Esempio n. 1
0
uint8_t calcula_r (struct res *r)
{
	uint16_t adcval=0;
	
	// pins a alta impedancia
	r_init();
	
		// mirem vin amb r1 a vcc
	OUTPUT_H(RM1);
	_delay_ms(100);
	adcval = ReadAdc(RVIN);
	OUTPUT_Z(RM1);

    if (adcval <= VAL)
	{
		r->valor = formula_r(adcval, 1);
		return 1;
	}
	
	// mirem vin amb r2 a vcc
	OUTPUT_H(RM2);
	_delay_ms(100);
	adcval = ReadAdc(RVIN);
	OUTPUT_Z(RM2);
	if (adcval <= VAL) 
	{
		r->valor = formula_r(adcval, 2);
		return 2;
	}
	
	// mirem vin amb r3 a vcc
	OUTPUT_H(RM3);
	_delay_ms(100);
	adcval = ReadAdc(RVIN);
	OUTPUT_Z(RM3);
	if (adcval <= VAL) 
	{
		r->valor = formula_r(adcval, 3);
		return 3;
	}
	
	// mirem vin amb r4 a vcc
	OUTPUT_H(RM4);
	_delay_ms(100);
	adcval = ReadAdc(RVIN);
	OUTPUT_Z(RM4);
	if ( adcval < VAL ) 
	{
		r->valor = formula_r(adcval, 4);
		return 4;
	}
	
	return 10;

}
Esempio n. 2
0
/* 
 * 测试ADC
 * 通过A/D转换,测量可变电阻器的电压值
 */       
void Test_Adc(void)
{
    float vol0, vol1;
    int t0, t1;

    printf("Measuring the voltage of AIN0 and AIN1, press any key to exit\n\r");
    while (!awaitkey(0))    // 串口无输入,则不断测试
    {
        vol0 = ((float)ReadAdc(0)*3.3)/1024.0;  // 计算电压值
        vol1 = ((float)ReadAdc(1)*3.3)/1024.0;  // 计算电压值
        t0   = (vol0 - (int)vol0) * 1000;   // 计算小数部分, 本代码中的printf无法打印浮点数
        t1   = (vol1 - (int)vol1) * 1000;   // 计算小数部分,  本代码中的printf无法打印浮点数
        printf("AIN0 = %d.%-3dV    AIN1 = %d.%-3dV\r", (int)vol0, t0, (int)vol1, t1);
    }
    printf("\n");
}
Esempio n. 3
0
double getLM35Temp(int ch)
{
  double ret=0;
  ret=ReadAdc(ch);
  //process Ret
  
  //end
  return ret;
}
Esempio n. 4
0
int main()
{
    while(1)
    {
        // 从串口接收数据后,判断其是否数字或子母,若是则加1后输出
    	ReadAdc(0);
    }

    return 0;
}
Esempio n. 5
0
//-----------------------------------------------------------------------------
//! This method returns a calibrated (or at least nominally adjusted to make sense) voltage
//-----------------------------------------------------------------------------
bool tIMX51Common::ReadInternalVoltage(float &value)
{
    int adcVoltVal;
    int adcStatus = ReadAdc( GEN_PURPOSE_AD6, adcVoltVal );

    // Stingray2 (and Atlantis 8", 10"):
    //  BATTERY_AD is divided 8.66k/(8.66k+3*33k)
    //  Vbat = Adc_Ch11 * 2.4/1024/8.66*107.66
    //  Vbat ~= Adc_Ch11 * 0.029137
    // Atlantis (5", 7"):
    //  BATTERY_AD is divided 8.66k/(8.66k+100k)
    //  Vbat = Adc_Ch11 * 2.4/1024/8.66*108.66
    //  Vbat ~= Adc_Ch11 * 0.028867
    // Cougar:
    //  BATTERY_AD is divided 9.1k/(9.1k+100k)
    //  Vbat = Adc_Ch11 * 2.4/1024/9.1*109.1
    //  Vbat ~= Adc_Ch11 * 0.028099

    // There may be a stored calibrated multiplier which, if present and
    // within accepted limits, we use it in place of the calculated one
    if ( adcStatus == EXIT_SUCCESS )
    {
        static bool firstTime = true;

        if( firstTime )
        {
            const char *batt_cal_file = "/etc/NOS/battery_cal";
            QFile f( batt_cal_file );
            if ( f.open( QIODevice::ReadOnly ) )
            {
                QTextStream stream(&f);
                QString s;
                s = stream.readLine();
                f.close();

                float minGoodCalValue = m_adcMultiplier * 0.94f;
                float maxGoodCalValue = m_adcMultiplier * 1.06f;
                bool isNumeric = false;
                float calVal = s.toFloat( &isNumeric );
                calVal /= 1000.0f; // Cal val stored relative to mV
                if ( isNumeric && ( minGoodCalValue <= calVal && calVal <= maxGoodCalValue ) )
                {
                    m_adcMultiplier = calVal;
                }
            }
            firstTime = false;
        }

        value = static_cast<float>( adcVoltVal ) * m_adcMultiplier;
        return true;
    }

    return false;
}
Esempio n. 6
0
//-----------------------------------------------------------------------------
//! For calibration purposes only
//-----------------------------------------------------------------------------
bool tIMX51Common::ReadInternalVoltageADCRaw(int &value)
{
    int adcVoltVal;
    int adcStatus = ReadAdc( GEN_PURPOSE_AD6, adcVoltVal );

    if ( adcStatus == EXIT_SUCCESS )
    {
        value = adcVoltVal;
        return true;
    }

    return false;
}
Esempio n. 7
0
void ProcessIO(void)
{
	char oldPGDtris;
	char PIN;
	static byte counter=0;
	int nBytes;
	unsigned long address;
	unsigned char i;
	
	input_buffer[0]=UART1RX(); //USBGenRead((byte*)input_buffer,64);
//	if(nBytes>0)
//	{
		switch(input_buffer[0])
		{
			case CMD_ERASE:
				setLeds(LEDS_ON | LEDS_WR);
				getBytes(1,1);//get more data, #bytes, where to insert in input buffer array
				output_buffer[0]=bulk_erase(picfamily,pictype,input_buffer[1]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_ID:
				setLeds(LEDS_ON | LEDS_RD);
				switch(picfamily)
				{
					case DSPIC30:
						read_code(picfamily,pictype,0xFF0000,(unsigned char*)output_buffer,2,3);
						break;
					case PIC18:
						read_code(picfamily,pictype,0x3FFFFE,(unsigned char*)output_buffer,2,3);  //devid is at location 0x3ffffe   for PIC18 devices
						break;
					case PIC16:
						set_vdd_vpp(picfamily, pictype, 0);
						read_code(picfamily,pictype,0x2006,(unsigned char*)output_buffer,2,3);  //devid is at location 0x2006  for PIC16 devices
						break;
				}
				counter=2;
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_CODE:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_code(picfamily,pictype,address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_CODE:
				setLeds(LEDS_ON | LEDS_RD);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				read_code(picfamily,pictype,address,(unsigned char*)output_buffer,input_buffer[1],input_buffer[5]);
				counter=input_buffer[1];
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_DATA:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_data(picfamily,pictype,address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]); 
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_DATA:
				setLeds(LEDS_ON | LEDS_RD);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				read_data(picfamily,pictype,address,(unsigned char*)output_buffer,input_buffer[1],input_buffer[5]); 
				counter=input_buffer[1];
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_CONFIG:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_config_bits(picfamily, pictype, address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_SET_PICTYPE:
				output_buffer[0]=set_pictype(input_buffer+1);
				//output_buffer[0]=1; //Ok
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_FIRMWARE_VERSION:
				for(counter=0; counter<18; counter++)output_buffer[counter]=upp_version[counter];
				counter=18;
				setLeds(LEDS_ON);
				break;
			case CMD_DEBUG:
				setLeds(LEDS_ON | LEDS_WR | LEDS_RD);
				switch(input_buffer[1])
				{
					case 0:
						set_vdd_vpp(dsP30F, DSPIC30, 1);
						output_buffer[0]=1;
						counter=1;	
						break;
					case 1:
						set_vdd_vpp(dsP30F, DSPIC30, 0);
						output_buffer[0]=1;
						counter=1;	
						break;
					case 2:
						dspic_send_24_bits(((unsigned long)input_buffer[2])|
								((unsigned long)input_buffer[3])<<8|
								((unsigned long)input_buffer[4])<<16);
						output_buffer[0]=1;
						counter=1;
						break;
					case 3:
						nBytes =  dspic_read_16_bits();
						output_buffer[0]=(unsigned char)nBytes;
						output_buffer[1]=(unsigned char)(nBytes>>8);
						counter=2;
						break;
						
				}
				break;
			case CMD_GET_PIN_STATUS:
				switch(input_buffer[1])
				{
					case SUBCMD_PIN_PGC:
						if((!TRISPGC_LOW)&&(!PGC_LOW)) //3.3V levels
						{
							if(PGC) output_buffer[0] = PIN_STATE_3_3V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						else	//5V levels
						{
							if(PGC) output_buffer[0] = PIN_STATE_5V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						counter=1;
						break;
					case SUBCMD_PIN_PGD:
						if(TRISPGD)//PGD is input
						{
							if(PGD_READ) output_buffer[0] = PIN_STATE_5V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						else
						{							
							if((!TRISPGD_LOW)&&(!PGD_LOW)) //3.3V levels
							{
								if(PGD) output_buffer[0] = PIN_STATE_3_3V;
								else output_buffer[0] = PIN_STATE_0V;
							}
							else	//5V levels
							{
								if(PGD) output_buffer[0] = PIN_STATE_5V;
								else output_buffer[0] = PIN_STATE_0V;
							}
						}
						counter=1;
						break;
					case SUBCMD_PIN_VDD:
						//if(VDD) output_buffer[0] = PIN_STATE_FLOAT;
						//else output_buffer[0] = PIN_STATE_5V;
						output_buffer[0] = PIN_STATE_5V;
						counter = 1;
						break;
					case SUBCMD_PIN_VPP:
						counter=1;
						if(!VPP){output_buffer[0] = PIN_STATE_12V;break;}
						if(VPP_RST){output_buffer[0] = PIN_STATE_0V;break;}
						if(VPP_RUN){output_buffer[0] = PIN_STATE_5V;break;}
						output_buffer[0] = PIN_STATE_FLOAT;
						break;
					case SUBCMD_PIN_VPP_VOLTAGE:
						ReadAdc(output_buffer);
						counter=2;
						break;
					default:
						output_buffer[0]=3;
						counter=1;
						break;
				}
				break;
			case CMD_SET_PIN_STATUS:
				switch(input_buffer[1])
				{
					case SUBCMD_PIN_PGC:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								TRISPGC = 0;
								PGC = 0;
								TRISPGC_LOW = 1;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_3_3V:
								TRISPGC = 0;
								PGC = 1;
								TRISPGC_LOW = 0;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								TRISPGC = 0;
								PGC = 1;
								TRISPGC_LOW = 1;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_PGD:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								TRISPGD = 0;
								PGD = 0;
								TRISPGD_LOW = 1;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_3_3V:
								TRISPGD = 0;
								PGD = 1;
								TRISPGD_LOW = 0;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								TRISPGD = 0;
								PGD = 1;
								TRISPGD_LOW = 1;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_INPUT:
								TRISPGD_LOW = 1;
								TRISPGD = 1;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_VDD:
						switch(input_buffer[2])
						{
							case PIN_STATE_5V:
								//VDD = 0;
								output_buffer[0]=1;
								break;
							case PIN_STATE_FLOAT:
								//VDD = 1;
								output_buffer[0]=1;
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_VPP:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								VPP = 1;
								VPP_RST = 1;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								VPP = 1;
								VPP_RST = 0;
								VPP_RUN = 1;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_12V:
								VPP = 0;
								VPP_RST = 0;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_FLOAT:
								VPP = 1;
								VPP_RST = 0;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					default:
						output_buffer[0]=3;
				}
				counter=1;
				break;
		}
	//} //if nBytes>0
	if(counter != 0)
	{
		//if(!mUSBGenTxIsBusy())
		//USBGenWrite((byte*)&output_buffer,counter);
		for(i=0; i<counter; i++) UART1TX(output_buffer[i]);
		counter=0;
	}
}//end ProcessIO
Esempio n. 8
0
void ProcessIO(void)
{
	char oldPGDtris;
	char PIN;
	static byte counter=0;
	int nBytes;
	unsigned long address;
	
	// When the device is plugged in, the leds give the numbers 1, 2, 3, 4, 5. 
	//After configured state, the leds are controlled by the next lines in this function
	if((usb_device_state < CONFIGURED_STATE)||(UCONbits.SUSPND==1))
	{
		BlinkUSBStatus();
		return;
	}
	

	nBytes=USBGenRead((byte*)input_buffer,64);
	if(nBytes>0)
	{
		switch(input_buffer[0])
		{
			case CMD_ERASE:
				setLeds(LEDS_ON | LEDS_WR);
				output_buffer[0]=bulk_erase(picfamily,pictype,input_buffer[1]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_ID:
				setLeds(LEDS_ON | LEDS_RD);
				switch(picfamily)
				{
					case PIC24:
					case dsPIC30:
						read_code(picfamily,pictype,0xFF0000,(unsigned char*)output_buffer,2,3);
						break;
					case PIC18:
					case PIC18J:
					case PIC18K:
						read_code(picfamily,pictype,0x3FFFFE,(unsigned char*)output_buffer,2,3);  //devid is at location 0x3ffffe   for PIC18 devices
						break;
					case PIC16:
						set_vdd_vpp(picfamily, pictype, 0);
						read_code(picfamily,pictype,0x2006,(unsigned char*)output_buffer,2,3);  //devid is at location 0x2006  for PIC16 devices
						break;
				}
				counter=2;
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_CODE:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_code(picfamily,pictype,address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_CODE:
				setLeds(LEDS_ON | LEDS_RD);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				PIN=read_code(picfamily,pictype,address,(unsigned char*)output_buffer,input_buffer[1],input_buffer[5]);
				if(PIN==3)output_buffer[0]=0x3;
				counter=input_buffer[1];
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_DATA:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_data(picfamily,pictype,address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]); 
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_DATA:
				setLeds(LEDS_ON | LEDS_RD);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				read_data(picfamily,pictype,address,(unsigned char*)output_buffer,input_buffer[1],input_buffer[5]); 
				counter=input_buffer[1];
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_CONFIG:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_config_bits(picfamily, pictype, address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_SET_PICTYPE:
				output_buffer[0]=set_pictype(input_buffer+1);
				//output_buffer[0]=1; //Ok
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_FIRMWARE_VERSION:
				strcpypgm2ram((char*)output_buffer,(const far rom char*)upp_version);
				counter=18;
				setLeds(LEDS_ON);

				break;
			case CMD_DEBUG:
				setLeds(LEDS_ON | LEDS_WR | LEDS_RD);
				switch(input_buffer[1])
				{
					case 0:
						set_vdd_vpp(dsP30F, dsPIC30, 1);
						output_buffer[0]=1;
						counter=1;	
						break;
					case 1:
						set_vdd_vpp(dsP30F, dsPIC30, 0);
						output_buffer[0]=1;
						counter=1;	
						break;
					case 2:
						dspic_send_24_bits(((unsigned long)input_buffer[2])|
								((unsigned long)input_buffer[3])<<8|
								((unsigned long)input_buffer[4])<<16);
						output_buffer[0]=1;
						counter=1;
						break;
					case 3:
						nBytes =  dspic_read_16_bits(1);
						output_buffer[0]=(unsigned char)nBytes;
						output_buffer[1]=(unsigned char)(nBytes>>8);
						counter=2;
						break;
						
				}
				break;
			case CMD_GET_PIN_STATUS:
				switch(input_buffer[1])
				{
					case SUBCMD_PIN_PGC:
						if((!TRISPGC_LOW)&&(!PGC_LOW)) //3.3V levels
						{
							if(PGC) output_buffer[0] = PIN_STATE_3_3V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						else	//5V levels
						{
							if(PGC) output_buffer[0] = PIN_STATE_5V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						counter=1;
						break;
					case SUBCMD_PIN_PGD:
						if(TRISPGD)//PGD is input
						{
							if(PGD_READ) output_buffer[0] = PIN_STATE_5V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						else
						{							
							if((!TRISPGD_LOW)&&(!PGD_LOW)) //3.3V levels
							{
								if(PGD) output_buffer[0] = PIN_STATE_3_3V;
								else output_buffer[0] = PIN_STATE_0V;
							}
							else	//5V levels
							{
								if(PGD) output_buffer[0] = PIN_STATE_5V;
								else output_buffer[0] = PIN_STATE_0V;
							}
						}
						counter=1;
						break;
					case SUBCMD_PIN_VDD:
						if(VDD) output_buffer[0] = PIN_STATE_FLOAT;
						else output_buffer[0] = PIN_STATE_5V;
						counter = 1;
						break;
					case SUBCMD_PIN_VPP:
						counter=1;
						if(!VPP){output_buffer[0] = PIN_STATE_12V;break;}
						if(VPP_RST){output_buffer[0] = PIN_STATE_0V;break;}
						if(VPP_RUN){output_buffer[0] = PIN_STATE_5V;break;}
						output_buffer[0] = PIN_STATE_FLOAT;
						break;
					case SUBCMD_PIN_VPP_VOLTAGE:
						ReadAdc(output_buffer);
						counter=2;
						break;
					default:
						output_buffer[0]=3;
						counter=1;
						break;
				}
				break;
			case CMD_SET_PIN_STATUS:
				switch(input_buffer[1])
				{
					case SUBCMD_PIN_PGC:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								TRISPGC = 0;
								PGC = 0;
								TRISPGC_LOW = 1;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_3_3V:
								TRISPGC = 0;
								PGC = 1;
								TRISPGC_LOW = 0;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								TRISPGC = 0;
								PGC = 1;
								TRISPGC_LOW = 1;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_PGD:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								TRISPGD = 0;
								PGD = 0;
								TRISPGD_LOW = 1;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_3_3V:
								TRISPGD = 0;
								PGD = 1;
								TRISPGD_LOW = 0;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								TRISPGD = 0;
								PGD = 1;
								TRISPGD_LOW = 1;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_INPUT:
								TRISPGD_LOW = 1;
								TRISPGD = 1;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_VDD:
						switch(input_buffer[2])
						{
							case PIN_STATE_5V:
								VDD = 0;
								output_buffer[0]=1;
								break;
							case PIN_STATE_FLOAT:
								VDD = 1;
								output_buffer[0]=1;
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_VPP:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								VPP = 1;
								VPP_RST = 1;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								VPP = 1;
								VPP_RST = 0;
								VPP_RUN = 1;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_12V:
								VPP = 0;
								VPP_RST = 0;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_FLOAT:
								VPP = 1;
								VPP_RST = 0;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					default:
						output_buffer[0]=3;
				}
				counter=1;
				break;
		}
	}
	if(counter != 0)
	{
		if(!mUSBGenTxIsBusy())
		USBGenWrite((byte*)&output_buffer,counter);
		counter=0;
	}
}//end ProcessIO