Esempio n. 1
0
SpatialLightDistribution::~SpatialLightDistribution() {
    // Gather statistics about how well the computed distributions are across
    // the buckets.
    // This is slightly ugly: we are depending on the destructor running
    // before statistics are reported (which is currently the case at least).
    for (size_t i = 0; i < nBuckets; ++i) {
        LOG(INFO) << "Bucket " << i << ", size " << voxelDistribution[i].size()
                  << ", bucket count " << voxelDistribution[i].bucket_count()
                  << ", load factor " << voxelDistribution[i].load_factor()
                  << ", max load factor " << voxelDistribution[i].max_load_factor();
        ReportValue(hashBucketLoad, voxelDistribution[i].size());
    }
}
Esempio n. 2
0
const Distribution1D *SpatialLightDistribution::Lookup(const Point3f &p) const {
    ProfilePhase _(Prof::LightDistribLookup);
    ++nLookups;

    // First, compute integer voxel coordinates for the given point |p|
    // with respect to the overall voxel grid.
    Vector3f offset = scene.WorldBound().Offset(p);  // offset in [0,1].
    Point3i pi;
    for (int i = 0; i < 3; ++i)
        // The clamp should almost never be necessary, but is there to be
        // robust to computed intersection points being slightly outside
        // the scene bounds due to floating-point roundoff error.
        pi[i] = Clamp(int(offset[i] * nVoxels[i]), 0, nVoxels[i] - 1);

    // Pack the 3D integer voxel coordinates into a single 64-bit value.
    uint64_t packedPos = (uint64_t(pi[0]) << 40) | (uint64_t(pi[1]) << 20) | pi[2];
    CHECK_NE(packedPos, invalidPackedPos);

    // Compute a hash value from the packed voxel coordinates.  We could
    // just take packedPos mod the hash table size, but since packedPos
    // isn't necessarily well distributed on its own, it's worthwhile to do
    // a little work to make sure that its bits values are individually
    // fairly random. For details of and motivation for the following, see:
    // http://zimbry.blogspot.ch/2011/09/better-bit-mixing-improving-on.html
    uint64_t hash = packedPos;
    hash ^= (hash >> 31);
    hash *= 0x7fb5d329728ea185;
    hash ^= (hash >> 27);
    hash *= 0x81dadef4bc2dd44d;
    hash ^= (hash >> 33);
    hash %= hashTableSize;
    CHECK_GE(hash, 0);

    // Now, see if the hash table already has an entry for the voxel. We'll
    // use quadratic probing when the hash table entry is already used for
    // another value; step stores the square root of the probe step.
    int step = 1;
    int nProbes = 0;
    while (true) {
        ++nProbes;
        HashEntry &entry = hashTable[hash];
        // Does the hash table entry at offset |hash| match the current point?
        uint64_t entryPackedPos = entry.packedPos.load(std::memory_order_acquire);
        if (entryPackedPos == packedPos) {
            // Yes! Most of the time, there should already by a light
            // sampling distribution available.
            Distribution1D *dist = entry.distribution.load(std::memory_order_acquire);
            if (dist == nullptr) {
                // Rarely, another thread will have already done a lookup
                // at this point, found that there isn't a sampling
                // distribution, and will already be computing the
                // distribution for the point.  In this case, we spin until
                // the sampling distribution is ready.  We assume that this
                // is a rare case, so don't do anything more sophisticated
                // than spinning.
                ProfilePhase _(Prof::LightDistribSpinWait);
                while ((dist = entry.distribution.load(std::memory_order_acquire)) ==
                       nullptr)
                    // spin :-(. If we were fancy, we'd have any threads
                    // that hit this instead help out with computing the
                    // distribution for the voxel...
                    ;
            }
            // We have a valid sampling distribution.
            ReportValue(nProbesPerLookup, nProbes);
            return dist;
        } else if (entryPackedPos != invalidPackedPos) {
            // The hash table entry we're checking has already been
            // allocated for another voxel. Advance to the next entry with
            // quadratic probing.
            hash += step * step;
            if (hash >= hashTableSize)
                hash %= hashTableSize;
            ++step;
        } else {
            // We have found an invalid entry. (Though this may have
            // changed since the load into entryPackedPos above.)  Use an
            // atomic compare/exchange to try to claim this entry for the
            // current position.
            uint64_t invalid = invalidPackedPos;
            if (entry.packedPos.compare_exchange_weak(invalid, packedPos)) {
                // Success; we've claimed this position for this voxel's
                // distribution. Now compute the sampling distribution and
                // add it to the hash table. As long as packedPos has been
                // set but the entry's distribution pointer is nullptr, any
                // other threads looking up the distribution for this voxel
                // will spin wait until the distribution pointer is
                // written.
                Distribution1D *dist = ComputeDistribution(pi);
                entry.distribution.store(dist, std::memory_order_release);
                ReportValue(nProbesPerLookup, nProbes);
                return dist;
            }
        }
    }
}
Esempio n. 3
0
Spectrum VolPathIntegrator::Li(const RayDifferential &r, const Scene &scene,
                               Sampler &sampler, MemoryArena &arena,
                               int depth) const {
    ProfilePhase p(Prof::SamplerIntegratorLi);
    Spectrum L(0.f), beta(1.f);
    RayDifferential ray(r);
    bool specularBounce = false;
    int bounces;
    // Added after book publication: etaScale tracks the accumulated effect
    // of radiance scaling due to rays passing through refractive
    // boundaries (see the derivation on p. 527 of the third edition). We
    // track this value in order to remove it from beta when we apply
    // Russian roulette; this is worthwhile, since it lets us sometimes
    // avoid terminating refracted rays that are about to be refracted back
    // out of a medium and thus have their beta value increased.
    Float etaScale = 1;

    for (bounces = 0;; ++bounces) {
        // Intersect _ray_ with scene and store intersection in _isect_
        SurfaceInteraction isect;
        bool foundIntersection = scene.Intersect(ray, &isect);

        // Sample the participating medium, if present
        MediumInteraction mi;
        if (ray.medium) beta *= ray.medium->Sample(ray, sampler, arena, &mi);
        if (beta.IsBlack()) break;

        // Handle an interaction with a medium or a surface
        if (mi.IsValid()) {
            // Terminate path if ray escaped or _maxDepth_ was reached
            if (bounces >= maxDepth) break;

            ++volumeInteractions;
            // Handle scattering at point in medium for volumetric path tracer
            const Distribution1D *lightDistrib =
                lightDistribution->Lookup(mi.p);
            L += beta * UniformSampleOneLight(mi, scene, arena, sampler, true,
                                              lightDistrib);

            Vector3f wo = -ray.d, wi;
            mi.phase->Sample_p(wo, &wi, sampler.Get2D());
            ray = mi.SpawnRay(wi);
        } else {
            ++surfaceInteractions;
            // Handle scattering at point on surface for volumetric path tracer

            // Possibly add emitted light at intersection
            if (bounces == 0 || specularBounce) {
                // Add emitted light at path vertex or from the environment
                if (foundIntersection)
                    L += beta * isect.Le(-ray.d);
                else
                    for (const auto &light : scene.infiniteLights)
                        L += beta * light->Le(ray);
            }

            // Terminate path if ray escaped or _maxDepth_ was reached
            if (!foundIntersection || bounces >= maxDepth) break;

            // Compute scattering functions and skip over medium boundaries
            isect.ComputeScatteringFunctions(ray, arena, true);
            if (!isect.bsdf) {
                ray = isect.SpawnRay(ray.d);
                bounces--;
                continue;
            }

            // Sample illumination from lights to find attenuated path
            // contribution
            const Distribution1D *lightDistrib =
                lightDistribution->Lookup(isect.p);
            L += beta * UniformSampleOneLight(isect, scene, arena, sampler,
                                              true, lightDistrib);

            // Sample BSDF to get new path direction
            Vector3f wo = -ray.d, wi;
            Float pdf;
            BxDFType flags;
            Spectrum f = isect.bsdf->Sample_f(wo, &wi, sampler.Get2D(), &pdf,
                                              BSDF_ALL, &flags);
            if (f.IsBlack() || pdf == 0.f) break;
            beta *= f * AbsDot(wi, isect.shading.n) / pdf;
            DCHECK(std::isinf(beta.y()) == false);
            specularBounce = (flags & BSDF_SPECULAR) != 0;
            if ((flags & BSDF_SPECULAR) && (flags & BSDF_TRANSMISSION)) {
                Float eta = isect.bsdf->eta;
                // Update the term that tracks radiance scaling for refraction
                // depending on whether the ray is entering or leaving the
                // medium.
                etaScale *=
                    (Dot(wo, isect.n) > 0) ? (eta * eta) : 1 / (eta * eta);
            }
            ray = isect.SpawnRay(ray, wi, flags, isect.bsdf->eta);

            // Account for attenuated subsurface scattering, if applicable
            if (isect.bssrdf && (flags & BSDF_TRANSMISSION)) {
                // Importance sample the BSSRDF
                SurfaceInteraction pi;
                Spectrum S = isect.bssrdf->Sample_S(
                    scene, sampler.Get1D(), sampler.Get2D(), arena, &pi, &pdf);
                DCHECK(std::isinf(beta.y()) == false);
                if (S.IsBlack() || pdf == 0) break;
                beta *= S / pdf;

                // Account for the attenuated direct subsurface scattering
                // component
                L += beta *
                     UniformSampleOneLight(pi, scene, arena, sampler, true,
                                           lightDistribution->Lookup(pi.p));

                // Account for the indirect subsurface scattering component
                Spectrum f = pi.bsdf->Sample_f(pi.wo, &wi, sampler.Get2D(),
                                               &pdf, BSDF_ALL, &flags);
                if (f.IsBlack() || pdf == 0) break;
                beta *= f * AbsDot(wi, pi.shading.n) / pdf;
                DCHECK(std::isinf(beta.y()) == false);
                specularBounce = (flags & BSDF_SPECULAR) != 0;
                ray = pi.SpawnRay(wi);
            }
        }

        // Possibly terminate the path with Russian roulette
        // Factor out radiance scaling due to refraction in rrBeta.
        Spectrum rrBeta = beta * etaScale;
        if (rrBeta.MaxComponentValue() < rrThreshold && bounces > 3) {
            Float q = std::max((Float).05, 1 - rrBeta.MaxComponentValue());
            if (sampler.Get1D() < q) break;
            beta /= 1 - q;
            DCHECK(std::isinf(beta.y()) == false);
        }
    }
    ReportValue(pathLength, bounces);
    return L;
}
Esempio n. 4
0
Spectrum ConnectBDPT(
    const Scene &scene, Vertex *lightVertices, Vertex *cameraVertices, int s,
    int t, const Distribution1D &lightDistr,
    const std::unordered_map<const Light *, size_t> &lightToIndex,
    const Camera &camera, Sampler &sampler, Point2f *pRaster,
    Float *misWeightPtr) {
    Spectrum L(0.f);
    // Ignore invalid connections related to infinite area lights
    if (t > 1 && s != 0 && cameraVertices[t - 1].type == VertexType::Light)
        return Spectrum(0.f);

    // Perform connection and write contribution to _L_
    Vertex sampled;
    if (s == 0) {
        // Interpret the camera subpath as a complete path
        const Vertex &pt = cameraVertices[t - 1];
        if (pt.IsLight()) L = pt.Le(scene, cameraVertices[t - 2]) * pt.beta;
        DCHECK(!L.HasNaNs());
    } else if (t == 1) {
        // Sample a point on the camera and connect it to the light subpath
        const Vertex &qs = lightVertices[s - 1];
        if (qs.IsConnectible()) {
            VisibilityTester vis;
            Vector3f wi;
            Float pdf;
            Spectrum Wi = camera.Sample_Wi(qs.GetInteraction(), sampler.Get2D(),
                                           &wi, &pdf, pRaster, &vis);
            if (pdf > 0 && !Wi.IsBlack()) {
                // Initialize dynamically sampled vertex and _L_ for $t=1$ case
                sampled = Vertex::CreateCamera(&camera, vis.P1(), Wi / pdf);
                L = qs.beta * qs.f(sampled, TransportMode::Importance) * sampled.beta;
                if (qs.IsOnSurface()) L *= AbsDot(wi, qs.ns());
                DCHECK(!L.HasNaNs());
                // Only check visibility after we know that the path would
                // make a non-zero contribution.
                if (!L.IsBlack()) L *= vis.Tr(scene, sampler);
            }
        }
    } else if (s == 1) {
        // Sample a point on a light and connect it to the camera subpath
        const Vertex &pt = cameraVertices[t - 1];
        if (pt.IsConnectible()) {
            Float lightPdf;
            VisibilityTester vis;
            Vector3f wi;
            Float pdf;
            int lightNum =
                lightDistr.SampleDiscrete(sampler.Get1D(), &lightPdf);
            const std::shared_ptr<Light> &light = scene.lights[lightNum];
            Spectrum lightWeight = light->Sample_Li(
                pt.GetInteraction(), sampler.Get2D(), &wi, &pdf, &vis);
            if (pdf > 0 && !lightWeight.IsBlack()) {
                EndpointInteraction ei(vis.P1(), light.get());
                sampled =
                    Vertex::CreateLight(ei, lightWeight / (pdf * lightPdf), 0);
                sampled.pdfFwd =
                    sampled.PdfLightOrigin(scene, pt, lightDistr, lightToIndex);
                L = pt.beta * pt.f(sampled, TransportMode::Radiance) * sampled.beta;
                if (pt.IsOnSurface()) L *= AbsDot(wi, pt.ns());
                // Only check visibility if the path would carry radiance.
                if (!L.IsBlack()) L *= vis.Tr(scene, sampler);
            }
        }
    } else {
        // Handle all other bidirectional connection cases
        const Vertex &qs = lightVertices[s - 1], &pt = cameraVertices[t - 1];
        if (qs.IsConnectible() && pt.IsConnectible()) {
            L = qs.beta * qs.f(pt, TransportMode::Importance) * pt.f(qs, TransportMode::Radiance) * pt.beta;
            VLOG(2) << "General connect s: " << s << ", t: " << t <<
                " qs: " << qs << ", pt: " << pt << ", qs.f(pt): " << qs.f(pt, TransportMode::Importance) <<
                ", pt.f(qs): " << pt.f(qs, TransportMode::Radiance) << ", G: " << G(scene, sampler, qs, pt) <<
                ", dist^2: " << DistanceSquared(qs.p(), pt.p());
            if (!L.IsBlack()) L *= G(scene, sampler, qs, pt);
        }
    }

    ++totalPaths;
    if (L.IsBlack()) ++zeroRadiancePaths;
    ReportValue(pathLength, s + t - 2);

    // Compute MIS weight for connection strategy
    Float misWeight =
        L.IsBlack() ? 0.f : MISWeight(scene, lightVertices, cameraVertices,
                                      sampled, s, t, lightDistr, lightToIndex);
    VLOG(2) << "MIS weight for (s,t) = (" << s << ", " << t << ") connection: "
            << misWeight;
    DCHECK(!std::isnan(misWeight));
    L *= misWeight;
    if (misWeightPtr) *misWeightPtr = misWeight;
    return L;
}
Esempio n. 5
0
Spectrum PathIntegrator::Li(const RayDifferential &r, const Scene &scene,
                            Sampler &sampler, MemoryArena &arena,
                            int depth) const {
    ProfilePhase p(Prof::SamplerIntegratorLi);
    Spectrum L(0.f), beta(1.f);
    RayDifferential ray(r);
    bool specularBounce = false;
    int bounces;
    for (bounces = 0;; ++bounces) {
        // Find next path vertex and accumulate contribution
        VLOG(2) << "Path tracer bounce " << bounces << ", current L = " << L <<
            ", beta = " << beta;

        // Intersect _ray_ with scene and store intersection in _isect_
        SurfaceInteraction isect;
        bool foundIntersection = scene.Intersect(ray, &isect);

        // Possibly add emitted light at intersection
        if (bounces == 0 || specularBounce) {
            // Add emitted light at path vertex or from the environment
            if (foundIntersection) {
                L += beta * isect.Le(-ray.d);
                VLOG(2) << "Added Le -> L = " << L;
            } else {
                for (const auto &light : scene.infiniteLights)
                    L += beta * light->Le(ray);
                VLOG(2) << "Added infinite area lights -> L = " << L;
            }
        }

        // Terminate path if ray escaped or _maxDepth_ was reached
        if (!foundIntersection || bounces >= maxDepth) break;

        // Compute scattering functions and skip over medium boundaries
        isect.ComputeScatteringFunctions(ray, arena, true);
        if (!isect.bsdf) {
            VLOG(2) << "Skipping intersection due to null bsdf";
            ray = isect.SpawnRay(ray.d);
            bounces--;
            continue;
        }

        const Distribution1D *distrib = lightDistribution->Lookup(isect.p);

        // Sample illumination from lights to find path contribution.
        // (But skip this for perfectly specular BSDFs.)
        if (isect.bsdf->NumComponents(BxDFType(BSDF_ALL & ~BSDF_SPECULAR)) >
            0) {
            ++totalPaths;
            Spectrum Ld =
                beta * UniformSampleOneLight(isect, scene, arena, sampler, false,
                                             distrib);
            VLOG(2) << "Sampled direct lighting Ld = " << Ld;
            if (Ld.IsBlack()) ++zeroRadiancePaths;
            CHECK_GE(Ld.y(), 0.f);
            L += Ld;
        }

        // Sample BSDF to get new path direction
        Vector3f wo = -ray.d, wi;
        Float pdf;
        BxDFType flags;
        Spectrum f = isect.bsdf->Sample_f(wo, &wi, sampler.Get2D(), &pdf,
                                          BSDF_ALL, &flags);
        VLOG(2) << "Sampled BSDF, f = " << f << ", pdf = " << pdf;
        if (f.IsBlack() || pdf == 0.f) break;
        beta *= f * AbsDot(wi, isect.shading.n) / pdf;
        VLOG(2) << "Updated beta = " << beta;
        CHECK_GE(beta.y(), 0.f);
        DCHECK(!std::isinf(beta.y()));
        specularBounce = (flags & BSDF_SPECULAR) != 0;
        ray = isect.SpawnRay(wi);

        // Account for subsurface scattering, if applicable
        if (isect.bssrdf && (flags & BSDF_TRANSMISSION)) {
            // Importance sample the BSSRDF
            SurfaceInteraction pi;
            Spectrum S = isect.bssrdf->Sample_S(
                scene, sampler.Get1D(), sampler.Get2D(), arena, &pi, &pdf);
            DCHECK(!std::isinf(beta.y()));
            if (S.IsBlack() || pdf == 0) break;
            beta *= S / pdf;

            // Account for the direct subsurface scattering component
            L += beta * UniformSampleOneLight(pi, scene, arena, sampler, false,
                                              lightDistribution->Lookup(pi.p));

            // Account for the indirect subsurface scattering component
            Spectrum f = pi.bsdf->Sample_f(pi.wo, &wi, sampler.Get2D(), &pdf,
                                           BSDF_ALL, &flags);
            if (f.IsBlack() || pdf == 0) break;
            beta *= f * AbsDot(wi, pi.shading.n) / pdf;
            DCHECK(!std::isinf(beta.y()));
            specularBounce = (flags & BSDF_SPECULAR) != 0;
            ray = pi.SpawnRay(wi);
        }

        // Possibly terminate the path with Russian roulette
        if (beta.y() < rrThreshold && bounces > 3) {
            Float q = std::max((Float).05, 1 - beta.MaxComponentValue());
            VLOG(2) << "RR termination probability q = " << q;
            if (sampler.Get1D() < q) break;
            beta /= 1 - q;
            VLOG(2) << "After RR survival, beta = " << beta;
            DCHECK(!std::isinf(beta.y()));
        }
    }
    ReportValue(pathLength, bounces);
    return L;
}
Esempio n. 6
0
// VolPathIntegrator Method Definitions
Spectrum VolPathIntegrator::Li(const RayDifferential &r, const Scene &scene,
                               Sampler &sampler, MemoryArena &arena,
                               int depth) const {
    ProfilePhase p(Prof::SamplerIntegratorLi);
    Spectrum L(0.f), beta(1.f);
    RayDifferential ray(r);
    bool specularBounce = false;
    int bounces;
    for (bounces = 0;; ++bounces) {
        // Intersect _ray_ with scene and store intersection in _isect_
        SurfaceInteraction isect;
        bool foundIntersection = scene.Intersect(ray, &isect);

        // Sample the participating medium, if present
        MediumInteraction mi;
        if (ray.medium) beta *= ray.medium->Sample(ray, sampler, arena, &mi);
        if (beta.IsBlack()) break;

        // Handle an interaction with a medium or a surface
        if (mi.IsValid()) {
            // Terminate path if ray escaped or _maxDepth_ was reached
            if (bounces >= maxDepth) break;

            ++volumeInteractions;
            // Handle scattering at point in medium for volumetric path tracer
            L += beta * UniformSampleOneLight(mi, scene, arena, sampler, true);

            Vector3f wo = -ray.d, wi;
            mi.phase->Sample_p(wo, &wi, sampler.Get2D());
            ray = mi.SpawnRay(wi);
        } else {
            ++surfaceInteractions;
            // Handle scattering at point on surface for volumetric path tracer

            // Possibly add emitted light at intersection
            if (bounces == 0 || specularBounce) {
                // Add emitted light at path vertex or from the environment
                if (foundIntersection)
                    L += beta * isect.Le(-ray.d);
                else
                    for (const auto &light : scene.lights)
                        L += beta * light->Le(ray);
            }

            // Terminate path if ray escaped or _maxDepth_ was reached
            if (!foundIntersection || bounces >= maxDepth) break;

            // Compute scattering functions and skip over medium boundaries
            isect.ComputeScatteringFunctions(ray, arena, true);
            if (!isect.bsdf) {
                ray = isect.SpawnRay(ray.d);
                bounces--;
                continue;
            }

            // Sample illumination from lights to find attenuated path
            // contribution
            L += beta *
                 UniformSampleOneLight(isect, scene, arena, sampler, true);

            // Sample BSDF to get new path direction
            Vector3f wo = -ray.d, wi;
            Float pdf;
            BxDFType flags;
            Spectrum f = isect.bsdf->Sample_f(wo, &wi, sampler.Get2D(), &pdf,
                                              BSDF_ALL, &flags);
            if (f.IsBlack() || pdf == 0.f) break;
            beta *= f * AbsDot(wi, isect.shading.n) / pdf;
            Assert(std::isinf(beta.y()) == false);
            specularBounce = (flags & BSDF_SPECULAR) != 0;
            ray = isect.SpawnRay(wi);

            // Account for attenuated subsurface scattering, if applicable
            if (isect.bssrdf && (flags & BSDF_TRANSMISSION)) {
                // Importance sample the BSSRDF
                SurfaceInteraction pi;
                Spectrum S = isect.bssrdf->Sample_S(
                    scene, sampler.Get1D(), sampler.Get2D(), arena, &pi, &pdf);
#ifndef NDEBUG
                Assert(std::isinf(beta.y()) == false);
#endif
                if (S.IsBlack() || pdf == 0) break;
                beta *= S / pdf;

                // Account for the attenuated direct subsurface scattering
                // component
                L += beta *
                     UniformSampleOneLight(pi, scene, arena, sampler, true);

                // Account for the indirect subsurface scattering component
                Spectrum f = pi.bsdf->Sample_f(pi.wo, &wi, sampler.Get2D(),
                                               &pdf, BSDF_ALL, &flags);
                if (f.IsBlack() || pdf == 0) break;
                beta *= f * AbsDot(wi, pi.shading.n) / pdf;
#ifndef NDEBUG
                Assert(std::isinf(beta.y()) == false);
#endif
                specularBounce = (flags & BSDF_SPECULAR) != 0;
                ray = pi.SpawnRay(wi);
            }
        }

        // Possibly terminate the path with Russian roulette
        if (bounces > 3) {
            Float q = std::max((Float).05, 1 - beta.y());
            if (sampler.Get1D() < q) break;
            beta /= 1 - q;
            Assert(std::isinf(beta.y()) == false);
        }
    }
    ReportValue(pathLength, bounces);
    return L;
}