Esempio n. 1
0
/*
 * Abramowitz and Stegun 6.5.29 [right]
 */
static double
pgamma_smallx (double x, double alph, int lower_tail, int log_p)
{
    double sum = 0, c = alph, n = 0, term;

#ifdef DEBUG_p
    REprintf (" pg_smallx(x=%.12g, alph=%.12g): ", x, alph);
#endif

    /*
     * Relative to 6.5.29 all terms have been multiplied by alph
     * and the first, thus being 1, is omitted.
     */

    do {
	n++;
	c *= -x / n;
	term = c / (alph + n);
	sum += term;
    } while (fabs (term) > DBL_EPSILON * fabs (sum));

#ifdef DEBUG_p
    REprintf ("%5.0f terms --> conv.sum=%g;", n, sum);
#endif
    if (lower_tail) {
	double f1 = log_p ? log1p (sum) : 1 + sum;
	double f2;
	if (alph > 1) {
	    f2 = dpois_raw (alph, x, log_p);
	    f2 = log_p ? f2 + x : f2 * exp (x);
	} else if (log_p)
	    f2 = alph * log (x) - lgamma1p (alph);
	else
	    f2 = pow (x, alph) / exp (lgamma1p (alph));
#ifdef DEBUG_p
    REprintf (" (f1,f2)= (%g,%g)\n", f1,f2);
#endif
	return log_p ? f1 + f2 : f1 * f2;
    } else {
	double lf2 = alph * log (x) - lgamma1p (alph);
#ifdef DEBUG_p
	REprintf (" 1:%.14g  2:%.14g\n", alph * log (x), lgamma1p (alph));
	REprintf (" sum=%.14g  log(1+sum)=%.14g	 lf2=%.14g\n",
		  sum, log1p (sum), lf2);
#endif
	if (log_p)
	    return R_Log1_Exp (log1p (sum) + lf2);
	else {
	    double f1m1 = sum;
	    double f2m1 = expm1 (lf2);
	    return -(f1m1 + f2m1 + f1m1 * f2m1);
	}
    }
} /* pgamma_smallx() */
Esempio n. 2
0
double pweibull(double x, double shape, double scale, int lower_tail, int log_p)
{
#ifdef IEEE_754
    if (ISNAN(x) || ISNAN(shape) || ISNAN(scale))
	return x + shape + scale;
#endif
    if(shape <= 0 || scale <= 0) ML_ERR_return_NAN;

    if (x <= 0)
	return R_DT_0;
    x = -pow(x / scale, shape);
    return lower_tail
	? (log_p ? R_Log1_Exp(x) : -expm1(x))
	: R_D_exp(x);
}
Esempio n. 3
0
double pweibull(double x, double shape, double scale, int lower_tail, int log_p)
{
#ifdef IEEE_754
    if (ISNAN(x) || ISNAN(shape) || ISNAN(scale))
        return x + shape + scale;
#endif
    if(shape <= 0 || scale <= 0) ML_ERR_return_NAN;

    if (x <= 0)
        return R_DT_0;
    x = -pow(x / scale, shape);
    if (lower_tail)
        return (log_p
                /* log(1 - exp(x))  for x < 0 : */
                ? R_Log1_Exp(x) : -expm1(x));
    /* else:  !lower_tail */
    return R_D_exp(x);
}
Esempio n. 4
0
double pexp(double x, double scale, int lower_tail, int log_p)
{
#ifdef IEEE_754
    if (ISNAN(x) || ISNAN(scale))
	return x + scale;
    if (scale < 0) ML_ERR_return_NAN;
#else
    if (scale <= 0) ML_ERR_return_NAN;
#endif

    if (x <= 0.)
	return R_DT_0;
    /* same as weibull( shape = 1): */
    x = -(x / scale);
    return lower_tail
	? (log_p ? R_Log1_Exp(x) : -expm1(x))
	: R_D_exp(x);
}
Esempio n. 5
0
double pgamma_raw (double x, double alph, int lower_tail, int log_p)
{
/* Here, assume that  (x,alph) are not NA  &  alph > 0 . */

    double res;

#ifdef DEBUG_p
    REprintf("pgamma_raw(x=%.14g, alph=%.14g, low=%d, log=%d)\n",
	     x, alph, lower_tail, log_p);
#endif
    R_P_bounds_01(x, 0., ML_POSINF);

    if (x < 1) {
	res = pgamma_smallx (x, alph, lower_tail, log_p);
    } else if (x <= alph - 1 && x < 0.8 * (alph + 50)) {
	/* incl. large alph compared to x */
	double sum = pd_upper_series (x, alph, log_p);/* = x/alph + o(x/alph) */
	double d = dpois_wrap (alph, x, log_p);
#ifdef DEBUG_p
	REprintf(" alph 'large': sum=pd_upper*()= %.12g, d=dpois_w(*)= %.12g\n",
		 sum, d);
#endif
	if (!lower_tail)
	    res = log_p
		? R_Log1_Exp (d + sum)
		: 1 - d * sum;
	else
	    res = log_p ? sum + d : sum * d;
    } else if (alph - 1 < x && alph < 0.8 * (x + 50)) {
	/* incl. large x compared to alph */
	double sum;
	double d = dpois_wrap (alph, x, log_p);
#ifdef DEBUG_p
	REprintf(" x 'large': d=dpois_w(*)= %.14g ", d);
#endif
	if (alph < 1) {
	    if (x * DBL_EPSILON > 1 - alph)
		sum = R_D__1;
	    else {
		double f = pd_lower_cf (alph, x - (alph - 1)) * x / alph;
		/* = [alph/(x - alph+1) + o(alph/(x-alph+1))] * x/alph = 1 + o(1) */
		sum = log_p ? log (f) : f;
	    }
	} else {
	    sum = pd_lower_series (x, alph - 1);/* = (alph-1)/x + o((alph-1)/x) */
	    sum = log_p ? log1p (sum) : 1 + sum;
	}
#ifdef DEBUG_p
	REprintf(", sum= %.14g\n", sum);
#endif
	if (!lower_tail)
	    res = log_p ? sum + d : sum * d;
	else
	    res = log_p
		? R_Log1_Exp (d + sum)
		: 1 - d * sum;
    } else { /* x >= 1 and x fairly near alph. */
#ifdef DEBUG_p
	REprintf(" using ppois_asymp()\n");
#endif
	res = ppois_asymp (alph - 1, x, !lower_tail, log_p);
    }

    /*
     * We lose a fair amount of accuracy to underflow in the cases
     * where the final result is very close to DBL_MIN.	 In those
     * cases, simply redo via log space.
     */
    if (!log_p && res < DBL_MIN / DBL_EPSILON) {
	/* with(.Machine, double.xmin / double.eps) #|-> 1.002084e-292 */
#ifdef DEBUG_p
	REprintf(" very small res=%.14g; -> recompute via log\n", res);
#endif
	return exp (pgamma_raw (x, alph, lower_tail, 1));
    } else
	return res;
}
Esempio n. 6
0
/*
 * Compute the log of a difference from logs of terms, i.e.,
 *
 *     log (exp (logx) - exp (logy))
 *
 * without causing overflows and without throwing away large handfuls
 * of accuracy.
 */
double logspace_sub (double logx, double logy)
{
    return logx + R_Log1_Exp(logy - logx);
}
Esempio n. 7
0
File: qt.c Progetto: 6e441f9c/julia
double qt(double p, double ndf, int lower_tail, int log_p)
{
    const static double eps = 1.e-12;

    double P, q;
    Rboolean neg;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(ndf))
	return p + ndf;
#endif

    R_Q_P01_boundaries(p, ML_NEGINF, ML_POSINF);

    if (ndf <= 0) ML_ERR_return_NAN;

    if (ndf < 1) { /* based on qnt */
	const static double accu = 1e-13;
	const static double Eps = 1e-11; /* must be > accu */

	double ux, lx, nx, pp;
	
	int iter = 0;

	p = R_DT_qIv(p);

	/* Invert pt(.) :
	 * 1. finding an upper and lower bound */
	if(p > 1 - DBL_EPSILON) return ML_POSINF;
	pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
	for(ux = 1.; ux < DBL_MAX && pt(ux, ndf, TRUE, FALSE) < pp; ux *= 2);
	pp = p * (1 - Eps);
	for(lx =-1.; lx > -DBL_MAX && pt(lx, ndf, TRUE, FALSE) > pp; lx *= 2);

	/* 2. interval (lx,ux)  halving
	   regula falsi failed on qt(0.1, 0.1)
	 */
	do {
	    nx = 0.5 * (lx + ux);
	    if (pt(nx, ndf, TRUE, FALSE) > p) ux = nx; else lx = nx;
	} while ((ux - lx) / fabs(nx) > accu && ++iter < 1000);

	if(iter >= 1000) ML_ERROR(ME_PRECISION, "qt");

	return 0.5 * (lx + ux);
    }

    /* Old comment:
     * FIXME: "This test should depend on  ndf  AND p  !!
     * -----  and in fact should be replaced by
     * something like Abramowitz & Stegun 26.7.5 (p.949)"
     *
     * That would say that if the qnorm value is x then
     * the result is about x + (x^3+x)/4df + (5x^5+16x^3+3x)/96df^2
     * The differences are tiny even if x ~ 1e5, and qnorm is not
     * that accurate in the extreme tails.
     */
    if (ndf > 1e20) return qnorm(p, 0., 1., lower_tail, log_p);

    P = R_D_qIv(p); /* if exp(p) underflows, we fix below */

    neg = (!lower_tail || P < 0.5) && (lower_tail || P > 0.5);
    if(neg)
	P = 2 * (log_p ? (lower_tail ? P : -expm1(p)) : R_D_Lval(p));
    else
	P = 2 * (log_p ? (lower_tail ? -expm1(p) : P) : R_D_Cval(p));
    /* 0 <= P <= 1 ; P = 2*min(P', 1 - P')  in all cases */

/* Use this if(log_p) only : */
#define P_is_exp_2p (lower_tail == neg) /* both TRUE or FALSE == !xor */

     if (fabs(ndf - 2) < eps) {	/* df ~= 2 */
	if(P > DBL_MIN) {
	    if(3* P < DBL_EPSILON) /* P ~= 0 */
		q = 1 / sqrt(P);
	    else if (P > 0.9)	   /* P ~= 1 */
		q = (1 - P) * sqrt(2 /(P * (2 - P)));
	    else /* eps/3 <= P <= 0.9 */
		q = sqrt(2 / (P * (2 - P)) - 2);
	}
	else { /* P << 1, q = 1/sqrt(P) = ... */
	    if(log_p)
		q = P_is_exp_2p ? exp(- p/2) / M_SQRT2 : 1/sqrt(-expm1(p));
	    else
		q = ML_POSINF;
	}
    }
    else if (ndf < 1 + eps) { /* df ~= 1  (df < 1 excluded above): Cauchy */
	if(P > 0)
	    q = 1/tan(P * M_PI_2);/* == - tan((P+1) * M_PI_2) -- suffers for P ~= 0 */

	else { /* P = 0, but maybe = 2*exp(p) ! */
	    if(log_p) /* 1/tan(e) ~ 1/e */
		q = P_is_exp_2p ? M_1_PI * exp(-p) : -1./(M_PI * expm1(p));
	    else
		q = ML_POSINF;
	}
    }
    else {		/*-- usual case;  including, e.g.,  df = 1.1 */
	double x = 0., y, log_P2 = 0./* -Wall */,
	    a = 1 / (ndf - 0.5),
	    b = 48 / (a * a),
	    c = ((20700 * a / b - 98) * a - 16) * a + 96.36,
	    d = ((94.5 / (b + c) - 3) / b + 1) * sqrt(a * M_PI_2) * ndf;

	Rboolean P_ok1 = P > DBL_MIN || !log_p,  P_ok = P_ok1;
	if(P_ok1) {
	    y = pow(d * P, 2 / ndf);
	    P_ok = (y >= DBL_EPSILON);
	}
	if(!P_ok) { /* log_p && P very small */
	    log_P2 = P_is_exp_2p ? p : R_Log1_Exp(p); /* == log(P / 2) */
	    x = (log(d) + M_LN2 + log_P2) / ndf;
	    y = exp(2 * x);
	}

	if ((ndf < 2.1 && P > 0.5) || y > 0.05 + a) { /* P > P0(df) */
	    /* Asymptotic inverse expansion about normal */
	    if(P_ok)
		x = qnorm(0.5 * P, 0., 1., /*lower_tail*/TRUE,  /*log_p*/FALSE);
	    else /* log_p && P underflowed */
		x = qnorm(log_P2,  0., 1., lower_tail,	        /*log_p*/ TRUE);

	    y = x * x;
	    if (ndf < 5)
		c += 0.3 * (ndf - 4.5) * (x + 0.6);
	    c = (((0.05 * d * x - 5) * x - 7) * x - 2) * x + b + c;
	    y = (((((0.4 * y + 6.3) * y + 36) * y + 94.5) / c
		  - y - 3) / b + 1) * x;
	    y = expm1(a * y * y);
	    q = sqrt(ndf * y);
	} else { /* re-use 'y' from above */

	    if(!P_ok && x < - M_LN2 * DBL_MANT_DIG) {/* 0.5* log(DBL_EPSILON) */
		/* y above might have underflown */
		q = sqrt(ndf) * exp(-x);
	    }
	    else {
		y = ((1 / (((ndf + 6) / (ndf * y) - 0.089 * d - 0.822)
			   * (ndf + 2) * 3) + 0.5 / (ndf + 4))
		     * y - 1) * (ndf + 1) / (ndf + 2) + 1 / y;
		q = sqrt(ndf * y);
	    }
	}


	/* Now apply 2-term Taylor expansion improvement (1-term = Newton):
	 * as by Hill (1981) [ref.above] */

	/* FIXME: This can be far from optimal when log_p = TRUE
	 *      but is still needed, e.g. for qt(-2, df=1.01, log=TRUE).
	 *	Probably also improvable when  lower_tail = FALSE */

	if(P_ok1) {
	    int it=0;
	    while(it++ < 10 && (y = dt(q, ndf, FALSE)) > 0 &&
		  R_FINITE(x = (pt(q, ndf, FALSE, FALSE) - P/2) / y) &&
		  fabs(x) > 1e-14*fabs(q))
		/* Newton (=Taylor 1 term):
		 *  q += x;
		 * Taylor 2-term : */
		q += x * (1. + x * q * (ndf + 1) / (2 * (q * q + ndf)));
	}
    }
    if(neg) q = -q;
    return q;
}
Esempio n. 8
0
// Returns both qbeta() and its "mirror" 1-qbeta(). Useful notably when qbeta() ~= 1
attribute_hidden void
qbeta_raw(double alpha, double p, double q, int lower_tail, int log_p,
	  int swap_01, // {TRUE, NA, FALSE}: if NA, algorithm decides swap_tail
	  double log_q_cut, /* if == Inf: return log(qbeta(..));
			       otherwise, if finite: the bound for
			       switching to log(x)-scale; see use_log_x */
	  int n_N,  // number of "unconstrained" Newton steps before switching to constrained
	  double *qb) // = qb[0:1] = { qbeta(), 1 - qbeta() }
{
    Rboolean
	swap_choose = (swap_01 == MLOGICAL_NA),
	swap_tail,
	log_, give_log_q = (log_q_cut == ML_POSINF),
	use_log_x = give_log_q, // or u < log_q_cut  below
	warned = FALSE, add_N_step = TRUE;
    int i_pb, i_inn;
    double a, la, logbeta, g, h, pp, p_, qq, r, s, t, w, y = -1.;
    volatile double u, xinbta;

    // Assuming p >= 0, q >= 0  here ...

    // Deal with boundary cases here:
    if(alpha == R_DT_0) {
#define return_q_0						\
	if(give_log_q) { qb[0] = ML_NEGINF; qb[1] = 0; }	\
	else {           qb[0] = 0;         qb[1] = 1; }	\
	return

	return_q_0;
    }
    if(alpha == R_DT_1) {
#define return_q_1						\
	if(give_log_q) { qb[0] = 0; qb[1] = ML_NEGINF; }	\
	else {           qb[0] = 1; qb[1] = 0;         }	\
	return

	return_q_1;
    }

    // check alpha {*before* transformation which may all accuracy}:
    if((log_p && alpha > 0) ||
       (!log_p && (alpha < 0 || alpha > 1))) { // alpha is outside
	R_ifDEBUG_printf("qbeta(alpha=%g, %g, %g, .., log_p=%d): %s%s\n",
			 alpha, p,q, log_p, "alpha not in ",
			 log_p ? "[-Inf, 0]" : "[0,1]");
	// ML_ERR_return_NAN :
	ML_ERROR(ME_DOMAIN, "");
	qb[0] = qb[1] = ML_NAN; return;
    }

    //  p==0, q==0, p = Inf, q = Inf  <==> treat as one- or two-point mass
    if(p == 0 || q == 0 || !R_FINITE(p) || !R_FINITE(q)) {
	// We know 0 < T(alpha) < 1 : pbeta() is constant and trivial in {0, 1/2, 1}
	R_ifDEBUG_printf(
	    "qbeta(%g, %g, %g, lower_t=%d, log_p=%d): (p,q)-boundary: trivial\n",
	    alpha, p,q, lower_tail, log_p);
	if(p == 0 && q == 0) { // point mass 1/2 at each of {0,1} :
	    if(alpha < R_D_half) { return_q_0; }
	    if(alpha > R_D_half) { return_q_1; }
	    // else:  alpha == "1/2"
#define return_q_half					\
	    if(give_log_q) qb[0] = qb[1] = -M_LN2;	\
	    else	   qb[0] = qb[1] = 0.5;		\
	    return

	    return_q_half;
	} else if (p == 0 || p/q == 0) { // point mass 1 at 0 - "flipped around"
	    return_q_0;
	} else if (q == 0 || q/p == 0) { // point mass 1 at 0 - "flipped around"
	    return_q_1;
	}
	// else:  p = q = Inf : point mass 1 at 1/2
	return_q_half;
    }

    /* initialize */
    p_ = R_DT_qIv(alpha);/* lower_tail prob (in any case) */
    // Conceptually,  0 < p_ < 1  (but can be 0 or 1 because of cancellation!)
    logbeta = lbeta(p, q);

    swap_tail = (swap_choose) ? (p_ > 0.5) : swap_01;
    // change tail; default (swap_01 = NA): afterwards 0 < a <= 1/2
    if(swap_tail) { /* change tail, swap  p <-> q :*/
	a = R_DT_CIv(alpha); // = 1 - p_ < 1/2
	/* la := log(a), but without numerical cancellation: */
	la = R_DT_Clog(alpha);
	pp = q; qq = p;
    }
    else {
	a = p_;
	la = R_DT_log(alpha);
	pp = p; qq = q;
    }

    /* calculate the initial approximation */

    /* Desired accuracy for Newton iterations (below) should depend on  (a,p)
     * This is from Remark .. on AS 109, adapted.
     * However, it's not clear if this is "optimal" for IEEE double prec.

     * acu = fmax2(acu_min, pow(10., -25. - 5./(pp * pp) - 1./(a * a)));

     * NEW: 'acu' accuracy NOT for squared adjustment, but simple;
     * ---- i.e.,  "new acu" = sqrt(old acu)
    */
    double acu = fmax2(acu_min, pow(10., -13. - 2.5/(pp * pp) - 0.5/(a * a)));
    // try to catch  "extreme left tail" early
    double tx, u0 = (la + log(pp) + logbeta) / pp; // = log(x_0)
    static const double
	log_eps_c = M_LN2 * (1. - DBL_MANT_DIG);// = log(DBL_EPSILON) = -36.04..
    r = pp*(1.-qq)/(pp+1.);

    t = 0.2;
    // FIXME: Factor 0.2 is a bit arbitrary;  '1' is clearly much too much.

    R_ifDEBUG_printf(
	"qbeta(%g, %g, %g, lower_t=%d, log_p=%d):%s\n"
	"  swap_tail=%d, la=%g, u0=%g (bnd: %g (%g)) ",
	alpha, p,q, lower_tail, log_p,
	(log_p && (p_ == 0. || p_ == 1.)) ? (p_==0.?" p_=0":" p_=1") : "",
	swap_tail, la, u0,
	(t*log_eps_c - log(fabs(pp*(1.-qq)*(2.-qq)/(2.*(pp+2.)))))/2.,
	 t*log_eps_c - log(fabs(r))
	);

    if(M_LN2 * DBL_MIN_EXP < u0 && // cannot allow exp(u0) = 0 ==> exp(u1) = exp(u0) = 0
       u0 < -0.01 && // (must: u0 < 0, but too close to 0 <==> x = exp(u0) = 0.99..)
       // qq <= 2 && // <--- "arbitrary"
       // u0 <  t*log_eps_c - log(fabs(r)) &&
       u0 < (t*log_eps_c - log(fabs(pp*(1.-qq)*(2.-qq)/(2.*(pp+2.)))))/2.)
    {
// TODO: maybe jump here from below, when initial u "fails" ?
// L_tail_u:
	// MM's one-step correction (cheaper than 1 Newton!)
	r = r*exp(u0);// = r*x0
	if(r > -1.) {
	    u = u0 - log1p(r)/pp;
	    R_ifDEBUG_printf("u1-u0=%9.3g --> choosing u = u1\n", u-u0);
	} else {
	    u = u0;
	    R_ifDEBUG_printf("cannot cheaply improve u0\n");
	}
	tx = xinbta = exp(u);
	use_log_x = TRUE; // or (u < log_q_cut)  ??
	goto L_Newton;
    }

    // y := y_\alpha in AS 64 := Hastings(1955) approximation of qnorm(1 - a) :
    r = sqrt(-2 * la);
    y = r - (const1 + const2 * r) / (1. + (const3 + const4 * r) * r);

    if (pp > 1 && qq > 1) { // use  Carter(1947), see AS 109, remark '5.'
	r = (y * y - 3.) / 6.;
	s = 1. / (pp + pp - 1.);
	t = 1. / (qq + qq - 1.);
	h = 2. / (s + t);
	w = y * sqrt(h + r) / h - (t - s) * (r + 5. / 6. - 2. / (3. * h));
	R_ifDEBUG_printf("p,q > 1 => w=%g", w);
	if(w > 300) { // exp(w+w) is huge or overflows
	    t = w+w + log(qq) - log(pp); // = argument of log1pexp(.)
	    u = // log(xinbta) = - log1p(qq/pp * exp(w+w)) = -log(1 + exp(t))
		(t <= 18) ? -log1p(exp(t)) : -t - exp(-t);
	    xinbta = exp(u);
	} else {
	    xinbta = pp / (pp + qq * exp(w + w));
	    u = // log(xinbta)
		- log1p(qq/pp * exp(w+w));
	}
    } else { // use the original AS 64 proposal, Scheffé-Tukey (1944) and Wilson-Hilferty
	r = qq + qq;
	/* A slightly more stable version of  t := \chi^2_{alpha} of AS 64
	 * t = 1. / (9. * qq); t = r * R_pow_di(1. - t + y * sqrt(t), 3);  */
	t = 1. / (3. * sqrt(qq));
	t = r * R_pow_di(1. + t*(-t + y), 3);// = \chi^2_{alpha} of AS 64
	s = 4. * pp + r - 2.;// 4p + 2q - 2 = numerator of new t = (...) / chi^2
	R_ifDEBUG_printf("min(p,q) <= 1: t=%g", t);
	if (t == 0 || (t < 0. && s >= t)) { // cannot use chisq approx
	    // x0 = 1 - { (1-a)*q*B(p,q) } ^{1/q}    {AS 65}
	    // xinbta = 1. - exp((log(1-a)+ log(qq) + logbeta) / qq);
	    double l1ma;/* := log(1-a), directly from alpha (as 'la' above):
			 * FIXME: not worth it? log1p(-a) always the same ?? */
	    if(swap_tail)
		l1ma = R_DT_log(alpha);
	    else
		l1ma = R_DT_Clog(alpha);
	    R_ifDEBUG_printf(" t <= 0 : log1p(-a)=%.15g, better l1ma=%.15g\n", log1p(-a), l1ma);
	    double xx = (l1ma + log(qq) + logbeta) / qq;
	    if(xx <= 0.) {
		xinbta = -expm1(xx);
		u = R_Log1_Exp (xx);// =  log(xinbta) = log(1 - exp(...A...))
	    } else { // xx > 0 ==> 1 - e^xx < 0 .. is nonsense
		R_ifDEBUG_printf(" xx=%g > 0: xinbta:= 1-e^xx < 0\n", xx);
		xinbta = 0; u = ML_NEGINF; /// FIXME can do better?
	    }
	} else {
	    t = s / t;
	    R_ifDEBUG_printf(" t > 0 or s < t < 0:  new t = %g ( > 1 ?)\n", t);
	    if (t <= 1.) { // cannot use chisq, either
		u = (la + log(pp) + logbeta) / pp;
		xinbta = exp(u);
	    } else { // (1+x0)/(1-x0) = t,  solved for x0 :
		xinbta = 1. - 2. / (t + 1.);
		u = log1p(-2. / (t + 1.));
	    }
	}
    }

    // Problem: If initial u is completely wrong, we make a wrong decision here
    if(swap_choose &&
       (( swap_tail && u >= -exp(  log_q_cut)) || // ==> "swap back"
	(!swap_tail && u >= -exp(4*log_q_cut) && pp / qq < 1000.))) { // ==> "swap now" (much less easily)
	// "revert swap" -- and use_log_x
	swap_tail = !swap_tail;
	R_ifDEBUG_printf(" u = %g (e^u = xinbta = %.16g) ==> ", u, xinbta);
	if(swap_tail) {
	    a = R_DT_CIv(alpha); // needed ?
	    la = R_DT_Clog(alpha);
	    pp = q; qq = p;
	}
	else {
	    a = p_;
	    la = R_DT_log(alpha);
	    pp = p; qq = q;
	}
	R_ifDEBUG_printf("\"%s\"; la = %g\n",
			 (swap_tail ? "swap now" : "swap back"), la);
	// we could redo computations above, but this should be stable
	u = R_Log1_Exp(u);
	xinbta = exp(u);

/* Careful: "swap now"  should not fail if
   1) the above initial xinbta is "completely wrong"
   2) The correction step can go outside (u_n > 0 ==>  e^u > 1 is illegal)
   e.g., for
	qbeta(0.2066, 0.143891, 0.05)
*/
    }

    if(!use_log_x)
	use_log_x = (u < log_q_cut);//(per default) <==> xinbta = e^u < 4.54e-5
    Rboolean
	bad_u = !R_FINITE(u),
	bad_init = bad_u || xinbta > p_hi;

    R_ifDEBUG_printf(" -> u = %g, e^u = xinbta = %.16g, (Newton acu=%g%s)\n",
	     u, xinbta, acu,
	     (bad_u ? ", ** bad u **" :
	      (use_log_x ? ", on u = log(x) scale" : "")));

    double u_n = 1.; // -Wall
    tx = xinbta; // keeping "original initial x" (for now)

    if(bad_u || u < log_q_cut) { /* e.g.
		    qbeta(0.21, .001, 0.05)
		    try "left border" quickly, i.e.,
		    try at smallest positive number: */
	w = pbeta_raw(DBL_very_MIN, pp, qq, TRUE, log_p);
	if(w > (log_p ? la : a)) {
	    R_ifDEBUG_printf(" quantile is left of smallest positive number; \"convergence\"\n");
	    if(log_p || fabs(w - a) < fabs(0 - a)) { // DBL_very_MIN is better than 0
		tx   = DBL_very_MIN;
		u_n  = DBL_log_v_MIN;// = log(DBL_very_MIN)
	    } else {
		tx   = 0.;
		u_n  = ML_NEGINF;
	    }
	    use_log_x = log_p; add_N_step = FALSE; goto L_return;
	}
	else {
	    R_ifDEBUG_printf(" pbeta(smallest pos.) = %g <= %g  --> continuing\n",
		     w, (log_p ? la : a));
	    if(u  < DBL_log_v_MIN) {
		u = DBL_log_v_MIN;// = log(DBL_very_MIN)
		xinbta = DBL_very_MIN;
	    }
	}
    }


    /* Sometimes the approximation is negative (and == 0 is also not "ok") */
    if (bad_init && !(use_log_x && tx > 0)) {
	if(u == ML_NEGINF) {
	    R_ifDEBUG_printf("  u = -Inf;");
	    u = M_LN2 * DBL_MIN_EXP;
	    xinbta = DBL_MIN;
	} else {
	    R_ifDEBUG_printf(" bad_init: u=%g, xinbta=%g;", u,xinbta);
	    xinbta = (xinbta > 1.1) // i.e. "way off"
		? 0.5 // otherwise, keep the respective boundary:
		: ((xinbta < p_lo) ? exp(u) : p_hi);
	    if(bad_u)
		u = log(xinbta);
	    // otherwise: not changing "potentially better" u than the above
	}
	R_ifDEBUG_printf(" -> (partly)new u=%g, xinbta=%g\n", u,xinbta);
    }

L_Newton:
    /* --------------------------------------------------------------------

     * Solve for x by a modified Newton-Raphson method, using pbeta_raw()
     */
    r = 1 - pp;
    t = 1 - qq;
    double wprev = 0., prev = 1., adj = 1.; // -Wall

    if(use_log_x) { // find  log(xinbta) -- work in  u := log(x) scale
	// if(bad_init && tx > 0) xinbta = tx;// may have been better

	for (i_pb=0; i_pb < 1000; i_pb++) {
	    // using log_p == TRUE  unconditionally here
	    // FIXME: if exp(u) = xinbta underflows to 0, like different formula pbeta_log(u, *)
	    y = pbeta_raw(xinbta, pp, qq, /*lower_tail = */ TRUE, TRUE);

	    /* w := Newton step size for   L(u) = log F(e^u)  =!= 0;   u := log(x)
	     *   =  (L(.) - la) / L'(.);  L'(u)= (F'(e^u) * e^u ) / F(e^u)
	     *   =  (L(.) - la)*F(.) / {F'(e^u) * e^u } =
	     *   =  (L(.) - la) * e^L(.) * e^{-log F'(e^u) - u}
	     *   =  ( y   - la) * e^{ y - u -log F'(e^u)}
		and  -log F'(x)= -log f(x) =  + logbeta + (1-p) log(x) + (1-q) log(1-x)
			       = logbeta + (1-p) u + (1-q) log(1-e^u)
	     */
	    w = (y == ML_NEGINF) // y = -Inf  well possible: we are on log scale!
		? 0. : (y - la) * exp(y - u + logbeta + r * u + t * R_Log1_Exp(u));
	    if(!R_FINITE(w))
		break;
	    if (i_pb >= n_N && w * wprev <= 0.)
		prev = fmax2(fabs(adj),fpu);
	    R_ifDEBUG_printf("N(i=%2d): u=%#20.16g, pb(e^u)=%#12.6g, w=%#15.9g, %s prev=%11g,",
			     i_pb, u, y, w, (w * wprev <= 0.) ? "new" : "old", prev);
	    g = 1;
	    for (i_inn=0; i_inn < 1000; i_inn++) {
		adj = g * w;
		// take full Newton steps at the beginning; only then safe guard:
		if (i_pb < n_N || fabs(adj) < prev) {
		    u_n = u - adj; // u_{n+1} = u_n - g*w
		    if (u_n <= 0.) { // <==> 0 <  xinbta := e^u  <= 1
			if (prev <= acu || fabs(w) <= acu) {
			    /* R_ifDEBUG_printf(" -adj=%g, %s <= acu  ==> convergence\n", */
			    /*	 -adj, (prev <= acu) ? "prev" : "|w|"); */
			    R_ifDEBUG_printf(" it{in}=%d, -adj=%g, %s <= acu  ==> convergence\n",
					     i_inn, -adj, (prev <= acu) ? "prev" : "|w|");
			    goto L_converged;
			}
			// if (u_n != ML_NEGINF && u_n != 1)
			break;
		    }
		}
		g /= 3;
	    }
	    // (cancellation in (u_n -u) => may differ from adj:
	    double D = fmin2(fabs(adj), fabs(u_n - u));
	    /* R_ifDEBUG_printf(" delta(u)=%g\n", u_n - u); */
	    R_ifDEBUG_printf(" it{in}=%d, delta(u)=%9.3g, D/|.|=%.3g\n",
			     i_inn, u_n - u, D/fabs(u_n + u));
	    if (D <= 4e-16 * fabs(u_n + u))
		goto L_converged;
	    u = u_n;
	    xinbta = exp(u);
	    wprev = w;
	} // for(i )

    } else

    for (i_pb=0; i_pb < 1000; i_pb++) {
	y = pbeta_raw(xinbta, pp, qq, /*lower_tail = */ TRUE, log_p);
	// delta{y} :   d_y = y - (log_p ? la : a);
#ifdef IEEE_754
	if(!R_FINITE(y) && !(log_p && y == ML_NEGINF))// y = -Inf  is ok if(log_p)
#else
	if (errno)
#endif
	{ // ML_ERR_return_NAN :
	    ML_ERROR(ME_DOMAIN, "");
	    qb[0] = qb[1] = ML_NAN; return;
	}


	/* w := Newton step size  (F(.) - a) / F'(.)  or,
	 * --   log: (lF - la) / (F' / F) = exp(lF) * (lF - la) / F'
	 */
	w = log_p
	    ? (y - la) * exp(y + logbeta + r * log(xinbta) + t * log1p(-xinbta))
	    : (y - a)  * exp(    logbeta + r * log(xinbta) + t * log1p(-xinbta));
	if (i_pb >= n_N && w * wprev <= 0.)
	    prev = fmax2(fabs(adj),fpu);
	R_ifDEBUG_printf("N(i=%2d): x0=%#17.15g, pb(x0)=%#17.15g, w=%#17.15g, %s prev=%g,",
			 i_pb, xinbta, y, w, (w * wprev <= 0.) ? "new" : "old", prev);
	g = 1;
	for (i_inn=0; i_inn < 1000;i_inn++) {
	    adj = g * w;
	    // take full Newton steps at the beginning; only then safe guard:
	    if (i_pb < n_N || fabs(adj) < prev) {
		tx = xinbta - adj; // x_{n+1} = x_n - g*w
		if (0. <= tx && tx <= 1.) {
		    if (prev <= acu || fabs(w) <= acu) {
			R_ifDEBUG_printf(" it{in}=%d, delta(x)=%g, %s <= acu  ==> convergence\n",
					 i_inn, -adj, (prev <= acu) ? "prev" : "|w|");
			goto L_converged;
		    }
		    if (tx != 0. && tx != 1)
			break;
		}
	    }
	    g /= 3;
	}
	R_ifDEBUG_printf(" it{in}=%d, delta(x)=%g\n", i_inn, tx - xinbta);
	if (fabs(tx - xinbta) <= 4e-16 * (tx + xinbta)) // "<=" : (.) == 0
	    goto L_converged;
	xinbta = tx;
	if(tx == 0) // "we have lost"
	    break;
	wprev = w;
    }

    /*-- NOT converged: Iteration count --*/
    warned = TRUE;
    ML_ERROR(ME_PRECISION, "qbeta");

L_converged:
    log_ = log_p || use_log_x; // only for printing
    R_ifDEBUG_printf(" %s: Final delta(y) = %g%s\n",
	     warned ? "_NO_ convergence" : "converged",
	     y - (log_ ? la : a), (log_ ? " (log_)" : ""));
    if((log_ && y == ML_NEGINF) || (!log_ && y == 0)) {
	// stuck at left, try if smallest positive number is "better"
	w = pbeta_raw(DBL_very_MIN, pp, qq, TRUE, log_);
	if(log_ || fabs(w - a) <= fabs(y - a)) {
	    tx  = DBL_very_MIN;
	    u_n = DBL_log_v_MIN;// = log(DBL_very_MIN)
	}
	add_N_step = FALSE; // not trying to do better anymore
    }
    else if(!warned && (log_ ? fabs(y - la) > 3 : fabs(y - a) > 1e-4)) {
	if(!(log_ && y == ML_NEGINF &&
	    // e.g. qbeta(-1e-10, .2, .03, log=TRUE) cannot get accurate ==> do NOT warn
	     pbeta_raw(DBL_1__eps, // = 1 - eps
		       pp, qq, TRUE, TRUE) > la + 2))
	    MATHLIB_WARNING2( // low accuracy for more platform independent output:
    "qbeta(a, *) =: x0 with |pbeta(x0,*%s) - alpha| = %.5g is not accurate",
	    (log_ ? ", log_" : ""), fabs(y - (log_ ? la : a)));
    }
L_return:
    if(give_log_q) { // ==> use_log_x , too
	if(!use_log_x) // (see if claim above is true)
	    MATHLIB_WARNING(
		"qbeta() L_return, u_n=%g;  give_log_q=TRUE but use_log_x=FALSE -- please report!",
		u_n);
	double r = R_Log1_Exp(u_n);
	if(swap_tail) {
	    qb[0] = r;	 qb[1] = u_n;
	} else {
	    qb[0] = u_n; qb[1] = r;
	}
    } else {
	if(use_log_x) {
	    if(add_N_step) {
		/* add one last Newton step on original x scale, e.g., for
		   qbeta(2^-98, 0.125, 2^-96) */
		xinbta = exp(u_n);
		y = pbeta_raw(xinbta, pp, qq, /*lower_tail = */ TRUE, log_p);
		w = log_p
		    ? (y - la) * exp(y + logbeta + r * log(xinbta) + t * log1p(-xinbta))
		    : (y - a)  * exp(    logbeta + r * log(xinbta) + t * log1p(-xinbta));
		tx = xinbta - w;
		R_ifDEBUG_printf(
		    "Final Newton correction(non-log scale): xinbta=%.16g, y=%g, w=%g. => new tx=%.16g\n",
		    xinbta, y, w, tx);
	    } else {
		if(swap_tail) {
		    qb[0] = -expm1(u_n); qb[1] =  exp  (u_n);
		} else {
		    qb[0] =  exp  (u_n); qb[1] = -expm1(u_n);
		}
		return;
	    }
	}
	if(swap_tail) {
	    qb[0] = 1 - tx;	qb[1] = tx;
	} else {
	    qb[0] = tx;	qb[1] = 1 - tx;
	}
    }
    return;
}
Esempio n. 9
0
double attribute_hidden
pnchisq_raw(double x, double f, double theta /* = ncp */,
	    double errmax, double reltol, int itrmax,
	    Rboolean lower_tail, Rboolean log_p)
{
    double lam, x2, f2, term, bound, f_x_2n, f_2n;
    double l_lam = -1., l_x = -1.; /* initialized for -Wall */
    int n;
    Rboolean lamSml, tSml, is_r, is_b, is_it;
    LDOUBLE ans, u, v, t, lt, lu =-1;

    if (x <= 0.) {
	if(x == 0. && f == 0.) {
#define _L  (-0.5 * theta) // = -lambda
	    return lower_tail ? R_D_exp(_L) : (log_p ? R_Log1_Exp(_L) : -expm1(_L));
	}
	/* x < 0  or {x==0, f > 0} */
	return R_DT_0;
    }
    if(!R_FINITE(x))	return R_DT_1;

    /* This is principally for use from qnchisq */
#ifndef MATHLIB_STANDALONE
    R_CheckUserInterrupt();
#endif

    if(theta < 80) { /* use 110 for Inf, as ppois(110, 80/2, lower.tail=FALSE) is 2e-20 */
	LDOUBLE ans;
	int i;
	// Have  pgamma(x,s) < x^s / Gamma(s+1) (< and ~= for small x)
	// ==> pchisq(x, f) = pgamma(x, f/2, 2) = pgamma(x/2, f/2)
	//                  <  (x/2)^(f/2) / Gamma(f/2+1) < eps
	// <==>  f/2 * log(x/2) - log(Gamma(f/2+1)) < log(eps) ( ~= -708.3964 )
	// <==>        log(x/2) < 2/f*(log(Gamma(f/2+1)) + log(eps))
	// <==> log(x) < log(2) + 2/f*(log(Gamma(f/2+1)) + log(eps))
	if(lower_tail && f > 0. &&
	   log(x) < M_LN2 + 2/f*(lgamma(f/2. + 1) + _dbl_min_exp)) {
	    // all  pchisq(x, f+2*i, lower_tail, FALSE), i=0,...,110 would underflow to 0.
	    // ==> work in log scale
	    double lambda = 0.5 * theta;
	    double sum, sum2, pr = -lambda;
	    sum = sum2 = ML_NEGINF;
	    /* we need to renormalize here: the result could be very close to 1 */
	    for(i = 0; i < 110;  pr += log(lambda) - log(++i)) {
		sum2 = logspace_add(sum2, pr);
		sum = logspace_add(sum, pr + pchisq(x, f+2*i, lower_tail, TRUE));
		if (sum2 >= -1e-15) /*<=> EXP(sum2) >= 1-1e-15 */ break;
	    }
	    ans = sum - sum2;
#ifdef DEBUG_pnch
	    REprintf("pnchisq(x=%g, f=%g, th.=%g); th. < 80, logspace: i=%d, ans=(sum=%g)-(sum2=%g)\n",
		     x,f,theta, i, (double)sum, (double)sum2);
#endif
	    return (double) (log_p ? ans : EXP(ans));
	}
	else {
	    LDOUBLE lambda = 0.5 * theta;
	    LDOUBLE sum = 0, sum2 = 0, pr = EXP(-lambda); // does this need a feature test?
	    /* we need to renormalize here: the result could be very close to 1 */
	    for(i = 0; i < 110;  pr *= lambda/++i) {
		// pr == exp(-lambda) lambda^i / i!  ==  dpois(i, lambda)
		sum2 += pr;
		// pchisq(*, i, *) is  strictly decreasing to 0 for lower_tail=TRUE
		//                 and strictly increasing to 1 for lower_tail=FALSE
		sum += pr * pchisq(x, f+2*i, lower_tail, FALSE);
		if (sum2 >= 1-1e-15) break;
	    }
	    ans = sum/sum2;
#ifdef DEBUG_pnch
	    REprintf("pnchisq(x=%g, f=%g, theta=%g); theta < 80: i=%d, sum=%g, sum2=%g\n",
		     x,f,theta, i, (double)sum, (double)sum2);
#endif
	    return (double) (log_p ? LOG(ans) : ans);
	}
    } // if(theta < 80)

    // else: theta == ncp >= 80 --------------------------------------------
#ifdef DEBUG_pnch
    REprintf("pnchisq(x=%g, f=%g, theta=%g >= 80): ",x,f,theta);
#endif
    // Series expansion ------- FIXME: log_p=TRUE, lower_tail=FALSE only applied at end

    lam = .5 * theta;
    lamSml = (-lam < _dbl_min_exp);
    if(lamSml) {
	/* MATHLIB_ERROR(
	   "non centrality parameter (= %g) too large for current algorithm",
	   theta) */
        u = 0;
        lu = -lam;/* == ln(u) */
        l_lam = log(lam);
    } else {
	u = exp(-lam);
    }

    /* evaluate the first term */
    v = u;
    x2 = .5 * x;
    f2 = .5 * f;
    f_x_2n = f - x;

#ifdef DEBUG_pnch
    REprintf("-- v=exp(-th/2)=%g, x/2= %g, f/2= %g\n",v,x2,f2);
#endif

    if(f2 * DBL_EPSILON > 0.125 && /* very large f and x ~= f: probably needs */
       FABS(t = x2 - f2) <         /* another algorithm anyway */
       sqrt(DBL_EPSILON) * f2) {
	/* evade cancellation error */
	/* t = exp((1 - t)*(2 - t/(f2 + 1))) / sqrt(2*M_PI*(f2 + 1));*/
        lt = (1 - t)*(2 - t/(f2 + 1)) - M_LN_SQRT_2PI - 0.5 * log(f2 + 1);
#ifdef DEBUG_pnch
	REprintf(" (case I) ==> ");
#endif
    }
    else {
	/* Usual case 2: careful not to overflow .. : */
	lt = f2*log(x2) -x2 - lgammafn(f2 + 1);
    }
#ifdef DEBUG_pnch
    REprintf(" lt= %g", lt);
#endif

    tSml = (lt < _dbl_min_exp);
    if(tSml) {
#ifdef DEBUG_pnch
	REprintf(" is very small\n");
#endif
	if (x > f + theta +  5* sqrt( 2*(f + 2*theta))) {
	    /* x > E[X] + 5* sigma(X) */
	    return R_DT_1; /* FIXME: could be more accurate than 0. */
	} /* else */
	l_x = log(x);
	ans = term = 0.; t = 0;
    }
    else {
	t = EXP(lt);
#ifdef DEBUG_pnch
 	REprintf(", t=exp(lt)= %g\n", t);
#endif
	ans = term = (double) (v * t);
    }

    for (n = 1, f_2n = f + 2., f_x_2n += 2.;  ; n++, f_2n += 2, f_x_2n += 2) {
#ifdef DEBUG_pnch_n
	REprintf("\n _OL_: n=%d",n);
#endif
#ifndef MATHLIB_STANDALONE
	if(n % 1000) R_CheckUserInterrupt();
#endif
	/* f_2n    === f + 2*n
	 * f_x_2n  === f - x + 2*n   > 0  <==> (f+2n)  >   x */
	if (f_x_2n > 0) {
	    /* find the error bound and check for convergence */

	    bound = (double) (t * x / f_x_2n);
#ifdef DEBUG_pnch_n
	    REprintf("\n L10: n=%d; term= %g; bound= %g",n,term,bound);
#endif
	    is_r = is_it = FALSE;
	    /* convergence only if BOTH absolute and relative error < 'bnd' */
	    if (((is_b = (bound <= errmax)) &&
                 (is_r = (term <= reltol * ans))) || (is_it = (n > itrmax)))
            {
#ifdef DEBUG_pnch
                REprintf("BREAK n=%d %s; bound= %g %s, rel.err= %g %s\n",
			 n, (is_it ? "> itrmax" : ""),
			 bound, (is_b ? "<= errmax" : ""),
			 term/ans, (is_r ? "<= reltol" : ""));
#endif
		break; /* out completely */
            }

	}

	/* evaluate the next term of the */
	/* expansion and then the partial sum */

        if(lamSml) {
            lu += l_lam - log(n); /* u = u* lam / n */
            if(lu >= _dbl_min_exp) {
		/* no underflow anymore ==> change regime */
#ifdef DEBUG_pnch_n
                REprintf(" n=%d; nomore underflow in u = exp(lu) ==> change\n",
			 n);
#endif
                v = u = EXP(lu); /* the first non-0 'u' */
                lamSml = FALSE;
            }
        } else {
	    u *= lam / n;
	    v += u;
	}
	if(tSml) {
            lt += l_x - log(f_2n);/* t <- t * (x / f2n) */
            if(lt >= _dbl_min_exp) {
		/* no underflow anymore ==> change regime */
#ifdef DEBUG_pnch
                REprintf("  n=%d; nomore underflow in t = exp(lt) ==> change\n", n);
#endif
                t = EXP(lt); /* the first non-0 't' */
                tSml = FALSE;
            }
        } else {
	    t *= x / f_2n;
	}
        if(!lamSml && !tSml) {
	    term = (double) (v * t);
	    ans += term;
	}

    } /* for(n ...) */

    if (is_it) {
	MATHLIB_WARNING2(_("pnchisq(x=%g, ..): not converged in %d iter."),
			 x, itrmax);
    }
#ifdef DEBUG_pnch
    REprintf("\n == L_End: n=%d; term= %g; bound=%g\n",n,term,bound);
#endif
    double dans = (double) ans;
    return R_DT_val(dans);
}