if x ~ 1e5, and qnorm is not
     * that accurate in the extreme tails.
     */
    if (ndf > 1e20) return qnorm(p, 0., 1., lower_tail, log_p);

    P = R_D_qIv(p); /* if exp(p) underflows, we fix below */

    neg = (!lower_tail || P < 0.5) && (lower_tail || P > 0.5);
    if(neg)
	P = 2 * (log_p ? (lower_tail ? P : -expm1(p)) : R_D_Lval(p));
    else
	P = 2 * (log_p ? (lower_tail ? -expm1(p) : P) : R_D_Cval(p));
    /* 0 <= P <= 1 ; P = 2*min(P', 1 - P')  in all cases */

/* Use this if(log_p) only : */
#define P_is_exp_2p (lower_tail == neg) /* both TRUE or FALSE == !xor */

     if (fabs(ndf - 2) < eps) {	/* df ~= 2 */
	if(P > DBL_MIN) {
	    if(3* P < DBL_EPSILON) /* P ~= 0 */
		q = 1 / sqrt(P);
	    else if (P > 0.9)	   /* P ~= 1 */
		q = (1 - P) * sqrt(2 /(P * (2 - P)));
	    else /* eps/3 <= P <= 0.9 */
		q = sqrt(2 / (P * (2 - P)) - 2);
	}
	else { /* P << 1, q = 1/sqrt(P) = ... */
	    if(log_p)
		q = P_is_exp_2p ? exp(- p/2) / M_SQRT2 : 1/sqrt(-expm1(p));
	    else
		q = ML_POSINF;
	}
    }
    else if (ndf < 1 + eps) { /* df ~= 1  (df < 1 excluded above): Cauchy */
	if(P > 0)
	    q = 1/tan(P * M_PI_2);/* == - tan((P+1) * M_PI_2) -- suffers for P ~= 0 */

	else { /* P = 0, but maybe = 2*exp(p) ! */
	    if(log_p) /* 1/tan(e) ~ 1/e */
		q = P_is_exp_2p ? M_1_PI * exp(-p) : -1./(M_PI * expm1(p));
	    else
		q = ML_POSINF;
	}
    }
    else {		/*-- usual case;  including, e.g.,  df = 1.1 */
	double x = 0., y, log_P2 = 0./* -Wall */,
	    a = 1 / (ndf - 0.5),
	    b = 48 / (a * a),
	    c = ((20700 * a / b - 98) * a - 16) * a + 96.36,
	    d = ((94.5 / (b + c) - 3) / b + 1) * sqrt(a * M_PI_2) * ndf;

	Rboolean P_ok1 = P > DBL_MIN || !log_p,  P_ok = P_ok1;
	if(P_ok1) {
	    y = pow(d * P, 2 / ndf);
	    P_ok = (y >= DBL_EPSILON);
	}
	if(!P_ok) { /* log_p && P very small */
	    log_P2 = P_is_exp_2p ? p : R_Log1_Exp(p); /* == log(P / 2) */
	    x = (log(d) + M_LN2 + log_P2) / ndf;
	    y = exp(2 * x);
	}

	if ((ndf < 2.1 && P > 0.5) || y > 0.05 + a) { /* P > P0(df) */
	    /* Asymptotic inverse expansion about normal */
	    if(P_ok)
		x = qnorm(0.5 * P, 0., 1., /*lower_tail*/TRUE,  /*log_p*/FALSE);
	    else /* log_p && P underflowed */
		x = qnorm(log_P2,  0., 1., lower_tail,	        /*log_p*/ TRUE);

	    y = x * x;
	    if (ndf < 5)
		c += 0.3 * (ndf - 4.5) * (x + 0.6);
	    c = (((0.05 * d * x - 5) * x - 7) * x - 2) * x + b + c;
	    y = (((((0.4 * y + 6.3) * y + 36) * y + 94.5) / c
		  - y - 3) / b + 1) * x;
	    y = expm1(a * y * y);
	    q = sqrt(ndf * y);
	} else { /* re-use 'y' from above */

	    if(!P_ok && x < - M_LN2 * DBL_MANT_DIG) {/* 0.5* log(DBL_EPSILON) */
		/* y above might have underflown */
		q = sqrt(ndf) * exp(-x);
	    }
	    else {
		y = ((1 / (((ndf + 6) / (ndf * y) - 0.089 * d - 0.822)
			   * (ndf + 2) * 3) + 0.5 / (ndf + 4))
		     * y - 1) * (ndf + 1) / (ndf + 2) + 1 / y;
		q = sqrt(ndf * y);
	    }
	}


	/* Now apply 2-term Taylor expansion improvement (1-term = Newton):
	 * as by Hill (1981) [ref.above] */

	/* FIXME: This can be far from optimal when log_p = TRUE
	 *      but is still needed, e.g. for qt(-2, df=1.01, log=TRUE).
	 *	Probably also improvable when  lower_tail = FALSE */

	if(P_ok1) {
	    int it=0;
	    while(it++ < 10 && (y = dt(q, ndf, FALSE)) > 0 &&
		  R_FINITE(x = (pt(q, ndf, FALSE, FALSE) - P/2) / y) &&
		  fabs(x) > 1e-14*fabs(q))
		/* Newton (=Taylor 1 term):
		 *  q += x;
		 * Taylor 2-term : */
		q += x * (1. + x * q * (ndf + 1) / (2 * (q * q + ndf)));
	}
    }
    if(neg) q = -q;
    return q;
}