// MODIFIED FOR TEST CODE double MonteCarlo_integrate(int Num_samples, int print) { Random R = new_Random_seed(SEED); int under_curve = 0; int count; for (count=0; count<Num_samples; count++) { double x= Random_nextDouble(R); double y= Random_nextDouble(R); if ( x*x + y*y <= 1.0) under_curve ++; } Random_delete(R); // ADDED FOR TEST CODE print results if( print ) { printf("\n%d\n", under_curve); } return ((double) under_curve / Num_samples) * 4.0; }
/* * This is a straightforward copy/adaptation of scimark2.c:main. * * @note: default to the (small) cache-contained version. * * @param s_large [logical(1)] * Perform SciMark LARGE, i.e., memory-focused version of the benchmark? * Default is FALSE. * @param s_min_time [numeric(1)] * Minimum time to run each of the benchmarks, in seconds. * @return [numeric(6)] */ SEXP c_rscimark(SEXP s_large, SEXP s_min_time) { int large = asLogical(s_large); double min_time = asReal(s_min_time); int FFT_size = FFT_SIZE; int SOR_size = SOR_SIZE; int Sparse_size_M = SPARSE_SIZE_M; int Sparse_size_nz = SPARSE_SIZE_nz; int LU_size = LU_SIZE; Random R = new_Random_seed(RANDOM_SEED); if (large) { FFT_size = LG_FFT_SIZE; SOR_size = LG_SOR_SIZE; Sparse_size_M = LG_SPARSE_SIZE_M; Sparse_size_nz = LG_SPARSE_SIZE_nz; LU_size = LG_LU_SIZE; } /* allocate memory for return value */ SEXP s_res = NEW_NUMERIC(6); double* res = REAL(s_res); /* do the benchmark stuff */ res[1] = kernel_measureFFT(FFT_size, min_time, R); res[2] = kernel_measureSOR(SOR_size, min_time, R); res[3] = kernel_measureMonteCarlo(min_time, R); res[4] = kernel_measureSparseMatMult( Sparse_size_M, Sparse_size_nz, min_time, R); res[5] = kernel_measureLU(LU_size, min_time, R); /* composite value */ res[0] = (res[1] + res[2] + res[3] + res[4] + res[5]) / 5; Random_delete(R); return s_res; }
int main(int argc, char *argv[]) { /* default to the (small) cache-contained version */ double min_time = RESOLUTION_DEFAULT; int FFT_size = FFT_SIZE; int SOR_size = SOR_SIZE; int Sparse_size_M = SPARSE_SIZE_M; int Sparse_size_nz = SPARSE_SIZE_nz; int LU_size = LU_SIZE; /* run the benchmark */ double res[6] = {0.0}; Random R = new_Random_seed(RANDOM_SEED); if (argc > 1) { int current_arg = 1; if (strcmp(argv[1], "-help")==0 || strcmp(argv[1], "-h") == 0) { fprintf(stderr, "Usage: [-large] [minimum_time]\n"); exit(0); } if (strcmp(argv[1], "-large")==0) { FFT_size = LG_FFT_SIZE; SOR_size = LG_SOR_SIZE; Sparse_size_M = LG_SPARSE_SIZE_M; Sparse_size_nz = LG_SPARSE_SIZE_nz; LU_size = LG_LU_SIZE; current_arg++; } if (current_arg < argc) { min_time = atof(argv[current_arg]); } } print_banner(); printf("Using %10.2f seconds min time per kenel.\n", min_time); res[1] = kernel_measureFFT( FFT_size, min_time, R); res[2] = kernel_measureSOR( SOR_size, min_time, R); res[3] = kernel_measureMonteCarlo(min_time, R); res[4] = kernel_measureSparseMatMult( Sparse_size_M, Sparse_size_nz, min_time, R); res[5] = kernel_measureLU( LU_size, min_time, R); res[0] = (res[1] + res[2] + res[3] + res[4] + res[5]) / 5; /* print out results */ printf("Composite Score: %8.2f\n" ,res[0]); printf("FFT Mflops: %8.2f (N=%d)\n", res[1], FFT_size); printf("SOR Mflops: %8.2f (%d x %d)\n", res[2], SOR_size, SOR_size); printf("MonteCarlo: Mflops: %8.2f\n", res[3]); printf("Sparse matmult Mflops: %8.2f (N=%d, nz=%d)\n", res[4], Sparse_size_M, Sparse_size_nz); printf("LU Mflops: %8.2f (M=%d, N=%d)\n", res[5], LU_size, LU_size); Random_delete(R); return 0; }