/** branching execution method for fractional LP solutions */ static SCIP_DECL_BRANCHEXECLP(branchExeclpnodereopt) {/*lint --e{715}*/ assert(branchrule != NULL ); assert(*result != SCIP_BRANCHED); *result = SCIP_DIDNOTRUN; if( SCIPisReoptEnabled(scip) && SCIPreoptimizeNode(scip, SCIPgetCurrentNode(scip)) ) { SCIP_VAR** branchcands; SCIP_Real* branchcandssol; SCIP_Real* branchcandsfrac; int nbranchcands; SCIP_Bool sbinit; SCIP_Real objsimrootlp; SCIP_CALL( SCIPgetBoolParam(scip, "reoptimization/strongbranchinginit", &sbinit) ); SCIP_CALL( SCIPgetRealParam(scip, "reoptimization/objsimrootLP", &objsimrootlp) ); if( sbinit && SCIPgetCurrentNode(scip) == SCIPgetRootNode(scip) && SCIPgetReoptSimilarity(scip, SCIPgetNReoptRuns(scip), SCIPgetNReoptRuns(scip)) <= objsimrootlp ) /* check objsimrootlp */ { /* get branching candidates */ SCIP_CALL( SCIPgetLPBranchCands(scip, &branchcands, &branchcandssol, &branchcandsfrac, NULL, &nbranchcands, NULL) ); /* run strong branching initialization */ if( nbranchcands > 0 ) { SCIP_CALL( SCIPexecRelpscostBranching(scip, TRUE, branchcands, branchcandssol, branchcandsfrac, nbranchcands, FALSE, result) ); assert(*result == SCIP_DIDNOTRUN || *result == SCIP_CUTOFF || *result == SCIP_REDUCEDDOM); } } if( *result != SCIP_CUTOFF && *result != SCIP_REDUCEDDOM) { assert((SCIPnodeGetReoptID(SCIPgetCurrentNode(scip)) == 0 && SCIPnodeGetDepth(SCIPgetCurrentNode(scip)) == 0 ) || 1 <= SCIPnodeGetReoptID(SCIPgetCurrentNode(scip))); SCIP_CALL( Exec(scip, result) ); } } return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecMutation) { /*lint --e{715}*/ SCIP_Longint maxnnodes; SCIP_Longint nsubnodes; /* node limit for the subproblem */ SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP* subscip; /* the subproblem created by mutation */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real maxnnodesr; SCIP_Real memorylimit; SCIP_Real timelimit; /* timelimit for the subproblem */ SCIP_Real upperbound; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_RETCODE retcode; assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); *result = SCIP_DELAYED; /* only call heuristic, if feasible solution is available */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; /* only call heuristic, if the best solution comes from transformed problem */ assert( SCIPgetBestSol(scip) != NULL ); if( SCIPsolIsOriginal(SCIPgetBestSol(scip)) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* only call heuristic, if discrete variables are present */ if( SCIPgetNBinVars(scip) == 0 && SCIPgetNIntVars(scip) == 0 ) return SCIP_OKAY; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodesr = heurdata->nodesquot * SCIPgetNNodes(scip); /* reward mutation if it succeeded often, count the setup costs for the sub-MIP as 100 nodes */ maxnnodesr *= 1.0 + 2.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0); maxnnodes = (SCIP_Longint) maxnnodesr - 100 * SCIPheurGetNCalls(heur); maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nsubnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_mutationsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_mutationsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_Bool valid; valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rens", TRUE, FALSE, TRUE, &valid) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */ SCIP_CALL( createSubproblem(scip, subscip, subvars, heurdata->minfixingrate, &heurdata->randseed, heurdata->uselprows) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handlers; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no decutions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip, SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip, -1.0 * SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove) * SCIPgetUpperbound(scip) + heurdata->minimprove * SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* solve the subproblem */ SCIPdebugMessage("Solve Mutation subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Mutation heuristic; sub-SCIP terminated with code <%d>\n",retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) *result = SCIP_FOUNDSOL; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** main procedure of the zeroobj heuristic, creates and solves a sub-SCIP */ SCIP_RETCODE SCIPapplyZeroobj( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur, /**< heuristic data structure */ SCIP_RESULT* result, /**< result data structure */ SCIP_Real minimprove, /**< factor by which zeroobj should at least improve the incumbent */ SCIP_Longint nnodes /**< node limit for the subproblem */ ) { SCIP* subscip; /* the subproblem created by zeroobj */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HEURDATA* heurdata; /* heuristic's private data structure */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real timelimit; /* time limit for zeroobj subproblem */ SCIP_Real memorylimit; /* memory limit for zeroobj subproblem */ SCIP_Real large; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_Bool valid; SCIP_RETCODE retcode; SCIP_SOL** subsols; int nsubsols; assert(scip != NULL); assert(heur != NULL); assert(result != NULL); assert(nnodes >= 0); assert(0.0 <= minimprove && minimprove <= 1.0); *result = SCIP_DIDNOTRUN; /* only call heuristic once at the root */ if( SCIPgetDepth(scip) <= 0 && SCIPheurGetNCalls(heur) > 0 ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only call the heuristic if we do not have an incumbent */ if( SCIPgetNSolsFound(scip) > 0 && heurdata->onlywithoutsol ) return SCIP_OKAY; /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* get variable data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); /* different methods to create sub-problem: either copy LP relaxation or the CIP with all constraints */ valid = FALSE; /* copy complete SCIP instance */ SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "zeroobj", TRUE, FALSE, TRUE, &valid) ); SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); /* create event handler for LP events */ eventhdlr = NULL; SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecZeroobj, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } /* determine large value to set variables to */ large = SCIPinfinity(scip); if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) ) large = 0.1 / SCIPfeastol(scip); /* get variable image and change to 0.0 in sub-SCIP */ for( i = 0; i < nvars; i++ ) { SCIP_Real adjustedbound; SCIP_Real lb; SCIP_Real ub; SCIP_Real inf; subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); SCIP_CALL( SCIPchgVarObj(subscip, subvars[i], 0.0) ); lb = SCIPvarGetLbGlobal(subvars[i]); ub = SCIPvarGetUbGlobal(subvars[i]); inf = SCIPinfinity(subscip); /* adjust infinite bounds in order to avoid that variables with non-zero objective * get fixed to infinite value in zeroobj subproblem */ if( SCIPisInfinity(subscip, ub ) ) { adjustedbound = MAX(large, lb+large); adjustedbound = MIN(adjustedbound, inf); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], adjustedbound) ); } if( SCIPisInfinity(subscip, -lb ) ) { adjustedbound = MIN(-large, ub-large); adjustedbound = MAX(adjustedbound, -inf); SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], adjustedbound) ); } } /* free hash map */ SCIPhashmapFree(&varmapfw); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/solutions", 1) ); /* forbid recursive call of heuristics and separators solving sub-SCIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable expensive techniques that merely work on the dual bound */ /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); if( !SCIPisParamFixed(subscip, "presolving/maxrounds") ) { SCIP_CALL( SCIPsetIntParam(subscip, "presolving/maxrounds", 50) ); } /* use best dfs node selection */ if( SCIPfindNodesel(subscip, "dfs") != NULL && !SCIPisParamFixed(subscip, "nodeselection/dfs/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/leastinf/priority", INT_MAX/4) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* disable feaspump and fracdiving */ if( !SCIPisParamFixed(subscip, "heuristics/feaspump/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/feaspump/freq", -1) ); } if( !SCIPisParamFixed(subscip, "heuristics/fracdiving/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/fracdiving/freq", -1) ); } /* restrict LP iterations */ SCIP_CALL( SCIPsetLongintParam(subscip, "lp/iterlim", 2*heurdata->maxlpiters / MAX(1,nnodes)) ); SCIP_CALL( SCIPsetLongintParam(subscip, "lp/rootiterlim", heurdata->maxlpiters) ); #ifdef SCIP_DEBUG /* for debugging zeroobj, enable MIP output */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) ); #endif /* if there is already a solution, add an objective cutoff */ if( SCIPgetNSols(scip) > 0 ) { SCIP_Real upperbound; SCIP_CONS* origobjcons; #ifndef NDEBUG int nobjvars; nobjvars = 0; #endif cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound(scip) >= 0 ) cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff); SCIP_CALL( SCIPcreateConsLinear(subscip, &origobjcons, "objbound_of_origscip", 0, NULL, NULL, -SCIPinfinity(subscip), cutoff, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE) ); for( i = 0; i < nvars; ++i) { if( !SCIPisFeasZero(subscip, SCIPvarGetObj(vars[i])) ) { SCIP_CALL( SCIPaddCoefLinear(subscip, origobjcons, subvars[i], SCIPvarGetObj(vars[i])) ); #ifndef NDEBUG nobjvars++; #endif } } SCIP_CALL( SCIPaddCons(subscip, origobjcons) ); SCIP_CALL( SCIPreleaseCons(subscip, &origobjcons) ); assert(nobjvars == SCIPgetNObjVars(scip)); } /* catch LP events of sub-SCIP */ SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); SCIPdebugMessage("solving subproblem: nnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); /* errors in solving the subproblem should not kill the overall solving process; * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && (!success || heurdata->addallsols); ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); if( success ) *result = SCIP_FOUNDSOL; } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** transforms given solution of the master problem into solution of the original problem * @todo think about types of epsilons used in this method */ SCIP_RETCODE GCGrelaxTransformMastersolToOrigsol( SCIP* scip, /**< SCIP data structure */ SCIP_SOL* mastersol, /**< solution of the master problem, or NULL for current LP solution */ SCIP_SOL** origsol /**< pointer to store the new created original problem's solution */ ) { SCIP* masterprob; int npricingprobs; int* blocknrs; SCIP_Real* blockvalue; SCIP_Real increaseval; SCIP_VAR** mastervars; SCIP_Real* mastervals; int nmastervars; SCIP_VAR** vars; int nvars; SCIP_Real feastol; int i; int j; assert(scip != NULL); assert(origsol != NULL); masterprob = GCGrelaxGetMasterprob(scip); npricingprobs = GCGrelaxGetNPricingprobs(scip); assert( !SCIPisInfinity(scip, SCIPgetSolOrigObj(masterprob, mastersol)) ); SCIP_CALL( SCIPcreateSol(scip, origsol, GCGrelaxGetProbingheur(scip)) ); SCIP_CALL( SCIPallocBufferArray(scip, &blockvalue, npricingprobs) ); SCIP_CALL( SCIPallocBufferArray(scip, &blocknrs, npricingprobs) ); /* get variables of the master problem and their solution values */ SCIP_CALL( SCIPgetVarsData(masterprob, &mastervars, &nmastervars, NULL, NULL, NULL, NULL) ); assert(mastervars != NULL); assert(nmastervars >= 0); SCIP_CALL( SCIPallocBufferArray(scip, &mastervals, nmastervars) ); SCIP_CALL( SCIPgetSolVals(masterprob, mastersol, nmastervars, mastervars, mastervals) ); /* initialize the block values for the pricing problems */ for( i = 0; i < npricingprobs; i++ ) { blockvalue[i] = 0.0; blocknrs[i] = 0; } /* loop over all given master variables */ for( i = 0; i < nmastervars; i++ ) { SCIP_VAR** origvars; int norigvars; SCIP_Real* origvals; SCIP_Bool isray; int blocknr; origvars = GCGmasterVarGetOrigvars(mastervars[i]); norigvars = GCGmasterVarGetNOrigvars(mastervars[i]); origvals = GCGmasterVarGetOrigvals(mastervars[i]); blocknr = GCGvarGetBlock(mastervars[i]); isray = GCGmasterVarIsRay(mastervars[i]); assert(GCGvarIsMaster(mastervars[i])); assert(!SCIPisFeasNegative(scip, mastervals[i])); /** @todo handle infinite master solution values */ assert(!SCIPisInfinity(scip, mastervals[i])); /* first of all, handle variables representing rays */ if( isray ) { assert(blocknr >= 0); /* we also want to take into account variables representing rays, that have a small value (between normal and feas eps), * so we do no feas comparison here */ if( SCIPisPositive(scip, mastervals[i]) ) { /* loop over all original variables contained in the current master variable */ for( j = 0; j < norigvars; j++ ) { if( SCIPisZero(scip, origvals[j]) ) break; assert(!SCIPisZero(scip, origvals[j])); /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done later) */ if( GCGvarIsLinking(origvars[j]) ) continue; SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[j]), origvals[j] * mastervals[i], SCIPvarGetName(mastervars[i])); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[j], origvals[j] * mastervals[i]) ); } } mastervals[i] = 0.0; continue; } /* handle the variables with value >= 1 to get integral values in original solution */ while( SCIPisFeasGE(scip, mastervals[i], 1.0) ) { /* variable was directly transferred to the master problem (only in linking conss or linking variable) */ /** @todo this may be the wrong place for this case, handle it before the while loop * and remove the similar case in the next while loop */ if( blocknr == -1 ) { assert(norigvars == 1); assert(origvals[0] == 1.0); /* increase the corresponding value */ SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[0]), origvals[0] * mastervals[i], SCIPvarGetName(mastervars[i])); SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[0], origvals[0] * mastervals[i]) ); mastervals[i] = 0.0; } else { assert(blocknr >= 0); /* loop over all original variables contained in the current master variable */ for( j = 0; j < norigvars; j++ ) { SCIP_VAR* pricingvar; int norigpricingvars; SCIP_VAR** origpricingvars; if( SCIPisZero(scip, origvals[j]) ) break; assert(!SCIPisZero(scip, origvals[j])); /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done above) */ if( GCGvarIsLinking(origvars[j]) ) continue; pricingvar = GCGoriginalVarGetPricingVar(origvars[j]); assert(GCGvarIsPricing(pricingvar)); norigpricingvars = GCGpricingVarGetNOrigvars(pricingvar); origpricingvars = GCGpricingVarGetOrigvars(pricingvar); /* just in case a variable has a value higher than the number of blocks, it represents */ if( norigpricingvars <= blocknrs[blocknr] ) { SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[norigpricingvars-1]), mastervals[i] * origvals[j], SCIPvarGetName(mastervars[i])); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[norigpricingvars-1], mastervals[i] * origvals[j]) ); mastervals[i] = 1.0; } /* this should be default */ else { SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[blocknrs[blocknr]]), origvals[j], SCIPvarGetName(mastervars[i]) ); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[blocknrs[blocknr]], origvals[j]) ); } } mastervals[i] = mastervals[i] - 1.0; blocknrs[blocknr]++; } } } /* loop over all given master variables */ for( i = 0; i < nmastervars; i++ ) { SCIP_VAR** origvars; int norigvars; SCIP_Real* origvals; int blocknr; origvars = GCGmasterVarGetOrigvars(mastervars[i]); norigvars = GCGmasterVarGetNOrigvars(mastervars[i]); origvals = GCGmasterVarGetOrigvals(mastervars[i]); blocknr = GCGvarGetBlock(mastervars[i]); if( SCIPisFeasZero(scip, mastervals[i]) ) { continue; } assert(SCIPisFeasGE(scip, mastervals[i], 0.0) && SCIPisFeasLT(scip, mastervals[i], 1.0)); while( SCIPisFeasPositive(scip, mastervals[i]) ) { assert(GCGvarIsMaster(mastervars[i])); assert(!GCGmasterVarIsRay(mastervars[i])); if( blocknr == -1 ) { assert(norigvars == 1); assert(origvals[0] == 1.0); SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[0]), origvals[0] * mastervals[i], SCIPvarGetName(mastervars[i]) ); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[0], origvals[0] * mastervals[i]) ); mastervals[i] = 0.0; } else { increaseval = MIN(mastervals[i], 1.0 - blockvalue[blocknr]); /* loop over all original variables contained in the current master variable */ for( j = 0; j < norigvars; j++ ) { SCIP_VAR* pricingvar; int norigpricingvars; SCIP_VAR** origpricingvars; if( SCIPisZero(scip, origvals[j]) ) continue; /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done above) */ if( GCGvarIsLinking(origvars[j]) ) continue; pricingvar = GCGoriginalVarGetPricingVar(origvars[j]); assert(GCGvarIsPricing(pricingvar)); norigpricingvars = GCGpricingVarGetNOrigvars(pricingvar); origpricingvars = GCGpricingVarGetOrigvars(pricingvar); if( norigpricingvars <= blocknrs[blocknr] ) { increaseval = mastervals[i]; SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[norigpricingvars-1]), origvals[j] * increaseval, SCIPvarGetName(mastervars[i]) ); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[norigpricingvars-1], origvals[j] * increaseval) ); } else { /* increase the corresponding value */ SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[blocknrs[blocknr]]), origvals[j] * increaseval, SCIPvarGetName(mastervars[i]) ); SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[blocknrs[blocknr]], origvals[j] * increaseval) ); } } mastervals[i] = mastervals[i] - increaseval; if( SCIPisFeasZero(scip, mastervals[i]) ) { mastervals[i] = 0.0; } blockvalue[blocknr] += increaseval; /* if the value assigned to the block is equal to 1, this block is full and we take the next block */ if( SCIPisFeasGE(scip, blockvalue[blocknr], 1.0) ) { blockvalue[blocknr] = 0.0; blocknrs[blocknr]++; } } } } SCIPfreeBufferArray(scip, &mastervals); SCIPfreeBufferArray(scip, &blocknrs); SCIPfreeBufferArray(scip, &blockvalue); /* if the solution violates one of its bounds by more than feastol * and less than 10*feastol, round it and print a warning */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); SCIP_CALL( SCIPgetRealParam(scip, "numerics/feastol", &feastol) ); for( i = 0; i < nvars; ++i ) { SCIP_Real solval; SCIP_Real lb; SCIP_Real ub; solval = SCIPgetSolVal(scip, *origsol, vars[i]); lb = SCIPvarGetLbLocal(vars[i]); ub = SCIPvarGetUbLocal(vars[i]); if( SCIPisFeasGT(scip, solval, ub) && EPSEQ(solval, ub, 10 * feastol) ) { SCIP_CALL( SCIPsetSolVal(scip, *origsol, vars[i], ub) ); SCIPwarningMessage(scip, "Variable %s rounded from %g to %g in relaxation solution\n", SCIPvarGetName(vars[i]), solval, ub); } else if( SCIPisFeasLT(scip, solval, lb) && EPSEQ(solval, lb, 10 * feastol) ) { SCIP_CALL( SCIPsetSolVal(scip, *origsol, vars[i], lb) ); SCIPwarningMessage(scip, "Variable %s rounded from %g to %g in relaxation solution\n", SCIPvarGetName(vars[i]), solval, lb); } } return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecOneopt) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* bestsol; /* incumbent solution */ SCIP_SOL* worksol; /* heuristic's working solution */ SCIP_VAR** vars; /* SCIP variables */ SCIP_VAR** shiftcands; /* shiftable variables */ SCIP_ROW** lprows; /* SCIP LP rows */ SCIP_Real* activities; /* row activities for working solution */ SCIP_Real* shiftvals; SCIP_Real lb; SCIP_Real ub; SCIP_Bool localrows; SCIP_Bool valid; int nchgbound; int nbinvars; int nintvars; int nvars; int nlprows; int i; int nshiftcands; int shiftcandssize; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); *result = SCIP_DELAYED; /* we only want to process each solution once */ bestsol = SCIPgetBestSol(scip); if( bestsol == NULL || heurdata->lastsolindex == SCIPsolGetIndex(bestsol) ) return SCIP_OKAY; /* reset the timing mask to its default value (at the root node it could be different) */ if( SCIPgetNNodes(scip) > 1 ) SCIPheurSetTimingmask(heur, HEUR_TIMING); /* get problem variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); nintvars += nbinvars; /* do not run if there are no discrete variables */ if( nintvars == 0 ) { *result = SCIP_DIDNOTRUN; return SCIP_OKAY; } if( heurtiming == SCIP_HEURTIMING_BEFOREPRESOL ) { SCIP* subscip; /* the subproblem created by zeroobj */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_Real* subsolvals; /* solution values of the subproblem */ SCIP_Real timelimit; /* time limit for zeroobj subproblem */ SCIP_Real memorylimit; /* memory limit for zeroobj subproblem */ SCIP_SOL* startsol; SCIP_SOL** subsols; int nsubsols; if( !heurdata->beforepresol ) return SCIP_OKAY; /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) return SCIP_OKAY; /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); /* copy complete SCIP instance */ valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "oneopt", TRUE, FALSE, TRUE, &valid) ); SCIP_CALL( SCIPtransformProb(subscip) ); /* get variable image */ for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* copy the solution */ SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) ); SCIP_CALL( SCIPgetSolVals(scip, bestsol, nvars, vars, subsolvals) ); /* create start solution for the subproblem */ SCIP_CALL( SCIPcreateOrigSol(subscip, &startsol, NULL) ); SCIP_CALL( SCIPsetSolVals(subscip, startsol, nvars, subvars, subsolvals) ); /* try to add new solution to sub-SCIP and free it immediately */ valid = FALSE; SCIP_CALL( SCIPtrySolFree(subscip, &startsol, FALSE, FALSE, FALSE, FALSE, &valid) ); SCIPfreeBufferArray(scip, &subsolvals); SCIPhashmapFree(&varmapfw); /* disable statistic timing inside sub SCIP */ SCIP_CALL( SCIPsetBoolParam(subscip, "timing/statistictiming", FALSE) ); /* deactivate basically everything except oneopt in the sub-SCIP */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetHeuristics(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* if necessary, some of the parameters have to be unfixed first */ if( SCIPisParamFixed(subscip, "lp/solvefreq") ) { SCIPwarningMessage(scip, "unfixing parameter lp/solvefreq in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "lp/solvefreq") ); } SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) ); if( SCIPisParamFixed(subscip, "heuristics/oneopt/freq") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/freq in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/freq") ); } SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/oneopt/freq", 1) ); if( SCIPisParamFixed(subscip, "heuristics/oneopt/forcelpconstruction") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/forcelpconstruction in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/forcelpconstruction") ); } SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/forcelpconstruction", TRUE) ); /* avoid recursive call, which would lead to an endless loop */ if( SCIPisParamFixed(subscip, "heuristics/oneopt/beforepresol") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/beforepresol in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/beforepresol") ); } SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/beforepresol", FALSE) ); if( valid ) { retcode = SCIPsolve(subscip); /* errors in solving the subproblem should not kill the overall solving process; * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode); } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); valid = FALSE; for( i = 0; i < nsubsols && !valid; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &valid) ); if( valid ) *result = SCIP_FOUNDSOL; } /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; } /* we can only work on solutions valid in the transformed space */ if( SCIPsolIsOriginal(bestsol) ) return SCIP_OKAY; if( heurtiming == SCIP_HEURTIMING_BEFORENODE && (SCIPhasCurrentNodeLP(scip) || heurdata->forcelpconstruction) ) { SCIP_Bool cutoff; cutoff = FALSE; SCIP_CALL( SCIPconstructLP(scip, &cutoff) ); SCIP_CALL( SCIPflushLP(scip) ); /* get problem variables again, SCIPconstructLP() might have added new variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); nintvars += nbinvars; } /* we need an LP */ if( SCIPgetNLPRows(scip) == 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; nchgbound = 0; /* initialize data */ nshiftcands = 0; shiftcandssize = 8; heurdata->lastsolindex = SCIPsolGetIndex(bestsol); SCIP_CALL( SCIPcreateSolCopy(scip, &worksol, bestsol) ); SCIPsolSetHeur(worksol,heur); SCIPdebugMessage("Starting bound adjustment in 1-opt heuristic\n"); /* maybe change solution values due to global bound changes first */ for( i = nvars - 1; i >= 0; --i ) { SCIP_VAR* var; SCIP_Real solval; var = vars[i]; lb = SCIPvarGetLbGlobal(var); ub = SCIPvarGetUbGlobal(var); solval = SCIPgetSolVal(scip, bestsol,var); /* old solution value is smaller than the actual lower bound */ if( SCIPisFeasLT(scip, solval, lb) ) { /* set the solution value to the global lower bound */ SCIP_CALL( SCIPsetSolVal(scip, worksol, var, lb) ); ++nchgbound; SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to lb %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, lb); } /* old solution value is greater than the actual upper bound */ else if( SCIPisFeasGT(scip, solval, SCIPvarGetUbGlobal(var)) ) { /* set the solution value to the global upper bound */ SCIP_CALL( SCIPsetSolVal(scip, worksol, var, ub) ); ++nchgbound; SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to ub %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, ub); } } SCIPdebugMessage("number of bound changes (due to global bounds) = %d\n", nchgbound); SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) ); localrows = FALSE; valid = TRUE; /* initialize activities */ for( i = 0; i < nlprows; ++i ) { SCIP_ROW* row; row = lprows[i]; assert(SCIProwGetLPPos(row) == i); if( !SCIProwIsLocal(row) ) { activities[i] = SCIPgetRowSolActivity(scip, row, worksol); SCIPdebugMessage("Row <%s> has activity %g\n", SCIProwGetName(row), activities[i]); if( SCIPisFeasLT(scip, activities[i], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[i], SCIProwGetRhs(row)) ) { valid = FALSE; SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) ); SCIPdebugMessage("row <%s> activity %g violates bounds, lhs = %g, rhs = %g\n", SCIProwGetName(row), activities[i], SCIProwGetLhs(row), SCIProwGetRhs(row)); break; } } else localrows = TRUE; } if( !valid ) { /** @todo try to correct lp rows */ SCIPdebugMessage("Some global bound changes were not valid in lp rows.\n"); goto TERMINATE; } SCIP_CALL( SCIPallocBufferArray(scip, &shiftcands, shiftcandssize) ); SCIP_CALL( SCIPallocBufferArray(scip, &shiftvals, shiftcandssize) ); SCIPdebugMessage("Starting 1-opt heuristic\n"); /* enumerate all integer variables and find out which of them are shiftable */ for( i = 0; i < nintvars; i++ ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { SCIP_Real shiftval; SCIP_Real solval; /* find out whether the variable can be shifted */ solval = SCIPgetSolVal(scip, worksol, vars[i]); shiftval = calcShiftVal(scip, vars[i], solval, activities); /* insert the variable into the list of shifting candidates */ if( !SCIPisFeasZero(scip, shiftval) ) { SCIPdebugMessage(" -> Variable <%s> can be shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval); if( nshiftcands == shiftcandssize) { shiftcandssize *= 8; SCIP_CALL( SCIPreallocBufferArray(scip, &shiftcands, shiftcandssize) ); SCIP_CALL( SCIPreallocBufferArray(scip, &shiftvals, shiftcandssize) ); } shiftcands[nshiftcands] = vars[i]; shiftvals[nshiftcands] = shiftval; nshiftcands++; } } } /* if at least one variable can be shifted, shift variables sorted by their objective */ if( nshiftcands > 0 ) { SCIP_Real shiftval; SCIP_Real solval; SCIP_VAR* var; /* the case that exactly one variable can be shifted is slightly easier */ if( nshiftcands == 1 ) { var = shiftcands[0]; assert(var != NULL); solval = SCIPgetSolVal(scip, worksol, var); shiftval = shiftvals[0]; assert(!SCIPisFeasZero(scip,shiftval)); SCIPdebugMessage(" Only one shiftcand found, var <%s>, which is now shifted by<%1.1f> \n", SCIPvarGetName(var), shiftval); SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) ); } else { SCIP_Real* objcoeffs; SCIP_CALL( SCIPallocBufferArray(scip, &objcoeffs, nshiftcands) ); SCIPdebugMessage(" %d shiftcands found \n", nshiftcands); /* sort the variables by their objective, optionally weighted with the shiftval */ if( heurdata->weightedobj ) { for( i = 0; i < nshiftcands; ++i ) objcoeffs[i] = SCIPvarGetObj(shiftcands[i])*shiftvals[i]; } else { for( i = 0; i < nshiftcands; ++i ) objcoeffs[i] = SCIPvarGetObj(shiftcands[i]); } /* sort arrays with respect to the first one */ SCIPsortRealPtr(objcoeffs, (void**)shiftcands, nshiftcands); /* try to shift each variable -> Activities have to be updated */ for( i = 0; i < nshiftcands; ++i ) { var = shiftcands[i]; assert(var != NULL); solval = SCIPgetSolVal(scip, worksol, var); shiftval = calcShiftVal(scip, var, solval, activities); SCIPdebugMessage(" -> Variable <%s> is now shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval); assert(i > 0 || !SCIPisFeasZero(scip, shiftval)); assert(SCIPisFeasGE(scip, solval+shiftval, SCIPvarGetLbGlobal(var)) && SCIPisFeasLE(scip, solval+shiftval, SCIPvarGetUbGlobal(var))); SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) ); SCIP_CALL( updateRowActivities(scip, activities, var, shiftval) ); } SCIPfreeBufferArray(scip, &objcoeffs); } /* if the problem is a pure IP, try to install the solution, if it is a MIP, solve LP again to set the continuous * variables to the best possible value */ if( nvars == nintvars || !SCIPhasCurrentNodeLP(scip) || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* since we ignore local rows, we cannot guarantee their feasibility and have to set the checklprows flag to * TRUE if local rows are present */ SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, localrows, &success) ); if( success ) { SCIPdebugMessage("found feasible shifted solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) ); heurdata->lastsolindex = SCIPsolGetIndex(bestsol); *result = SCIP_FOUNDSOL; } } else { SCIP_Bool lperror; #ifdef NDEBUG SCIP_RETCODE retstat; #endif SCIPdebugMessage("shifted solution should be feasible -> solve LP to fix continuous variables to best values\n"); /* start diving to calculate the LP relaxation */ SCIP_CALL( SCIPstartDive(scip) ); /* set the bounds of the variables: fixed for integers, global bounds for continuous */ for( i = 0; i < nvars; ++i ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], SCIPvarGetLbGlobal(vars[i])) ); SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], SCIPvarGetUbGlobal(vars[i])) ); } } /* apply this after global bounds to not cause an error with intermediate empty domains */ for( i = 0; i < nintvars; ++i ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { solval = SCIPgetSolVal(scip, worksol, vars[i]); SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], solval) ); SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], solval) ); } } /* solve LP */ SCIPdebugMessage(" -> old LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip)); /**@todo in case of an MINLP, if SCIPisNLPConstructed() is TRUE, say, rather solve the NLP instead of the LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG retstat = SCIPsolveDiveLP(scip, -1, &lperror, NULL); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Oneopt heuristic; LP solve terminated with code <%d>\n",retstat); } #else SCIP_CALL( SCIPsolveDiveLP(scip, -1, &lperror, NULL) ); #endif SCIPdebugMessage(" -> new LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip)); SCIPdebugMessage(" -> error=%u, status=%d\n", lperror, SCIPgetLPSolstat(scip)); /* check if this is a feasible solution */ if( !lperror && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* copy the current LP solution to the working solution */ SCIP_CALL( SCIPlinkLPSol(scip, worksol) ); SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check solution for feasibility */ if( success ) { SCIPdebugMessage("found feasible shifted solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) ); heurdata->lastsolindex = SCIPsolGetIndex(bestsol); *result = SCIP_FOUNDSOL; } } /* terminate the diving */ SCIP_CALL( SCIPendDive(scip) ); } } SCIPdebugMessage("Finished 1-opt heuristic\n"); SCIPfreeBufferArray(scip, &shiftvals); SCIPfreeBufferArray(scip, &shiftcands); TERMINATE: SCIPfreeBufferArray(scip, &activities); SCIP_CALL( SCIPfreeSol(scip, &worksol) ); return SCIP_OKAY; }
/** reduced cost pricing method of variable pricer for feasible LPs */ static SCIP_DECL_PRICERREDCOST(pricerRedcostBinpacking) { /*lint --e{715}*/ SCIP* subscip; SCIP_PRICERDATA* pricerdata; SCIP_CONS** conss; SCIP_VAR** vars; int* ids; SCIP_Bool addvar; SCIP_SOL** sols; int nsols; int s; int nitems; SCIP_Longint capacity; SCIP_Real timelimit; SCIP_Real memorylimit; assert(scip != NULL); assert(pricer != NULL); (*result) = SCIP_DIDNOTRUN; /* get the pricer data */ pricerdata = SCIPpricerGetData(pricer); assert(pricerdata != NULL); capacity = pricerdata->capacity; conss = pricerdata->conss; ids = pricerdata->ids; nitems = pricerdata->nitems; /* get the remaining time and memory limit */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); if( !SCIPisInfinity(scip, memorylimit) ) memorylimit -= SCIPgetMemUsed(scip)/1048576.0; /* initialize SCIP */ SCIP_CALL( SCIPcreate(&subscip) ); SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* create problem in sub SCIP */ SCIP_CALL( SCIPcreateProbBasic(subscip, "pricing") ); SCIP_CALL( SCIPsetObjsense(subscip, SCIP_OBJSENSE_MAXIMIZE) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* set time and memory limit */ SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPallocMemoryArray(subscip, &vars, nitems) ); /* initialization local pricing problem */ SCIP_CALL( initPricing(scip, pricerdata, subscip, vars) ); SCIPdebugMessage("solve pricer problem\n"); /* solve sub SCIP */ SCIP_CALL( SCIPsolve(subscip) ); sols = SCIPgetSols(subscip); nsols = SCIPgetNSols(subscip); addvar = FALSE; /* loop over all solutions and create the corresponding column to master if the reduced cost are negative for master, * that is the objective value i greater than 1.0 */ for( s = 0; s < nsols; ++s ) { SCIP_Bool feasible; SCIP_SOL* sol; /* the soultion should be sorted w.r.t. the objective function value */ assert(s == 0 || SCIPisFeasGE(subscip, SCIPgetSolOrigObj(subscip, sols[s-1]), SCIPgetSolOrigObj(subscip, sols[s]))); sol = sols[s]; assert(sol != NULL); /* check if solution is feasible in original sub SCIP */ SCIP_CALL( SCIPcheckSolOrig(subscip, sol, &feasible, FALSE, FALSE ) ); if( !feasible ) { SCIPwarningMessage(scip, "solution in pricing problem (capacity <%d>) is infeasible\n", capacity); continue; } /* check if the solution has a value greater than 1.0 */ if( SCIPisFeasGT(subscip, SCIPgetSolOrigObj(subscip, sol), 1.0) ) { SCIP_VAR* var; SCIP_VARDATA* vardata; int* consids; char strtmp[SCIP_MAXSTRLEN]; char name[SCIP_MAXSTRLEN]; int nconss; int o; int v; SCIPdebug( SCIP_CALL( SCIPprintSol(subscip, sol, NULL, FALSE) ) ); nconss = 0; (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "items"); SCIP_CALL( SCIPallocBufferArray(scip, &consids, nitems) ); /* check which variables are fixed -> which item belongs to this packing */ for( o = 0, v = 0; o < nitems; ++o ) { if( !SCIPconsIsEnabled(conss[o]) ) continue; assert(SCIPgetNFixedonesSetppc(scip, conss[o]) == 0); if( SCIPgetSolVal(subscip, sol, vars[v]) > 0.5 ) { (void) SCIPsnprintf(strtmp, SCIP_MAXSTRLEN, "_%d", ids[o]); strcat(name, strtmp); consids[nconss] = o; nconss++; } else assert( SCIPisFeasEQ(subscip, SCIPgetSolVal(subscip, sol, vars[v]), 0.0) ); v++; } SCIP_CALL( SCIPvardataCreateBinpacking(scip, &vardata, consids, nconss) ); /* create variable for a new column with objective function coefficient 0.0 */ SCIP_CALL( SCIPcreateVarBinpacking(scip, &var, name, 1.0, FALSE, TRUE, vardata) ); /* add the new variable to the pricer store */ SCIP_CALL( SCIPaddPricedVar(scip, var, 1.0) ); addvar = TRUE; /* change the upper bound of the binary variable to lazy since the upper bound is already enforced due to * the objective function the set covering constraint; The reason for doing is that, is to avoid the bound * of x <= 1 in the LP relaxation since this bound constraint would produce a dual variable which might have * a positive reduced cost */ SCIP_CALL( SCIPchgVarUbLazy(scip, var, 1.0) ); /* check which variable are fixed -> which orders belong to this packing */ for( v = 0; v < nconss; ++v ) { assert(SCIPconsIsEnabled(conss[consids[v]])); SCIP_CALL( SCIPaddCoefSetppc(scip, conss[consids[v]], var) ); } SCIPdebug(SCIPprintVar(scip, var, NULL) ); SCIP_CALL( SCIPreleaseVar(scip, &var) ); SCIPfreeBufferArray(scip, &consids); } else break; } /* free pricer MIP */ SCIPfreeMemoryArray(subscip, &vars); if( addvar || SCIPgetStatus(subscip) == SCIP_STATUS_OPTIMAL ) (*result) = SCIP_SUCCESS; /* free sub SCIP */ SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** main procedure of the RENS heuristic, creates and solves a subMIP */ SCIP_RETCODE SCIPapplyGcgrens( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur, /**< heuristic data structure */ SCIP_RESULT* result, /**< result data structure */ SCIP_Real minfixingrate, /**< minimum percentage of integer variables that have to be fixed */ SCIP_Real minimprove, /**< factor by which RENS should at least improve the incumbent */ SCIP_Longint maxnodes, /**< maximum number of nodes for the subproblem */ SCIP_Longint nstallnodes, /**< number of stalling nodes for the subproblem */ SCIP_Bool binarybounds, /**< should general integers get binary bounds [floor(.),ceil(.)]? */ SCIP_Bool uselprows /**< should subproblem be created out of the rows in the LP rows? */ ) { SCIP* subscip; /* the subproblem created by RENS */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real timelimit; SCIP_Real memorylimit; int nvars; int i; SCIP_Bool success; SCIP_RETCODE retcode; assert(scip != NULL); assert(heur != NULL); assert(result != NULL); assert(maxnodes >= 0); assert(nstallnodes >= 0); assert(0.0 <= minfixingrate && minfixingrate <= 1.0); assert(0.0 <= minimprove && minimprove <= 1.0); SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); if( uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_gcgrenssub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_gcgrenssub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_Bool valid; SCIP_HEURDATA* heurdata; valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "gcgrens", TRUE, FALSE, TRUE, &valid) ); /** @todo check for thread safeness */ /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); if( heurdata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */ SCIP_CALL( createSubproblem(scip, subscip, subvars, minfixingrate, binarybounds, uselprows, &success) ); SCIPdebugMessage("RENS subproblem: %d vars, %d cons, success=%u\n", SCIPgetNVars(subscip), SCIPgetNConss(subscip), success); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); if( !SCIPisInfinity(scip, memorylimit) ) memorylimit -= SCIPgetMemUsed(scip)/1048576.0; if( timelimit <= 0.0 || memorylimit <= 0.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", nstallnodes) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", maxnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving sub-SCIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(scip, "estimate") != NULL ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(scip, "inference") != NULL ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); #ifdef SCIP_DEBUG /* for debugging RENS, enable MIP output */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) ); #endif /* if the subproblem could not be created, free memory and return */ if( !success ) { *result = SCIP_DIDNOTRUN; SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; } /* if there is already a solution, add an objective cutoff */ if( SCIPgetNSols(scip) > 0 ) { SCIP_Real upperbound; assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); } /* presolve the subproblem */ retcode = SCIPpresolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while presolving subproblem in GCG RENS heuristic; sub-SCIP terminated with code <%d>\n",retcode); } SCIPdebugMessage("GCG RENS presolved subproblem: %d vars, %d cons, success=%u\n", SCIPgetNVars(subscip), SCIPgetNConss(subscip), success); /* after presolving, we should have at least reached a certain fixing rate over ALL variables (including continuous) * to ensure that not only the MIP but also the LP relaxation is easy enough */ if( ( nvars - SCIPgetNVars(subscip) ) / (SCIP_Real)nvars >= minfixingrate / 2.0 ) { SCIP_SOL** subsols; int nsubsols; /* solve the subproblem */ SCIPdebugMessage("solving subproblem: nstallnodes=%"SCIP_LONGINT_FORMAT", maxnodes=%"SCIP_LONGINT_FORMAT"\n", nstallnodes, maxnodes); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in GCG RENS heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) *result = SCIP_FOUNDSOL; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecLocalbranching) { /*lint --e{715}*/ SCIP_Longint maxnnodes; /* maximum number of subnodes */ SCIP_Longint nsubnodes; /* nodelimit for subscip */ SCIP_HEURDATA* heurdata; SCIP* subscip; /* the subproblem created by localbranching */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL* bestsol; /* best solution so far */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real timelimit; /* timelimit for subscip (equals remaining time of scip) */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Real memorylimit; SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; int nvars; int i; SCIP_Bool success; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* there should be enough binary variables that a local branching constraint makes sense */ if( SCIPgetNBinVars(scip) < 2*heurdata->neighborhoodsize ) return SCIP_OKAY; *result = SCIP_DELAYED; /* only call heuristic, if an IP solution is at hand */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; bestsol = SCIPgetBestSol(scip); assert(bestsol != NULL); /* only call heuristic, if the best solution comes from transformed problem */ if( SCIPsolIsOriginal(bestsol) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip, bestsol) < heurdata->nwaitingnodes) return SCIP_OKAY; /* only call heuristic, if the best solution does not come from trivial heuristic */ if( SCIPsolGetHeur(bestsol) != NULL && strcmp(SCIPheurGetName(SCIPsolGetHeur(bestsol)), "trivial") == 0 ) return SCIP_OKAY; /* reset neighborhood and minnodes, if new solution was found */ if( heurdata->lastsol != bestsol ) { heurdata->curneighborhoodsize = heurdata->neighborhoodsize; heurdata->curminnodes = heurdata->minnodes; heurdata->emptyneighborhoodsize = 0; heurdata->callstatus = EXECUTE; heurdata->lastsol = bestsol; } /* if no new solution was found and local branching also seems to fail, just keep on waiting */ if( heurdata->callstatus == WAITFORNEWSOL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward local branching if it succeeded often */ maxnnodes = (SCIP_Longint)(maxnnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); maxnnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-MIP as 100 nodes */ maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call sub problem solving */ if( nsubnodes < heurdata->curminnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIPdebugMessage("running localbranching heuristic ...\n"); /* get the data of the variables and the best solution */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; eventhdlr = NULL; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_localbranchsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_localbranchsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "localbranchsub", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } /* create event handler for LP events */ SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecLocalbranching, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } } SCIPdebugMessage("Copying the plugins was %ssuccessful.\n", success ? "" : "not "); for (i = 0; i < nvars; ++i) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* if the subproblem could not be created, free memory and return */ if( !success ) { *result = SCIP_DIDNOTRUN; goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); #ifndef SCIP_DEBUG /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); #endif /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ heurdata->nodelimit = nsubnodes; SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", MAX(10, nsubnodes/10)) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/bestsol", 3) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 500) ); } /* copy the original problem and add the local branching constraint */ if( heurdata->uselprows ) { SCIP_CALL( createSubproblem(scip, subscip, subvars) ); } SCIP_CALL( addLocalBranchingConstraint(scip, subscip, subvars, heurdata) ); /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* catch LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); } /* solve the subproblem */ SCIPdebugMessage("solving local branching subproblem with neighborhoodsize %d and maxnodes %"SCIP_LONGINT_FORMAT"\n", heurdata->curneighborhoodsize, nsubnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); } /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in local branching heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* print solving statistics of subproblem if we are in SCIP's debug mode */ SCIPdebug( SCIP_CALL( SCIPprintStatistics(subscip, NULL) ) ); heurdata->usednodes += SCIPgetNNodes(subscip); SCIPdebugMessage("local branching used %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT" nodes\n", SCIPgetNNodes(subscip), nsubnodes); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) { SCIPdebugMessage("-> accepted solution of value %g\n", SCIPgetSolOrigObj(subscip, subsols[i])); *result = SCIP_FOUNDSOL; } } /* check the status of the sub-MIP */ switch( SCIPgetStatus(subscip) ) { case SCIP_STATUS_OPTIMAL: case SCIP_STATUS_BESTSOLLIMIT: heurdata->callstatus = WAITFORNEWSOL; /* new solution will immediately be installed at next call */ SCIPdebugMessage(" -> found new solution\n"); break; case SCIP_STATUS_NODELIMIT: case SCIP_STATUS_STALLNODELIMIT: case SCIP_STATUS_TOTALNODELIMIT: heurdata->callstatus = EXECUTE; heurdata->curneighborhoodsize = (heurdata->emptyneighborhoodsize + heurdata->curneighborhoodsize)/2; heurdata->curminnodes *= 2; SCIPdebugMessage(" -> node limit reached: reduced neighborhood to %d, increased minnodes to %d\n", heurdata->curneighborhoodsize, heurdata->curminnodes); if( heurdata->curneighborhoodsize <= heurdata->emptyneighborhoodsize ) { heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> new neighborhood was already proven to be empty: wait for new solution\n"); } break; case SCIP_STATUS_INFEASIBLE: case SCIP_STATUS_INFORUNBD: heurdata->emptyneighborhoodsize = heurdata->curneighborhoodsize; heurdata->curneighborhoodsize += heurdata->curneighborhoodsize/2; heurdata->curneighborhoodsize = MAX(heurdata->curneighborhoodsize, heurdata->emptyneighborhoodsize + 2); heurdata->callstatus = EXECUTE; SCIPdebugMessage(" -> neighborhood is empty: increased neighborhood to %d\n", heurdata->curneighborhoodsize); break; case SCIP_STATUS_UNKNOWN: case SCIP_STATUS_USERINTERRUPT: case SCIP_STATUS_TIMELIMIT: case SCIP_STATUS_MEMLIMIT: case SCIP_STATUS_GAPLIMIT: case SCIP_STATUS_SOLLIMIT: case SCIP_STATUS_UNBOUNDED: default: heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> unexpected sub-MIP status <%d>: waiting for new solution\n", SCIPgetStatus(subscip)); break; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecCrossover) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; /* primal heuristic data */ SCIP* subscip; /* the subproblem created by crossover */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL** sols; SCIP_Real memorylimit; /* memory limit for the subproblem */ SCIP_Real timelimit; /* time limit for the subproblem */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Bool success; SCIP_Longint nstallnodes; /* node limit for the subproblem */ int* selection; /* pool of solutions crossover uses */ int nvars; /* number of original problem's variables */ int nbinvars; int nintvars; int nusedsols; int i; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); nusedsols = heurdata->nusedsols; *result = SCIP_DELAYED; /* only call heuristic, if enough solutions are at hand */ if( SCIPgetNSols(scip) < nusedsols ) return SCIP_OKAY; sols = SCIPgetSols(scip); assert(sols != NULL); /* if one good solution was found, heuristic should not be delayed any longer */ if( sols[nusedsols-1] != heurdata->prevlastsol ) { heurdata->nextnodenumber = SCIPgetNNodes(scip); if( sols[0] != heurdata->prevbestsol ) heurdata->nfailures = 0; } /* in nonrandomized mode: only recall heuristic, if at least one new good solution was found in the meantime */ else if( !heurdata->randomization ) return SCIP_OKAY; /* if heuristic should be delayed, wait until certain number of nodes is reached */ if( SCIPgetNNodes(scip) < heurdata->nextnodenumber ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes && (SCIPgetDepth(scip) > 0 || !heurdata->dontwaitatroot) ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ nstallnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward Crossover if it succeeded often */ nstallnodes = (SCIP_Longint) (nstallnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); /* count the setup costs for the sub-MIP as 100 nodes */ nstallnodes -= 100 * SCIPheurGetNCalls(heur); nstallnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nstallnodes -= heurdata->usednodes; nstallnodes = MIN(nstallnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nstallnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); assert(nvars > 0); /* check whether discrete variables are available */ if( nbinvars == 0 && nintvars == 0 ) return SCIP_OKAY; /* initializing the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_crossoversub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_crossoversub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "crossover", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } } SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &selection, nusedsols) ); for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); success = FALSE; /* create a new problem, which fixes variables with same value in a certain set of solutions */ SCIP_CALL( setupSubproblem(scip, subscip, subvars, selection, heurdata, &success) ); heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = sols[heurdata->nusedsols-1]; /* if creation of sub-SCIP was aborted (e.g. due to number of fixings), free sub-SCIP and abort */ if( !success ) { *result = SCIP_DIDNOTRUN; /* this run will be counted as a failure since no new solution tuple could be generated or the neighborhood of the * solution was not fruitful in the sense that it was too big */ updateFailureStatistic(scip, heurdata); goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nstallnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert(!SCIPisInfinity(scip, SCIPgetUpperbound(scip))); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* permute the subproblem to increase diversification */ if( heurdata->permute ) { SCIP_CALL( SCIPpermuteProb(subscip, (unsigned int) SCIPheurGetNCalls(heur), TRUE, TRUE, TRUE, TRUE, TRUE) ); } /* solve the subproblem */ SCIPdebugMessage("Solve Crossover subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process. * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Crossover heuristic; sub-SCIP terminated with code <%d>\n", retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; int solindex; /* index of the solution created by crossover */ /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; solindex = -1; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &solindex, &success) ); } if( success ) { int tmp; assert(solindex != -1); *result = SCIP_FOUNDSOL; /* insert all crossings of the new solution and (nusedsols-1) of its parents into the hashtable * in order to avoid incest ;) */ for( i = 0; i < nusedsols; i++ ) { SOLTUPLE* elem; tmp = selection[i]; selection[i] = solindex; SCIP_CALL( createSolTuple(scip, &elem, selection, nusedsols, heurdata) ); SCIP_CALL( SCIPhashtableInsert(heurdata->hashtable, elem) ); selection[i] = tmp; } /* if solution was among the best ones, crossover should not be called until another good solution was found */ if( !heurdata->randomization ) { heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = SCIPgetSols(scip)[heurdata->nusedsols-1]; } } /* if solution is not better then incumbent or could not be added to problem => run is counted as a failure */ if( !success || solindex != SCIPsolGetIndex(SCIPgetBestSol(scip)) ) updateFailureStatistic(scip, heurdata); } else { /* if no new solution was found, run was a failure */ updateFailureStatistic(scip, heurdata); } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &selection); SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpRapidlearning) {/*lint --e{715}*/ SCIP* subscip; /* the subproblem created by rapid learning */ SCIP_SEPADATA* sepadata; /* separator's private data */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_HASHMAP* varmapbw; /* mapping of sub-SCIP variables to SCIP variables */ SCIP_CONSHDLR** conshdlrs; /* array of constraint handler's that might that might obtain conflicts */ int* oldnconss; /* number of constraints without rapid learning conflicts */ SCIP_Longint nodelimit; /* node limit for the subproblem */ SCIP_Real timelimit; /* time limit for the subproblem */ SCIP_Real memorylimit; /* memory limit for the subproblem */ int nconshdlrs; /* size of conshdlr and oldnconss array */ int nfixedvars; /* number of variables that could be fixed by rapid learning */ int nvars; /* number of variables */ int restartnum; /* maximal number of conflicts that should be created */ int i; /* counter */ SCIP_Bool success; /* was problem creation / copying constraint successful? */ SCIP_RETCODE retcode; /* used for catching sub-SCIP errors in debug mode */ int nconflicts; /* statistic: number of conflicts applied */ int nbdchgs; /* statistic: number of bound changes applied */ int n1startinfers; /* statistic: number of one side infer values */ int n2startinfers; /* statistic: number of both side infer values */ SCIP_Bool soladded; /* statistic: was a new incumbent found? */ SCIP_Bool dualboundchg; /* statistic: was a new dual bound found? */ SCIP_Bool disabledualreductions; /* TRUE, if dual reductions in sub-SCIP are not valid for original SCIP, * e.g., because a constraint could not be copied or a primal solution * could not be copied back */ int ndiscvars; soladded = FALSE; assert(sepa != NULL); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; ndiscvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip)+SCIPgetNImplVars(scip); /* only run when still not fixed binary variables exists */ if( ndiscvars == 0 ) return SCIP_OKAY; /* get separator's data */ sepadata = SCIPsepaGetData(sepa); assert(sepadata != NULL); /* only run for integer programs */ if( !sepadata->contvars && ndiscvars != SCIPgetNVars(scip) ) return SCIP_OKAY; /* only run if there are few enough continuous variables */ if( sepadata->contvars && SCIPgetNContVars(scip) > sepadata->contvarsquot * SCIPgetNVars(scip) ) return SCIP_OKAY; /* do not run if pricers are present */ if( SCIPgetNActivePricers(scip) > 0 ) return SCIP_OKAY; /* if the separator should be exclusive to the root node, this prevents multiple calls due to restarts */ if( SCIPsepaGetFreq(sepa) == 0 && SCIPsepaGetNCalls(sepa) > 0) return SCIP_OKAY; /* call separator at most once per node */ if( SCIPsepaGetNCallsAtNode(sepa) > 0 ) return SCIP_OKAY; /* do not call rapid learning, if the problem is too big */ if( SCIPgetNVars(scip) > sepadata->maxnvars || SCIPgetNConss(scip) > sepadata->maxnconss ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; /* copy the subproblem */ SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rapid", FALSE, FALSE, &success) ); if( sepadata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, FALSE) ); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]); SCIPhashmapFree(&varmapfw); /* this avoids dual presolving */ if( !success ) { for( i = 0; i < nvars; i++ ) { SCIP_CALL( SCIPaddVarLocks(subscip, subvars[i], 1, 1 ) ); } } SCIPdebugMessage("Copying SCIP was%s successful.\n", success ? "" : " not"); /* mimic an FD solver: DFS, no LP solving, 1-FUIP instead of all-FUIP */ SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) ); SCIP_CALL( SCIPsetIntParam(subscip, "conflict/fuiplevels", 1) ); SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) ); SCIP_CALL( SCIPsetBoolParam(subscip, "constraints/disableenfops", TRUE) ); SCIP_CALL( SCIPsetIntParam(subscip, "propagating/pseudoobj/freq", -1) ); /* use inference branching */ SCIP_CALL( SCIPsetBoolParam(subscip, "branching/inference/useweightedsum", FALSE) ); /* only create short conflicts */ SCIP_CALL( SCIPsetRealParam(subscip, "conflict/maxvarsfac", 0.05) ); /* set limits for the subproblem */ nodelimit = SCIPgetNLPIterations(scip); nodelimit = MAX(sepadata->minnodes, nodelimit); nodelimit = MIN(sepadata->maxnodes, nodelimit); restartnum = 1000; /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); if( !SCIPisInfinity(scip, memorylimit) ) memorylimit -= SCIPgetMemUsed(scip)/1048576.0; if( timelimit <= 0.0 || memorylimit <= 0.0 ) goto TERMINATE; SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nodelimit/5) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/restarts", 0) ); SCIP_CALL( SCIPsetIntParam(subscip, "conflict/restartnum", restartnum) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); #ifndef SCIP_DEBUG /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); #endif /* add an objective cutoff */ SCIP_CALL( SCIPsetObjlimit(subscip, SCIPgetUpperbound(scip)) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapbw, SCIPblkmem(scip), SCIPcalcHashtableSize(5 * nvars)) ); /* store reversing mapping of variables */ SCIP_CALL( SCIPtransformProb(subscip) ); for( i = 0; i < nvars; ++i) { SCIP_CALL( SCIPhashmapInsert(varmapbw, SCIPvarGetTransVar(subvars[i]), vars[i]) ); } /** allocate memory for constraints storage. Each constraint that will be created from now on will be a conflict. * Therefore, we need to remember oldnconss to get the conflicts from the FD search. */ nconshdlrs = 4; SCIP_CALL( SCIPallocBufferArray(scip, &conshdlrs, nconshdlrs) ); SCIP_CALL( SCIPallocBufferArray(scip, &oldnconss, nconshdlrs) ); /* store number of constraints before rapid learning search */ conshdlrs[0] = SCIPfindConshdlr(subscip, "bounddisjunction"); conshdlrs[1] = SCIPfindConshdlr(subscip, "setppc"); conshdlrs[2] = SCIPfindConshdlr(subscip, "linear"); conshdlrs[3] = SCIPfindConshdlr(subscip, "logicor"); /* redundant constraints might be eliminated in presolving */ SCIP_CALL( SCIPpresolve(subscip)); for( i = 0; i < nconshdlrs; ++i) { if( conshdlrs[i] != NULL ) oldnconss[i] = SCIPconshdlrGetNConss(conshdlrs[i]); } nfixedvars = SCIPgetNFixedVars(scip); /* solve the subproblem */ retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage("Error while solving subproblem in rapid learning separator; sub-SCIP terminated with code <%d>\n",retcode); } /* abort solving, if limit of applied conflicts is reached */ if( SCIPgetNConflictConssApplied(subscip) >= restartnum ) { SCIPdebugMessage("finish after %lld successful conflict calls.\n", SCIPgetNConflictConssApplied(subscip)); } /* if the first 20% of the solution process were successful, proceed */ else if( (sepadata->applyprimalsol && SCIPgetNSols(subscip) > 0 && SCIPisFeasLT(scip, SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip) ) ) || (sepadata->applybdchgs && SCIPgetNFixedVars(subscip) > nfixedvars) || (sepadata->applyconflicts && SCIPgetNConflictConssApplied(subscip) > 0) ) { SCIPdebugMessage("proceed solving after the first 20%% of the solution process, since:\n"); if( SCIPgetNSols(subscip) > 0 && SCIPisFeasLE(scip, SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip) ) ) { SCIPdebugMessage(" - there was a better solution (%f < %f)\n",SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip)); } if( SCIPgetNFixedVars(subscip) > nfixedvars ) { SCIPdebugMessage(" - there were %d variables fixed\n", SCIPgetNFixedVars(scip)-nfixedvars ); } if( SCIPgetNConflictConssFound(subscip) > 0 ) { SCIPdebugMessage(" - there were %lld conflict constraints created\n", SCIPgetNConflictConssApplied(subscip)); } /* set node limit to 100% */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nodelimit) ); /* solve the subproblem */ retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage("Error while solving subproblem in rapid learning separator; sub-SCIP terminated with code <%d>\n",retcode); } } else { SCIPdebugMessage("do not proceed solving after the first 20%% of the solution process.\n"); } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif disabledualreductions = FALSE; /* check, whether a solution was found */ if( sepadata->applyprimalsol && SCIPgetNSols(subscip) > 0 && SCIPfindHeur(scip, "trysol") != NULL ) { SCIP_HEUR* heurtrysol; SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until was declared to be feasible */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); soladded = FALSE; heurtrysol = SCIPfindHeur(scip, "trysol"); /* sequentially add solutions to trysol heuristic */ for( i = 0; i < nsubsols && !soladded; ++i ) { SCIPdebugMessage("Try to create new solution by copying subscip solution.\n"); SCIP_CALL( createNewSol(scip, subscip, subvars, heurtrysol, subsols[i], &soladded) ); } if( !soladded || !SCIPisEQ(scip, SCIPgetSolOrigObj(subscip, subsols[i-1]), SCIPgetSolOrigObj(subscip, subsols[0])) ) disabledualreductions = TRUE; } /* if the sub problem was solved completely, we update the dual bound */ dualboundchg = FALSE; if( sepadata->applysolved && !disabledualreductions && (SCIPgetStatus(subscip) == SCIP_STATUS_OPTIMAL || SCIPgetStatus(subscip) == SCIP_STATUS_INFEASIBLE) ) { /* we need to multiply the dualbound with the scaling factor and add the offset, * because this information has been disregarded in the sub-SCIP */ SCIPdebugMessage("Update old dualbound %g to new dualbound %g.\n", SCIPgetDualbound(scip), SCIPgetTransObjscale(scip) * SCIPgetDualbound(subscip) + SCIPgetTransObjoffset(scip)); SCIP_CALL( SCIPupdateLocalDualbound(scip, SCIPgetDualbound(subscip) * SCIPgetTransObjscale(scip) + SCIPgetTransObjoffset(scip)) ); dualboundchg = TRUE; } /* check, whether conflicts were created */ nconflicts = 0; if( sepadata->applyconflicts && !disabledualreductions && SCIPgetNConflictConssApplied(subscip) > 0 ) { SCIP_HASHMAP* consmap; int hashtablesize; assert(SCIPgetNConflictConssApplied(subscip) < (SCIP_Longint) INT_MAX); hashtablesize = (int) SCIPgetNConflictConssApplied(subscip); assert(hashtablesize < INT_MAX/5); hashtablesize *= 5; /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&consmap, SCIPblkmem(scip), SCIPcalcHashtableSize(hashtablesize)) ); /* loop over all constraint handlers that might contain conflict constraints */ for( i = 0; i < nconshdlrs; ++i) { /* copy constraints that have been created in FD run */ if( conshdlrs[i] != NULL && SCIPconshdlrGetNConss(conshdlrs[i]) > oldnconss[i] ) { SCIP_CONS** conss; int c; int nconss; nconss = SCIPconshdlrGetNConss(conshdlrs[i]); conss = SCIPconshdlrGetConss(conshdlrs[i]); /* loop over all constraints that have been added in sub-SCIP run, these are the conflicts */ for( c = oldnconss[i]; c < nconss; ++c) { SCIP_CONS* cons; SCIP_CONS* conscopy; cons = conss[c]; assert(cons != NULL); success = FALSE; SCIP_CALL( SCIPgetConsCopy(subscip, scip, cons, &conscopy, conshdlrs[i], varmapbw, consmap, NULL, SCIPconsIsInitial(cons), SCIPconsIsSeparated(cons), SCIPconsIsEnforced(cons), SCIPconsIsChecked(cons), SCIPconsIsPropagated(cons), TRUE, FALSE, SCIPconsIsDynamic(cons), SCIPconsIsRemovable(cons), FALSE, TRUE, &success) ); if( success ) { nconflicts++; SCIP_CALL( SCIPaddCons(scip, conscopy) ); SCIP_CALL( SCIPreleaseCons(scip, &conscopy) ); } else { SCIPdebugMessage("failed to copy conflict constraint %s back to original SCIP\n", SCIPconsGetName(cons)); } } } } SCIPhashmapFree(&consmap); } /* check, whether tighter global bounds were detected */ nbdchgs = 0; if( sepadata->applybdchgs && !disabledualreductions ) for( i = 0; i < nvars; ++i ) { SCIP_Bool infeasible; SCIP_Bool tightened; assert(SCIPisLE(scip, SCIPvarGetLbGlobal(vars[i]), SCIPvarGetLbGlobal(subvars[i]))); assert(SCIPisLE(scip, SCIPvarGetLbGlobal(subvars[i]), SCIPvarGetUbGlobal(subvars[i]))); assert(SCIPisLE(scip, SCIPvarGetUbGlobal(subvars[i]), SCIPvarGetUbGlobal(vars[i]))); /* update the bounds of the original SCIP, if a better bound was proven in the sub-SCIP */ SCIP_CALL( SCIPtightenVarUb(scip, vars[i], SCIPvarGetUbGlobal(subvars[i]), FALSE, &infeasible, &tightened) ); if( tightened ) nbdchgs++; SCIP_CALL( SCIPtightenVarLb(scip, vars[i], SCIPvarGetLbGlobal(subvars[i]), FALSE, &infeasible, &tightened) ); if( tightened ) nbdchgs++; } n1startinfers = 0; n2startinfers = 0; /* install start values for inference branching */ if( sepadata->applyinfervals && (!sepadata->reducedinfer || soladded || nbdchgs+nconflicts > 0) ) { for( i = 0; i < nvars; ++i ) { SCIP_Real downinfer; SCIP_Real upinfer; SCIP_Real downvsids; SCIP_Real upvsids; SCIP_Real downconflen; SCIP_Real upconflen; /* copy downwards branching statistics */ downvsids = SCIPgetVarVSIDS(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); downconflen = SCIPgetVarAvgConflictlength(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); downinfer = SCIPgetVarAvgInferences(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); /* copy upwards branching statistics */ upvsids = SCIPgetVarVSIDS(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); upconflen = SCIPgetVarAvgConflictlength(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); upinfer = SCIPgetVarAvgInferences(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); /* memorize statistics */ if( downinfer+downconflen+downvsids > 0.0 || upinfer+upconflen+upvsids != 0 ) n1startinfers++; if( downinfer+downconflen+downvsids > 0.0 && upinfer+upconflen+upvsids != 0 ) n2startinfers++; SCIP_CALL( SCIPinitVarBranchStats(scip, vars[i], 0.0, 0.0, downvsids, upvsids, downconflen, upconflen, downinfer, upinfer, 0.0, 0.0) ); } } SCIPdebugPrintf("XXX Rapidlearning added %d conflicts, changed %d bounds, %s primal solution, %s dual bound improvement.\n", nconflicts, nbdchgs, soladded ? "found" : "no", dualboundchg ? "found" : "no"); SCIPdebugPrintf("YYY Infervalues initialized on one side: %5.2f %% of variables, %5.2f %% on both sides\n", 100.0 * n1startinfers/(SCIP_Real)nvars, 100.0 * n2startinfers/(SCIP_Real)nvars); /* change result pointer */ if( nconflicts > 0 || dualboundchg ) *result = SCIP_CONSADDED; else if( nbdchgs > 0 ) *result = SCIP_REDUCEDDOM; /* free local data */ SCIPfreeBufferArray(scip, &oldnconss); SCIPfreeBufferArray(scip, &conshdlrs); SCIPhashmapFree(&varmapbw); TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecReoptsols) {/*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL** sols; SCIP_Real objsimsol; SCIP_Bool sepabestsol; int allocmem; int nchecksols; int nsolsadded; #ifdef SCIP_MORE_DEBUG int nsolsaddedrun; #endif int run; int max_run; assert(heur != NULL); assert(scip != NULL); *result = SCIP_DIDNOTRUN; if( !SCIPisReoptEnabled(scip) ) return SCIP_OKAY; heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); max_run = heurdata->maxruns == -1 ? 0 : MAX(0, SCIPgetNReoptRuns(scip)-1-heurdata->maxruns); /*lint !e666*/ nchecksols = heurdata->maxsols == -1 ? INT_MAX : heurdata->maxsols; SCIP_CALL( SCIPgetRealParam(scip, "reoptimization/objsimsol", &objsimsol) ); SCIP_CALL( SCIPgetBoolParam(scip, "reoptimization/sepabestsol", &sepabestsol) ); /* allocate a buffer array to store the solutions */ allocmem = 20; SCIP_CALL( SCIPallocBufferArray(scip, &sols, allocmem) ); nsolsadded = 0; for( run = SCIPgetNReoptRuns(scip); run > max_run && nchecksols > 0; run-- ) { SCIP_Real sim; int nsols; #ifdef SCIP_MORE_DEBUG nsolsaddedrun = 0; #endif nsols = 0; if( objsimsol == -1 ) sim = 1; else sim = SCIPgetReoptSimilarity(scip, run, SCIPgetNReoptRuns(scip)-1); if( sim >= objsimsol ) { int s; /* get solutions of a specific run */ SCIP_CALL( SCIPgetReopSolsRun(scip, run, sols, allocmem, &nsols) ); /* check memory and reallocate */ if( nsols > allocmem ) { allocmem = nsols; SCIP_CALL( SCIPreallocBufferArray(scip, &sols, allocmem) ); SCIP_CALL( SCIPgetReopSolsRun(scip, run, sols, allocmem, &nsols) ); } assert(nsols <= allocmem); /* update the solutions * stop, if the maximal number of solutions to be checked is reached */ for( s = 0; s < nsols && nchecksols > 0; s++ ) { SCIP_SOL* sol; SCIP_Real objsol; sol = sols[s]; SCIP_CALL( SCIPrecomputeSolObj(scip, sol) ); objsol = SCIPgetSolTransObj(scip, sol); /* we do not want to add solutions with objective value +infinity. * moreover, the solution should improve the current primal bound */ if( !SCIPisInfinity(scip, objsol) && !SCIPisInfinity(scip, -objsol) && SCIPisFeasLT(scip, objsol, SCIPgetCutoffbound(scip)) ) { SCIP_Bool stored; SCIP_Bool feasible; if( sepabestsol ) { SCIP_CALL( SCIPcheckSolOrig(scip, sol, &feasible, FALSE, TRUE) ); } else feasible = TRUE; if( feasible) { /* create a new solution */ SCIP_CALL( createNewSol(scip, heur, sol, &stored) ); if( stored ) { nsolsadded++; #ifdef SCIP_MORE_DEBUG nsolsaddedrun++; #endif heurdata->nimprovingsols++; } } } nchecksols--; heurdata->ncheckedsols++; } } #ifdef SCIP_MORE_DEBUG printf(">> heuristic <%s> found %d of %d improving solutions from run %d.\n", HEUR_NAME, nsolsaddedrun, nsols, run); #endif } SCIPdebugMessage(">> heuristic <%s> found %d improving solutions.\n", HEUR_NAME, nsolsadded); if( nsolsadded > 0 ) *result = SCIP_FOUNDSOL; else *result = SCIP_DIDNOTFIND; /* reset the marks of the checked solutions */ SCIPresetReoptSolMarks(scip); /* free the buffer array */ SCIPfreeBufferArray(scip, &sols); return SCIP_OKAY; }