Esempio n. 1
0
/*
===============
R_Init
===============
*/
void R_Init( void ) {
	int err;
	int i;
	byte *ptr;

	ri.Printf( PRINT_ALL, "----- R_Init -----\n" );

	// clear all our internal state
	memset( &tr, 0, sizeof( tr ) );
	memset( &backEnd, 0, sizeof( backEnd ) );
	memset( &tess, 0, sizeof( tess ) );

	if(sizeof(glconfig_t) != 7268)
		ri.Error( ERR_FATAL, "Mod ABI incompatible: sizeof(glconfig_t) == %u != 7268", (unsigned int) sizeof(glconfig_t));

//	Swap_Init();

	if ( (intptr_t)tess.xyz & 15 ) {
		ri.Printf( PRINT_WARNING, "tess.xyz not 16 byte aligned\n" );
	}
	memset( tess.constantColor255, 255, sizeof( tess.constantColor255 ) );

	//
	// init function tables
	//
	for ( i = 0; i < FUNCTABLE_SIZE; i++ )
	{
		tr.sinTable[i]      = sin( DEG2RAD( i * 360.0f / ( ( float ) ( FUNCTABLE_SIZE - 1 ) ) ) );
		tr.squareTable[i]   = ( i < FUNCTABLE_SIZE / 2 ) ? 1.0f : -1.0f;
		tr.sawToothTable[i] = (float)i / FUNCTABLE_SIZE;
		tr.inverseSawToothTable[i] = 1.0f - tr.sawToothTable[i];

		if ( i < FUNCTABLE_SIZE / 2 ) {
			if ( i < FUNCTABLE_SIZE / 4 ) {
				tr.triangleTable[i] = ( float ) i / ( FUNCTABLE_SIZE / 4 );
			} else
			{
				tr.triangleTable[i] = 1.0f - tr.triangleTable[i - FUNCTABLE_SIZE / 4];
			}
		} else
		{
			tr.triangleTable[i] = -tr.triangleTable[i - FUNCTABLE_SIZE / 2];
		}
	}

	// Ridah, init the virtual memory
	R_Hunk_Begin();

	R_InitFogTable();

	R_NoiseInit();

	R_Register();

#ifdef USE_BLOOM
	R_BloomInit();
#endif

	max_polys = r_maxpolys->integer;
	if ( max_polys < MAX_POLYS ) {
		max_polys = MAX_POLYS;
	}

	max_polyverts = r_maxpolyverts->integer;
	if ( max_polyverts < MAX_POLYVERTS ) {
		max_polyverts = MAX_POLYVERTS;
	}

	ptr = ri.Hunk_Alloc( sizeof( *backEndData ) + sizeof(srfPoly_t) * max_polys + sizeof(polyVert_t) * max_polyverts, h_low);
	backEndData = (backEndData_t *) ptr;
	backEndData->polys = (srfPoly_t *) ((char *) ptr + sizeof( *backEndData ));
	backEndData->polyVerts = (polyVert_t *) ((char *) ptr + sizeof( *backEndData ) + sizeof(srfPoly_t) * max_polys);

	R_InitNextFrame();

	InitOpenGL();

	R_InitImages();

	R_InitShaders();

	R_InitSkins();

	R_ModelInit();

	R_InitFreeType();

	err = qglGetError();
	if ( err != GL_NO_ERROR ) {
		ri.Printf( PRINT_ALL, "glGetError() = 0x%x\n", err );
	}

	ri.Printf( PRINT_ALL, "----- finished R_Init -----\n" );
}
Esempio n. 2
0
/*
===============
R_Init
===============
*/
void R_Init( void )
{
	int i;

	ri.Printf( PRINT_DEVELOPER, "----- R_Init -----\n" );

	// clear all our internal state
	memset( &tr, 0, sizeof( tr ) );
	memset( &backEnd, 0, sizeof( backEnd ) );
	memset( &tess, 0, sizeof( tess ) );

	tess.xyz = tess_xyz;
	tess.texCoords0 = tess_texCoords0;
	tess.texCoords1 = tess_texCoords1;
	tess.indexes = tess_indexes;
	tess.normal = tess_normal;
	tess.vertexColors = tess_vertexColors;

	tess.maxShaderVerts = SHADER_MAX_VERTEXES;
	tess.maxShaderIndicies = SHADER_MAX_INDEXES;

	if ( ( intptr_t ) tess.xyz & 15 )
	{
		Com_DPrintf( "WARNING: tess.xyz not 16 byte aligned\n" );
	}

	memset( tess.constantColor255, 255, sizeof( tess.constantColor255 ) );

	//
	// init function tables
	//
	for ( i = 0; i < FUNCTABLE_SIZE; i++ )
	{
		tr.sinTable[ i ] = sin( DEG2RAD( i * 360.0f / ( ( float )( FUNCTABLE_SIZE - 1 ) ) ) );
		tr.squareTable[ i ] = ( i < FUNCTABLE_SIZE / 2 ) ? 1.0f : -1.0f;
		tr.sawToothTable[ i ] = ( float ) i / FUNCTABLE_SIZE;
		tr.inverseSawToothTable[ i ] = 1.0f - tr.sawToothTable[ i ];

		if ( i < FUNCTABLE_SIZE / 2 )
		{
			if ( i < FUNCTABLE_SIZE / 4 )
			{
				tr.triangleTable[ i ] = ( float ) i / ( FUNCTABLE_SIZE / 4 );
			}
			else
			{
				tr.triangleTable[ i ] = 1.0f - tr.triangleTable[ i - FUNCTABLE_SIZE / 4 ];
			}
		}
		else
		{
			tr.triangleTable[ i ] = -tr.triangleTable[ i - FUNCTABLE_SIZE / 2 ];
		}
	}

	// Ridah, init the virtual memory
	R_Hunk_Begin();

	R_InitFogTable();

	R_NoiseInit();

	R_Register();

	max_polys = r_maxpolys->integer;

	if ( max_polys < MAX_POLYS )
	{
		max_polys = MAX_POLYS;
	}

	max_polyverts = r_maxpolyverts->integer;

	if ( max_polyverts < MAX_POLYVERTS )
	{
		max_polyverts = MAX_POLYVERTS;
	}

//  backEndData[0] = ri.Hunk_Alloc( sizeof( *backEndData[0] ), h_low );
	backEndData[ 0 ] =
	  ri.Hunk_Alloc( sizeof( *backEndData[ 0 ] ) + sizeof( srfPoly_t ) * max_polys + sizeof( polyVert_t ) * max_polyverts, h_low );

	if ( r_smp->integer )
	{
//      backEndData[1] = ri.Hunk_Alloc( sizeof( *backEndData[1] ), h_low );
		backEndData[ 1 ] =
		  ri.Hunk_Alloc( sizeof( *backEndData[ 1 ] ) + sizeof( srfPoly_t ) * max_polys + sizeof( polyVert_t ) * max_polyverts, h_low );
	}
	else
	{
		backEndData[ 1 ] = NULL;
	}

	R_ToggleSmpFrame();

	InitOpenGL();

	R_InitImages();

	R_InitShaders();

	R_InitSkins();

	R_ModelInit();

#if defined( USE_REFENTITY_ANIMATIONSYSTEM )
	R_InitAnimations();
#endif

	R_InitFreeType();

	GL_CheckErrors();

	// print info
	GfxInfo_f();

	ri.Printf( PRINT_DEVELOPER, "----- finished R_Init -----\n" );
}
Esempio n. 3
0
/*
===============
R_Init
===============
*/
void R_Init( void ) {
	int err;
	int i;

	ri.Printf( PRINT_ALL, "----- R_Init -----\n" );

	// clear all our internal state
	memset( &tr, 0, sizeof( tr ) );
	memset( &backEnd, 0, sizeof( backEnd ) );
	memset( &tess, 0, sizeof( tess ) );

	Swap_Init();

	if ( (intptr_t)tess.xyz & 15 ) {
		Com_Printf( "WARNING: tess.xyz not 16 byte aligned\n" );
	}
	memset( tess.constantColor255, 255, sizeof( tess.constantColor255 ) );

	//
	// init function tables
	//
	for ( i = 0; i < FUNCTABLE_SIZE; i++ )
	{
		tr.sinTable[i]      = sin( DEG2RAD( i * 360.0f / ( ( float ) ( FUNCTABLE_SIZE - 1 ) ) ) );
		tr.squareTable[i]   = ( i < FUNCTABLE_SIZE / 2 ) ? 1.0f : -1.0f;
		tr.sawToothTable[i] = (float)i / FUNCTABLE_SIZE;
		tr.inverseSawToothTable[i] = 1.0f - tr.sawToothTable[i];

		if ( i < FUNCTABLE_SIZE / 2 ) {
			if ( i < FUNCTABLE_SIZE / 4 ) {
				tr.triangleTable[i] = ( float ) i / ( FUNCTABLE_SIZE / 4 );
			} else
			{
				tr.triangleTable[i] = 1.0f - tr.triangleTable[i - FUNCTABLE_SIZE / 4];
			}
		} else
		{
			tr.triangleTable[i] = -tr.triangleTable[i - FUNCTABLE_SIZE / 2];
		}
	}

	R_InitFogTable();

	R_NoiseInit();

	R_Register();

	// Ridah, init the virtual memory
	R_Hunk_Begin();

	max_polys = r_maxpolys->integer;
	if ( max_polys < MAX_POLYS ) {
		max_polys = MAX_POLYS;
	}

	max_polyverts = r_maxpolyverts->integer;
	if ( max_polyverts < MAX_POLYVERTS ) {
		max_polyverts = MAX_POLYVERTS;
	}

//	backEndData[0] = ri.Hunk_Alloc( sizeof( *backEndData[0] ), h_low );
	backEndData[0] = ri.Hunk_Alloc( sizeof( *backEndData[0] ) + sizeof( srfPoly_t ) * max_polys + sizeof( polyVert_t ) * max_polyverts, h_low );

	if ( r_smp->integer ) {
//		backEndData[1] = ri.Hunk_Alloc( sizeof( *backEndData[1] ), h_low );
		backEndData[1] = ri.Hunk_Alloc( sizeof( *backEndData[1] ) + sizeof( srfPoly_t ) * max_polys + sizeof( polyVert_t ) * max_polyverts, h_low );
	} else {
		backEndData[1] = NULL;
	}
	R_ToggleSmpFrame();

	InitOpenGL();

	R_InitImages();



	R_InitShaders();

	R_InitSkins();

	R_ModelInit();

	R_InitFreeType();

	RB_ZombieFXInit();

	err = qglGetError();
	if ( err != GL_NO_ERROR ) {
		ri.Printf( PRINT_ALL, "glGetError() = 0x%x\n", err );
	}

	ri.Printf( PRINT_ALL, "----- finished R_Init -----\n" );
}
Esempio n. 4
0
/*
===============
R_Init
===============
*/
void R_Init(void)
{
	int  err;
	int  i;
	byte *ptr;

	ri.Printf(PRINT_ALL, "----- R_Init -----\n");

	// clear all our internal state
	Com_Memset(&tr, 0, sizeof(tr));
	Com_Memset(&backEnd, 0, sizeof(backEnd));
	Com_Memset(&tess, 0, sizeof(tess));

	tess.xyz          = tess_xyz;
	tess.texCoords0   = tess_texCoords0;
	tess.texCoords1   = tess_texCoords1;
	tess.indexes      = tess_indexes;
	tess.normal       = tess_normal;
	tess.vertexColors = tess_vertexColors;

	tess.maxShaderVerts    = SHADER_MAX_VERTEXES;
	tess.maxShaderIndicies = SHADER_MAX_INDEXES;

	if ((intptr_t) tess.xyz & 15)
	{
		ri.Printf(PRINT_WARNING, "tess.xyz not 16 byte aligned\n");
	}
	Com_Memset(tess.constantColor255, 255, sizeof(tess.constantColor255));

	// init function tables
	for (i = 0; i < FUNCTABLE_SIZE; i++)
	{
		tr.sinTable[i]             = sin(DEG2RAD(i * 360.0f / (( float ) (FUNCTABLE_SIZE - 1))));
		tr.squareTable[i]          = (i < FUNCTABLE_SIZE / 2) ? 1.0f : -1.0f;
		tr.sawToothTable[i]        = ( float ) i / FUNCTABLE_SIZE;
		tr.inverseSawToothTable[i] = 1.0f - tr.sawToothTable[i];

		if (i < FUNCTABLE_SIZE / 2)
		{
			if (i < FUNCTABLE_SIZE / 4)
			{
				tr.triangleTable[i] = ( float ) i / (FUNCTABLE_SIZE / 4);
			}
			else
			{
				tr.triangleTable[i] = 1.0f - tr.triangleTable[i - FUNCTABLE_SIZE / 4];
			}
		}
		else
		{
			tr.triangleTable[i] = -tr.triangleTable[i - FUNCTABLE_SIZE / 2];
		}
	}

	// init the virtual memory
	R_Hunk_Begin();

	R_NoiseInit();

	R_Register();

	ptr = ri.Hunk_Alloc(sizeof(*backEndData) + sizeof(srfPoly_t) * r_maxpolys->integer + sizeof(polyVert_t) * r_maxpolyverts->integer, h_low);

	backEndData            = (backEndData_t *) ptr;
	backEndData->polys     = (srfPoly_t *) ((char *) ptr + sizeof(*backEndData));
	backEndData->polyVerts = (polyVert_t *) ((char *) ptr + sizeof(*backEndData) + sizeof(srfPoly_t) * r_maxpolys->integer);

	R_InitNextFrame();

	InitOpenGL();

	R_InitImages();

	R_InitShaders();

	R_InitSkins();

	R_ModelInit();

	R_InitFreeType();

	err = qglGetError();
	if (err != GL_NO_ERROR)
	{
		ri.Printf(PRINT_ALL, "glGetError() = 0x%x\n", err);
	}

	ri.Printf(PRINT_ALL, "----- finished R_Init -----\n");
}
Esempio n. 5
0
/**
 * @brief R_Init
 */
void R_Init(void)
{
	int  err;
	int  i;
	byte *ptr;

	Ren_Print("----- R_Init -----\n");

	// clear all our internal state
	Com_Memset(&tr, 0, sizeof(tr));
	Com_Memset(&backEnd, 0, sizeof(backEnd));
	Com_Memset(&tess, 0, sizeof(tess));

	if ((intptr_t) tess.xyz & 15)
	{
		Ren_Warning("tess.xyz not 16 byte aligned\n");
	}
	Com_Memset(tess.constantColor255, 255, sizeof(tess.constantColor255));

	// init function tables
	for (i = 0; i < FUNCTABLE_SIZE; i++)
	{
		tr.sinTable[i]             = sin(DEG2RAD(i * 360.0f / (( float ) (FUNCTABLE_SIZE - 1))));
		tr.squareTable[i]          = (i < FUNCTABLE_SIZE / 2) ? 1.0f : -1.0f;
		tr.sawToothTable[i]        = ( float ) i / FUNCTABLE_SIZE;
		tr.inverseSawToothTable[i] = 1.0f - tr.sawToothTable[i];

		if (i < FUNCTABLE_SIZE / 2)
		{
			if (i < FUNCTABLE_SIZE / 4)
			{
				tr.triangleTable[i] = ( float ) i / (FUNCTABLE_SIZE / 4);
			}
			else
			{
				tr.triangleTable[i] = 1.0f - tr.triangleTable[i - FUNCTABLE_SIZE / 4];
			}
		}
		else
		{
			tr.triangleTable[i] = -tr.triangleTable[i - FUNCTABLE_SIZE / 2];
		}
	}

	// init the virtual memory
	R_Hunk_Begin();

	R_NoiseInit();

	R_Register();

	ptr = ri.Hunk_Alloc(sizeof(*backEndData) + sizeof(srfPoly_t) * r_maxPolys->integer + sizeof(polyVert_t) * r_maxPolyVerts->integer, h_low);

	backEndData            = (backEndData_t *) ptr;
	backEndData->polys     = (srfPoly_t *) ((char *) ptr + sizeof(*backEndData));
	backEndData->polyVerts = (polyVert_t *) ((char *) ptr + sizeof(*backEndData) + sizeof(srfPoly_t) * r_maxPolys->integer);

	R_InitNextFrame();

	InitOpenGL();

	R_InitImages();

	R_InitShaders();

	R_InitSkins();

	R_ModelInit();

	R_InitFreeType();

	err = qglGetError();
	if (err != GL_NO_ERROR)
	{
		Ren_Print("R_Init: glGetError() = 0x%x\n", err);
	}

	Ren_Print("----- finished R_Init -----\n");
}