/** adds a given value to the fractionality counters of the rows in which the given variable appears */ static void addFracCounter( int* nfracsinrow, /**< array to store number of fractional variables per row */ int nlprows, /**< number of rows in LP */ SCIP_VAR* var, /**< variable for which the counting should be updated */ int incval /**< value that should be added to the corresponding array entries */ ) { SCIP_COL* col; SCIP_ROW** rows; int nrows; int r; col = SCIPvarGetCol(var); rows = SCIPcolGetRows(col); nrows = SCIPcolGetNLPNonz(col); for( r = 0; r < nrows; ++r ) { int rowidx; rowidx = SCIProwGetLPPos(rows[r]); assert(0 <= rowidx && rowidx < nlprows); nfracsinrow[rowidx] += incval; assert(nfracsinrow[rowidx] >= 0); } }
/** update row activities after a variable's solution value changed */ static SCIP_RETCODE updateRowActivities( SCIP* scip, /**< SCIP data structure */ SCIP_Real* activities, /**< LP row activities */ SCIP_VAR* var, /**< variable that has been changed */ SCIP_Real shiftval /**< value that is added to variable */ ) { SCIP_Real* colvals; SCIP_ROW** colrows; SCIP_COL* col; int ncolrows; int i; assert(activities != NULL); /* get data of column associated to variable */ col = SCIPvarGetCol(var); colrows = SCIPcolGetRows(col); colvals = SCIPcolGetVals(col); ncolrows = SCIPcolGetNLPNonz(col); assert(ncolrows == 0 || (colrows != NULL && colvals != NULL)); /* enumerate all rows with nonzero entry in this column */ for( i = 0; i < ncolrows; ++i ) { SCIP_ROW* row; int rowpos; row = colrows[i]; rowpos = SCIProwGetLPPos(row); assert(-1 <= rowpos && rowpos < SCIPgetNLPRows(scip) ); /* update row activity, only regard global rows in the LP */ if( rowpos >= 0 && !SCIProwIsLocal(row) ) { activities[rowpos] += shiftval * colvals[i]; if( SCIPisInfinity(scip, activities[rowpos]) ) activities[rowpos] = SCIPinfinity(scip); else if( SCIPisInfinity(scip, -activities[rowpos]) ) activities[rowpos] = -SCIPinfinity(scip); } } return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR** pseudocands; SCIP_VAR** fixcands; SCIP_Real* fixcandscores; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nfixcands; int nbinfixcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int nextcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 100); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get unfixed integer variables */ SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nfixcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound)); /* copy the pseudo candidates into own array, because we want to reorder them */ SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) ); /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */ SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) ); nbinfixcands = 0; for( c = 0; c < nfixcands; ++c ) { SCIP_VAR* var; SCIP_Real score; int colveclen; int left; int right; int i; assert(c >= nbinfixcands); var = fixcands[c]; assert(SCIPvarIsIntegral(var)); colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0); if( SCIPvarIsBinary(var) ) { score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0; /* shift the non-binary variables one slot to the right */ for( i = c; i > nbinfixcands; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } /* put the new candidate into the first nbinfixcands slot */ left = 0; right = nbinfixcands; nbinfixcands++; } else { score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE)) + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/10000.0; /* put the new candidate in the slots after the binary candidates */ left = nbinfixcands; right = c; } for( i = right; i > left && score > fixcandscores[i-1]; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } fixcands[i] = var; fixcandscores[i] = score; SCIPdebugMessage(" <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d -> score=%g\n", SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE), SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var), colveclen, score); } SCIPfreeBufferArray(scip, &fixcandscores); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with * the depth 10 */ lperror = FALSE; cutoff = FALSE; divedepth = 0; nextcand = 0; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && (divedepth < 10 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { SCIP_VAR* var; SCIP_Real bestsolval; SCIP_Real bestfixval; int bestcand; SCIP_Longint nnewlpiterations; SCIP_Longint nnewdomreds; /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */ if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) ) { SCIP_CALL( SCIPnewProbingNode(scip) ); divedepth++; } else break; nnewlpiterations = 0; nnewdomreds = 0; /* fix binary variable that is closest to 1 in the LP solution to 1; * if all binary variables are fixed, fix integer variable with least fractionality in LP solution */ bestcand = -1; bestsolval = -1.0; bestfixval = 1.0; /* look in the binary variables for fixing candidates */ for( c = nextcand; c < nbinfixcands; ++c ) { SCIP_Real solval; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); if( solval > bestsolval ) { bestcand = c; bestfixval = 1.0; bestsolval = solval; if( SCIPisGE(scip, bestsolval, 1.0) ) { /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */ break; } else if( SCIPisLE(scip, bestsolval, 0.0) ) { /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */ bestfixval = 0.0; } } } /* if all binary variables are fixed, look in the integer variables for a fixing candidate */ if( bestcand == -1 ) { SCIP_Real bestfrac; bestfrac = SCIP_INVALID; for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c ) { SCIP_Real solval; SCIP_Real frac; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); frac = SCIPfrac(scip, solval); /* ignore integer variables that are currently integral */ if( SCIPisFeasFracIntegral(scip, frac) ) continue; if( frac < bestfrac ) { bestcand = c; bestsolval = solval; bestfrac = frac; bestfixval = SCIPfloor(scip, bestsolval + 0.5); if( SCIPisZero(scip, bestfrac) ) { /* we found an unfixed integer variable with integral LP solution value */ break; } } } } assert(-1 <= bestcand && bestcand < nfixcands); /* if there is no unfixed candidate left, we are done */ if( bestcand == -1 ) break; var = fixcands[bestcand]; assert(var != NULL); assert(SCIPvarIsIntegral(var)); assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5); assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var))); assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var))); backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); assert(backtracked); break; } /* apply fixing of best candidate */ SCIPdebugMessage(" dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip), SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) ); /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) ); if( !cutoff ) { /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution * stays valid, and the LP does not need to be resolved */ if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations; heurdata->nlpiterations += nnewlpiterations; /* get LP solution status */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */ assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip)); SCIP_CALL( SCIPnewProbingNode(scip) ); bestfixval = SCIPvarIsBinary(var) ? 1.0 - bestfixval : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* get new objective value */ objval = SCIPgetLPObjval(scip); if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* we must start again with the first candidate, since the LP solution changed */ nextcand = 0; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } else nextcand = bestcand+1; /* continue with the next candidate in the following loop */ } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound); } /* free temporary memory */ SCIPfreeBufferArray(scip, &fixcands); /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("intdiving heuristic finished\n"); return SCIP_OKAY; }
/** returns a score value for the given variable based on the active constraints that the variable appears in */ static SCIP_Real getNActiveConsScore( SCIP* scip, /**< SCIP data structure */ SCIP_VAR* var, /**< variable to get the score value for */ SCIP_Real* downscore, /**< pointer to store the score for branching downwards */ SCIP_Real* upscore /**< pointer to store the score for branching upwards */ ) { SCIP_COL* col; SCIP_ROW** rows; SCIP_Real* vals; int nrows; int r; int nactrows; SCIP_Real downcoefsum; SCIP_Real upcoefsum; SCIP_Real score; assert(downscore != NULL); assert(upscore != NULL); *downscore = 0.0; *upscore = 0.0; if( SCIPvarGetStatus(var) != SCIP_VARSTATUS_COLUMN ) return 0.0; col = SCIPvarGetCol(var); assert(col != NULL); rows = SCIPcolGetRows(col); vals = SCIPcolGetVals(col); nrows = SCIPcolGetNLPNonz(col); nactrows = 0; downcoefsum = 0.0; upcoefsum = 0.0; for( r = 0; r < nrows; ++r ) { SCIP_Real activity; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real dualsol; /* calculate number of active constraint sides, i.e., count equations as two */ lhs = SCIProwGetLhs(rows[r]); rhs = SCIProwGetRhs(rows[r]); activity = SCIPgetRowLPActivity(scip, rows[r]); dualsol = SCIProwGetDualsol(rows[r]); if( SCIPisFeasEQ(scip, activity, lhs) ) { SCIP_Real coef; nactrows++; coef = vals[r] / SCIProwGetNorm(rows[r]); if( SCIPisFeasPositive(scip, dualsol) ) { if( coef > 0.0 ) downcoefsum += coef; else upcoefsum -= coef; } } else if( SCIPisFeasEQ(scip, activity, rhs) ) { SCIP_Real coef; nactrows++; coef = vals[r] / SCIProwGetNorm(rows[r]); if( SCIPisFeasNegative(scip, dualsol) ) { if( coef > 0.0 ) upcoefsum += coef; else downcoefsum -= coef; } } } score = 1e-3*nactrows + (downcoefsum + 1e-6) * (upcoefsum + 1e-6); *downscore = -downcoefsum; *upscore = -upcoefsum; return score; }
/** determines shifting bounds for variable */ static void calculateBounds( SCIP* scip, /**< pointer to current SCIP data structure */ SCIP_VAR* var, /**< the variable for which lb and ub have to be calculated */ SCIP_Real currentvalue, /**< the current value of var in the working solution */ SCIP_Real* upperbound, /**< pointer to store the calculated upper bound on the variable shift */ SCIP_Real* lowerbound, /**< pointer to store the calculated lower bound on the variable shift */ SCIP_Real* upslacks, /**< array that contains the slacks between row activities and the right hand sides of the rows */ SCIP_Real* downslacks, /**< array that contains lhs slacks */ int nslacks, /**< current number of slacks */ SCIP_Bool* numericalerror /**< flag to determine whether a numerical error occurred */ ) { SCIP_COL* col; SCIP_ROW** colrows; SCIP_Real* colvals; int ncolvals; int i; assert(scip != NULL); assert(var != NULL); assert(upslacks != NULL); assert(downslacks != NULL); assert(upperbound != NULL); assert(lowerbound != NULL); /* get the column associated to the variable, the nonzero rows and the nonzero coefficients */ col = SCIPvarGetCol(var); colrows = SCIPcolGetRows(col); colvals = SCIPcolGetVals(col); ncolvals = SCIPcolGetNLPNonz(col); /* only proceed, when variable has nonzero coefficients */ if( ncolvals == 0 ) return; assert(colvals != NULL); assert(colrows != NULL); /* initialize the bounds on the shift to be the gap of the current solution value to the bounds of the variable */ if( SCIPisInfinity(scip, SCIPvarGetUbGlobal(var)) ) *upperbound = SCIPinfinity(scip); else *upperbound = SCIPvarGetUbGlobal(var) - currentvalue; if( SCIPisInfinity(scip, -SCIPvarGetLbGlobal(var)) ) *lowerbound = SCIPinfinity(scip); else *lowerbound = currentvalue - SCIPvarGetLbGlobal(var); /* go through every nonzero row coefficient corresponding to var to determine bounds for shifting * in such a way that shifting maintains feasibility in every LP row. * a lower or upper bound as it is calculated in zirounding always has to be >= 0.0. * if one of these values is significantly < 0.0, this will cause the abort of execution of the heuristic so that * infeasible solutions are avoided */ for( i = 0; i < ncolvals && (*lowerbound > 0.0 || *upperbound > 0.0); ++i ) { SCIP_ROW* row; int rowpos; row = colrows[i]; rowpos = SCIProwGetLPPos(row); /* the row might currently not be in the LP, ignore it! */ if( rowpos == -1 ) continue; assert(0 <= rowpos && rowpos < nslacks); /* all bounds and slacks as they are calculated in zirounding always have to be greater equal zero. * It might however be due to numerical issues, e.g. with scaling, that they are not. Better abort in this case. */ if( SCIPisFeasLT(scip, *lowerbound, 0.0) || SCIPisFeasLT(scip, *upperbound, 0.0) || SCIPisFeasLT(scip, upslacks[rowpos], 0.0) || SCIPisFeasLT(scip, downslacks[rowpos] , 0.0) ) { *numericalerror = TRUE; return; } SCIPdebugMessage("colval: %15.8g, downslack: %15.8g, upslack: %5.2g, lb: %5.2g, ub: %5.2g\n", colvals[i], downslacks[rowpos], upslacks[rowpos], *lowerbound, *upperbound); /* if coefficient > 0, rounding up might violate up slack and rounding down might violate down slack * thus search for the minimum so that no constraint is violated; vice versa for coefficient < 0 */ if( colvals[i] > 0 ) { if( !SCIPisInfinity(scip, upslacks[rowpos]) ) { SCIP_Real upslack; upslack = MAX(upslacks[rowpos], 0.0); /* avoid errors due to numerically slightly infeasible rows */ *upperbound = MIN(*upperbound, upslack/colvals[i]); } if( !SCIPisInfinity(scip, downslacks[rowpos]) ) { SCIP_Real downslack; downslack = MAX(downslacks[rowpos], 0.0); /* avoid errors due to numerically slightly infeasible rows */ *lowerbound = MIN(*lowerbound, downslack/colvals[i]); } } else { assert(colvals[i] != 0.0); if( !SCIPisInfinity(scip, upslacks[rowpos]) ) { SCIP_Real upslack; upslack = MAX(upslacks[rowpos], 0.0); /* avoid errors due to numerically slightly infeasible rows */ *lowerbound = MIN(*lowerbound, -upslack/colvals[i]); } if( !SCIPisInfinity(scip, downslacks[rowpos]) ) { SCIP_Real downslack; downslack = MAX(downslacks[rowpos], 0.0); /* avoid errors due to numerically slightly infeasible rows */ *upperbound = MIN(*upperbound, -downslack/colvals[i]); } } } }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecZirounding) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_VAR** lpcands; SCIP_VAR** zilpcands; SCIP_VAR** slackvars; SCIP_Real* upslacks; SCIP_Real* downslacks; SCIP_Real* activities; SCIP_Real* slackvarcoeffs; SCIP_Bool* rowneedsslackvar; SCIP_ROW** rows; SCIP_Real* lpcandssol; SCIP_Real* solarray; SCIP_Longint nlps; int currentlpcands; int nlpcands; int nimplfracs; int i; int c; int nslacks; int nroundings; SCIP_RETCODE retcode; SCIP_Bool improvementfound; SCIP_Bool numericalerror; assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DIDNOTRUN; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic if an optimal LP-solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* Do not call heuristic if deactivation check is enabled and percentage of found solutions in relation * to number of calls falls below heurdata->stoppercentage */ if( heurdata->stopziround && SCIPheurGetNCalls(heur) >= heurdata->minstopncalls && SCIPheurGetNSolsFound(heur)/(SCIP_Real)SCIPheurGetNCalls(heur) < heurdata->stoppercentage ) return SCIP_OKAY; /* assure that heuristic has not already been called after the last LP had been solved */ nlps = SCIPgetNLPs(scip); if( nlps == heurdata->lastlp ) return SCIP_OKAY; heurdata->lastlp = nlps; /* get fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, &nimplfracs) ); nlpcands = nlpcands + nimplfracs; /* make sure that there is at least one fractional variable that should be integral */ if( nlpcands == 0 ) return SCIP_OKAY; assert(nlpcands > 0); assert(lpcands != NULL); assert(lpcandssol != NULL); /* get LP rows data */ rows = SCIPgetLPRows(scip); nslacks = SCIPgetNLPRows(scip); /* cannot do anything if LP is empty */ if( nslacks == 0 ) return SCIP_OKAY; assert(rows != NULL); assert(nslacks > 0); /* get the working solution from heuristic's local data */ sol = heurdata->sol; assert(sol != NULL); *result = SCIP_DIDNOTFIND; solarray = NULL; zilpcands = NULL; retcode = SCIP_OKAY; /* copy the current LP solution to the working solution and allocate memory for local data */ SCIP_CALL( SCIPlinkLPSol(scip, sol) ); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &solarray, nlpcands), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &zilpcands, nlpcands), TERMINATE); /* copy necessary data to local arrays */ BMScopyMemoryArray(solarray, lpcandssol, nlpcands); BMScopyMemoryArray(zilpcands, lpcands, nlpcands); /* allocate buffer data arrays */ SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvars, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &upslacks, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &downslacks, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvarcoeffs, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &rowneedsslackvar, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &activities, nslacks), TERMINATE); BMSclearMemoryArray(slackvars, nslacks); BMSclearMemoryArray(slackvarcoeffs, nslacks); BMSclearMemoryArray(rowneedsslackvar, nslacks); numericalerror = FALSE; nroundings = 0; /* loop over fractional variables and involved LP rows to find all rows which require a slack variable */ for( c = 0; c < nlpcands; ++c ) { SCIP_VAR* cand; SCIP_ROW** candrows; int r; int ncandrows; cand = zilpcands[c]; assert(cand != NULL); assert(SCIPcolGetLPPos(SCIPvarGetCol(cand)) >= 0); candrows = SCIPcolGetRows(SCIPvarGetCol(cand)); ncandrows = SCIPcolGetNLPNonz(SCIPvarGetCol(cand)); assert(candrows == NULL || ncandrows > 0); for( r = 0; r < ncandrows; ++r ) { int rowpos; assert(candrows != NULL); /* to please flexelint */ assert(candrows[r] != NULL); rowpos = SCIProwGetLPPos(candrows[r]); if( rowpos >= 0 && SCIPisFeasEQ(scip, SCIProwGetLhs(candrows[r]), SCIProwGetRhs(candrows[r])) ) { rowneedsslackvar[rowpos] = TRUE; SCIPdebugMessage(" Row %s needs slack variable for variable %s\n", SCIProwGetName(candrows[r]), SCIPvarGetName(cand)); } } } /* calculate row slacks for every every row that belongs to the current LP and ensure, that the current solution * has no violated constraint -- if any constraint is violated, i.e. a slack is significantly smaller than zero, * this will cause the termination of the heuristic because Zirounding does not provide feasibility recovering */ for( i = 0; i < nslacks; ++i ) { SCIP_ROW* row; SCIP_Real lhs; SCIP_Real rhs; row = rows[i]; assert(row != NULL); lhs = SCIProwGetLhs(row); rhs = SCIProwGetRhs(row); /* get row activity */ activities[i] = SCIPgetRowActivity(scip, row); assert(SCIPisFeasLE(scip, lhs, activities[i]) && SCIPisFeasLE(scip, activities[i], rhs)); /* in special case if LHS or RHS is (-)infinity slacks have to be initialized as infinity */ if( SCIPisInfinity(scip, -lhs) ) downslacks[i] = SCIPinfinity(scip); else downslacks[i] = activities[i] - lhs; if( SCIPisInfinity(scip, rhs) ) upslacks[i] = SCIPinfinity(scip); else upslacks[i] = rhs - activities[i]; SCIPdebugMessage("lhs:%5.2f <= act:%5.2g <= rhs:%5.2g --> down: %5.2g, up:%5.2g\n", lhs, activities[i], rhs, downslacks[i], upslacks[i]); /* row is an equation. Try to find a slack variable in the row, i.e., * a continuous variable which occurs only in this row. If no such variable exists, * there is no hope for an IP-feasible solution in this round */ if( SCIPisFeasEQ(scip, lhs, rhs) && rowneedsslackvar[i] ) { /* @todo: This is only necessary for rows containing fractional variables. */ rowFindSlackVar(scip, row, &(slackvars[i]), &(slackvarcoeffs[i])); if( slackvars[i] == NULL ) { SCIPdebugMessage("No slack variable found for equation %s, terminating ZI Round heuristic\n", SCIProwGetName(row)); goto TERMINATE; } else { SCIP_Real ubslackvar; SCIP_Real lbslackvar; SCIP_Real solvalslackvar; SCIP_Real coeffslackvar; SCIP_Real ubgap; SCIP_Real lbgap; assert(SCIPvarGetType(slackvars[i]) == SCIP_VARTYPE_CONTINUOUS); solvalslackvar = SCIPgetSolVal(scip, sol, slackvars[i]); ubslackvar = SCIPvarGetUbGlobal(slackvars[i]); lbslackvar = SCIPvarGetLbGlobal(slackvars[i]); coeffslackvar = slackvarcoeffs[i]; assert(!SCIPisFeasZero(scip, coeffslackvar)); ubgap = ubslackvar - solvalslackvar; lbgap = solvalslackvar - lbslackvar; if( SCIPisFeasZero(scip, ubgap) ) ubgap = 0.0; if( SCIPisFeasZero(scip, lbgap) ) lbgap = 0.0; if( SCIPisFeasPositive(scip, coeffslackvar) ) { if( !SCIPisInfinity(scip, lbslackvar) ) upslacks[i] += coeffslackvar * lbgap; else upslacks[i] = SCIPinfinity(scip); if( !SCIPisInfinity(scip, ubslackvar) ) downslacks[i] += coeffslackvar * ubgap; else downslacks[i] = SCIPinfinity(scip); } else { if( !SCIPisInfinity(scip, ubslackvar) ) upslacks[i] -= coeffslackvar * ubgap; else upslacks[i] = SCIPinfinity(scip); if( !SCIPisInfinity(scip, lbslackvar) ) downslacks[i] -= coeffslackvar * lbgap; else downslacks[i] = SCIPinfinity(scip); } SCIPdebugMessage(" Slack variable for row %s at pos %d: %g <= %s = %g <= %g; Coeff %g, upslack = %g, downslack = %g \n", SCIProwGetName(row), SCIProwGetLPPos(row), lbslackvar, SCIPvarGetName(slackvars[i]), solvalslackvar, ubslackvar, coeffslackvar, upslacks[i], downslacks[i]); } } /* due to numerical inaccuracies, the rows might be feasible, even if the slacks are * significantly smaller than zero -> terminate */ if( SCIPisFeasLT(scip, upslacks[i], 0.0) || SCIPisFeasLT(scip, downslacks[i], 0.0) ) goto TERMINATE; } assert(nslacks == 0 || (upslacks != NULL && downslacks != NULL && activities != NULL)); /* initialize number of remaining variables and flag to enter the main loop */ currentlpcands = nlpcands; improvementfound = TRUE; /* iterate over variables as long as there are fractional variables left */ while( currentlpcands > 0 && improvementfound && (heurdata->maxroundingloops == -1 || nroundings < heurdata->maxroundingloops) ) { /*lint --e{850}*/ improvementfound = FALSE; nroundings++; SCIPdebugMessage("zirounding enters while loop for %d time with %d candidates left. \n", nroundings, currentlpcands); /* check for every remaining fractional variable if a shifting decreases ZI-value of the variable */ for( c = 0; c < currentlpcands; ++c ) { SCIP_VAR* var; SCIP_Real oldsolval; SCIP_Real upperbound; SCIP_Real lowerbound; SCIP_Real up; SCIP_Real down; SCIP_Real ziup; SCIP_Real zidown; SCIP_Real zicurrent; SCIP_Real shiftval; DIRECTION direction; /* get values from local data */ oldsolval = solarray[c]; var = zilpcands[c]; assert(!SCIPisFeasIntegral(scip, oldsolval)); assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN); /* calculate bounds for variable and make sure that there are no numerical inconsistencies */ upperbound = SCIPinfinity(scip); lowerbound = SCIPinfinity(scip); calculateBounds(scip, var, oldsolval, &upperbound, &lowerbound, upslacks, downslacks, nslacks, &numericalerror); if( numericalerror ) goto TERMINATE; /* calculate the possible values after shifting */ up = oldsolval + upperbound; down = oldsolval - lowerbound; /* if the variable is integer or implicit binary, do not shift further than the nearest integer */ if( SCIPvarGetType(var) != SCIP_VARTYPE_BINARY) { SCIP_Real ceilx; SCIP_Real floorx; ceilx = SCIPfeasCeil(scip, oldsolval); floorx = SCIPfeasFloor(scip, oldsolval); up = MIN(up, ceilx); down = MAX(down, floorx); } /* calculate necessary values */ ziup = getZiValue(scip, up); zidown = getZiValue(scip, down); zicurrent = getZiValue(scip, oldsolval); /* calculate the shifting direction that reduces ZI-value the most, * if both directions improve ZI-value equally, take the direction which improves the objective */ if( SCIPisFeasLT(scip, zidown, zicurrent) || SCIPisFeasLT(scip, ziup, zicurrent) ) { if( SCIPisFeasEQ(scip,ziup, zidown) ) direction = SCIPisFeasGE(scip, SCIPvarGetObj(var), 0.0) ? DIRECTION_DOWN : DIRECTION_UP; else if( SCIPisFeasLT(scip, zidown, ziup) ) direction = DIRECTION_DOWN; else direction = DIRECTION_UP; /* once a possible shifting direction and value have been found, variable value is updated */ shiftval = (direction == DIRECTION_UP ? up - oldsolval : down - oldsolval); /* this improves numerical stability in some cases */ if( direction == DIRECTION_UP ) shiftval = MIN(shiftval, upperbound); else shiftval = MIN(shiftval, lowerbound); /* update the solution */ solarray[c] = direction == DIRECTION_UP ? up : down; SCIP_CALL( SCIPsetSolVal(scip, sol, var, solarray[c]) ); /* update the rows activities and slacks */ SCIP_CALL( updateSlacks(scip, sol, var, shiftval, upslacks, downslacks, activities, slackvars, slackvarcoeffs, nslacks) ); SCIPdebugMessage("zirounding update step : %d var index, oldsolval=%g, shiftval=%g\n", SCIPvarGetIndex(var), oldsolval, shiftval); /* since at least one improvement has been found, heuristic will enter main loop for another time because the improvement * might affect many LP rows and their current slacks and thus make further rounding steps possible */ improvementfound = TRUE; } /* if solution value of variable has become feasibly integral due to rounding step, * variable is put at the end of remaining candidates array so as not to be considered in future loops */ if( SCIPisFeasIntegral(scip, solarray[c]) ) { zilpcands[c] = zilpcands[currentlpcands - 1]; solarray[c] = solarray[currentlpcands - 1]; currentlpcands--; /* counter is decreased if end of candidates array has not been reached yet */ if( c < currentlpcands ) c--; } else if( nroundings == heurdata->maxroundingloops - 1 ) goto TERMINATE; } } /* in case that no candidate is left for rounding after the final main loop * the found solution has to be checked for feasibility in the original problem */ if( currentlpcands == 0 ) { SCIP_Bool stored; SCIP_CALL(SCIPtrySol(scip, sol, FALSE, FALSE, TRUE, FALSE, &stored)); if( stored ) { #ifdef SCIP_DEBUG SCIPdebugMessage("found feasible rounded solution:\n"); SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ); #endif SCIPstatisticMessage(" ZI Round solution value: %g \n", SCIPgetSolOrigObj(scip, sol)); *result = SCIP_FOUNDSOL; } } /* free memory for all locally allocated data */ TERMINATE: SCIPfreeBufferArrayNull(scip, &activities); SCIPfreeBufferArrayNull(scip, &rowneedsslackvar); SCIPfreeBufferArrayNull(scip, &slackvarcoeffs); SCIPfreeBufferArrayNull(scip, &downslacks); SCIPfreeBufferArrayNull(scip, &upslacks); SCIPfreeBufferArrayNull(scip, &slackvars); SCIPfreeBufferArrayNull(scip, &zilpcands); SCIPfreeBufferArrayNull(scip, &solarray); return retcode; }
/** when a variable is shifted, the activities and slacks of all rows it appears in have to be updated */ static SCIP_RETCODE updateSlacks( SCIP* scip, /**< pointer to current SCIP data structure */ SCIP_SOL* sol, /**< working solution */ SCIP_VAR* var, /**< pointer to variable to be modified */ SCIP_Real shiftvalue, /**< the value by which the variable is shifted */ SCIP_Real* upslacks, /**< upslacks of all rows the variable appears in */ SCIP_Real* downslacks, /**< downslacks of all rows the variable appears in */ SCIP_Real* activities, /**< activities of the LP rows */ SCIP_VAR** slackvars, /**< the slack variables for equality rows */ SCIP_Real* slackcoeffs, /**< the slack variable coefficients */ int nslacks /**< size of the arrays */ ) { SCIP_COL* col; /* the corresponding column of variable var */ SCIP_ROW** rows; /* pointer to the nonzero coefficient rows for variable var */ int nrows; /* the number of nonzeros */ SCIP_Real* colvals; /* array to store the nonzero coefficients */ int i; assert(scip != NULL); assert(sol != NULL); assert(var != NULL); assert(upslacks != NULL); assert(downslacks != NULL); assert(activities != NULL); assert(nslacks >= 0); col = SCIPvarGetCol(var); assert(col != NULL); rows = SCIPcolGetRows(col); nrows = SCIPcolGetNLPNonz(col); colvals = SCIPcolGetVals(col); assert(nrows == 0 || (rows != NULL && colvals != NULL)); /* go through all rows the shifted variable appears in */ for( i = 0; i < nrows; ++i ) { int rowpos; rowpos = SCIProwGetLPPos(rows[i]); assert(-1 <= rowpos && rowpos < nslacks); /* if the row is in the LP, update its activity, up and down slack */ if( rowpos >= 0 ) { SCIP_Real val; val = colvals[i] * shiftvalue; /* if the row is an equation, we update its slack variable instead of its activities */ if( SCIPisFeasEQ(scip, SCIProwGetLhs(rows[i]), SCIProwGetRhs(rows[i])) ) { SCIP_Real slackvarshiftval; SCIP_Real slackvarsolval; assert(slackvars[rowpos] != NULL); assert(!SCIPisFeasZero(scip, slackcoeffs[rowpos])); slackvarsolval = SCIPgetSolVal(scip, sol, slackvars[rowpos]); slackvarshiftval = -val / slackcoeffs[rowpos]; assert(SCIPisFeasGE(scip, slackvarsolval + slackvarshiftval, SCIPvarGetLbGlobal(slackvars[rowpos]))); assert(SCIPisFeasLE(scip, slackvarsolval + slackvarshiftval, SCIPvarGetUbGlobal(slackvars[rowpos]))); SCIP_CALL( SCIPsetSolVal(scip, sol, slackvars[rowpos], slackvarsolval + slackvarshiftval) ); } else if( !SCIPisInfinity(scip, -activities[rowpos]) && !SCIPisInfinity(scip, activities[rowpos]) ) activities[rowpos] += val; /* the slacks of the row now can be updated independently of its type */ if( !SCIPisInfinity(scip, upslacks[rowpos]) ) upslacks[rowpos] -= val; if( !SCIPisInfinity(scip, -downslacks[rowpos]) ) downslacks[rowpos] += val; assert(!SCIPisFeasNegative(scip, upslacks[rowpos])); assert(!SCIPisFeasNegative(scip, downslacks[rowpos])); } } return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecOctane) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_SOL** first_sols; /* stores the first ffirst sols in order to check for common violation of a row */ SCIP_VAR** vars; /* the variables of the problem */ SCIP_VAR** fracvars; /* variables, that are fractional in current LP solution */ SCIP_VAR** subspacevars; /* the variables on which the search is performed. Either coinciding with vars or with the * space of all fractional variables of the current LP solution */ SCIP_Real p; /* n/2 - <delta,x> ( for some facet delta ) */ SCIP_Real q; /* <delta,a> */ SCIP_Real* rayorigin; /* origin of the ray, vector x in paper */ SCIP_Real* raydirection; /* direction of the ray, vector a in paper */ SCIP_Real* negquotient; /* negated quotient of rayorigin and raydirection, vector v in paper */ SCIP_Real* lambda; /* stores the distance of the facets (s.b.) to the origin of the ray */ SCIP_Bool usefracspace; /* determines whether the search concentrates on fractional variables and fixes integer ones */ SCIP_Bool cons_viol; /* used for checking whether a linear constraint is violated by one of the possible solutions */ SCIP_Bool success; SCIP_Bool* sign; /* signature of the direction of the ray */ SCIP_Bool** facets; /* list of extended facets */ int nvars; /* number of variables */ int nbinvars; /* number of 0-1-variables */ int nfracvars; /* number of fractional variables in current LP solution */ int nsubspacevars; /* dimension of the subspace on which the search is performed */ int nfacets; /* number of facets hidden by the ray that where already found */ int i; /* counter */ int j; /* counter */ int f_max; /* {0,1}-points to be checked */ int f_first; /* {0,1}-points to be generated at first in order to check whether a restart is necessary */ int r; /* counter */ int firstrule; int* perm; /* stores the way in which the coordinates were permuted */ int* fracspace; /* maps the variables of the subspace to the original variables */ assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) ); /* OCTANE is for use in 0-1 programs only */ if( nvars != nbinvars ) return SCIP_OKAY; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* don't call heuristic, if it was not successful enough in the past */ /*lint --e{647}*/ if( SCIPgetNNodes(scip) % (SCIPheurGetNCalls(heur) / (100 * SCIPheurGetNBestSolsFound(heur) + 10*heurdata->nsuccess + 1) + 1) != 0 ) return SCIP_OKAY; SCIP_CALL( SCIPgetLPBranchCands(scip, &fracvars, NULL, NULL, &nfracvars, NULL) ); /* don't use integral starting points */ if( nfracvars == 0 ) return SCIP_OKAY; /* get working pointers from heurdata */ sol = heurdata->sol; assert( sol != NULL ); f_max = heurdata->f_max; f_first = heurdata->f_first; usefracspace = heurdata->usefracspace; SCIP_CALL( SCIPallocBufferArray(scip, &fracspace, nvars) ); /* determine the space one which OCTANE should work either as the whole space or as the space of fractional variables */ if( usefracspace ) { nsubspacevars = nfracvars; SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) ); BMScopyMemoryArray(subspacevars, fracvars, nsubspacevars); for( i = nvars - 1; i >= 0; --i ) fracspace[i] = -1; for( i = nsubspacevars - 1; i >= 0; --i ) fracspace[SCIPvarGetProbindex(subspacevars[i])] = i; } else { int currentindex; nsubspacevars = nvars; SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) ); /* only copy the variables which are in the current LP */ currentindex = 0; for( i = 0; i < nvars; ++i ) { if( SCIPcolGetLPPos(SCIPvarGetCol(vars[i])) >= 0 ) { subspacevars[currentindex] = vars[i]; fracspace[i] = currentindex; ++currentindex; } else { fracspace[i] = -1; --nsubspacevars; } } } /* nothing to do for empty search space */ if( nsubspacevars == 0 ) return SCIP_OKAY; assert(0 < nsubspacevars && nsubspacevars <= nvars); for( i = 0; i < nsubspacevars; i++) assert(fracspace[SCIPvarGetProbindex(subspacevars[i])] == i); /* at most 2^(n-1) facets can be hit */ if( nsubspacevars < 30 ) { /*lint --e{701}*/ assert(f_max > 0); f_max = MIN(f_max, 1 << (nsubspacevars - 1) ); } f_first = MIN(f_first, f_max); /* memory allocation */ SCIP_CALL( SCIPallocBufferArray(scip, &rayorigin, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &raydirection, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &negquotient, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &sign, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &perm, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &lambda, f_max + 1) ); SCIP_CALL( SCIPallocBufferArray(scip, &facets, f_max + 1) ); for( i = f_max; i >= 0; --i ) { /*lint --e{866}*/ SCIP_CALL( SCIPallocBufferArray(scip, &facets[i], nsubspacevars) ); } SCIP_CALL( SCIPallocBufferArray(scip, &first_sols, f_first) ); *result = SCIP_DIDNOTFIND; /* starting OCTANE */ SCIPdebugMessage("run Octane heuristic on %s variables, which are %d vars, generate at most %d facets, using rule number %d\n", usefracspace ? "fractional" : "all", nsubspacevars, f_max, (heurdata->lastrule+1)%5); /* generate starting point in original coordinates */ SCIP_CALL( generateStartingPoint(scip, rayorigin, subspacevars, nsubspacevars) ); for( i = nsubspacevars - 1; i >= 0; --i ) rayorigin[i] -= 0.5; firstrule = heurdata->lastrule; ++firstrule; for( r = firstrule; r <= firstrule + 10 && !SCIPisStopped(scip); r++ ) { SCIP_ROW** rows; int nrows; /* generate shooting ray in original coordinates by certain rules */ switch(r % 5) { case 1: if( heurdata->useavgnbray ) { SCIP_CALL( generateAverageNBRay(scip, raydirection, fracspace, subspacevars, nsubspacevars) ); } break; case 2: if( heurdata->useobjray ) { SCIP_CALL( generateObjectiveRay(scip, raydirection, subspacevars, nsubspacevars) ); } break; case 3: if( heurdata->usediffray ) { SCIP_CALL( generateDifferenceRay(scip, raydirection, subspacevars, nsubspacevars) ); } break; case 4: if( heurdata->useavgwgtray && SCIPisLPSolBasic(scip) ) { SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, TRUE) ); } break; case 0: if( heurdata->useavgray && SCIPisLPSolBasic(scip) ) { SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, FALSE) ); } break; default: SCIPerrorMessage("invalid ray rule identifier\n"); SCIPABORT(); } /* there must be a feasible direction for the shooting ray */ if( isZero(scip, raydirection, nsubspacevars) ) continue; /* transform coordinates such that raydirection >= 0 */ flipCoords(rayorigin, raydirection, sign, nsubspacevars); for( i = f_max - 1; i >= 0; --i) lambda[i] = SCIPinfinity(scip); /* calculate negquotient, initialize perm, facets[0], p, and q */ p = 0.5 * nsubspacevars; q = 0.0; for( i = nsubspacevars - 1; i >= 0; --i ) { /* calculate negquotient, the ratio of rayorigin and raydirection, paying special attention to the case raydirection[i] == 0 */ if( SCIPisFeasZero(scip, raydirection[i]) ) { if( rayorigin[i] < 0 ) negquotient[i] = SCIPinfinity(scip); else negquotient[i] = -SCIPinfinity(scip); } else negquotient[i] = - (rayorigin[i] / raydirection[i]); perm[i] = i; /* initialization of facets[0] to the all-one facet with p and q its characteristic values */ facets[0][i] = TRUE; p -= rayorigin[i]; q += raydirection[i]; } assert(SCIPisPositive(scip, q)); /* resort the coordinates in nonincreasing order of negquotient */ SCIPsortDownRealRealRealBoolPtr( negquotient, raydirection, rayorigin, sign, (void**) subspacevars, nsubspacevars); #ifndef NDEBUG for( i = 0; i < nsubspacevars; i++ ) assert( raydirection[i] >= 0 ); for( i = 1; i < nsubspacevars; i++ ) assert( negquotient[i - 1] >= negquotient[i] ); #endif /* finished initialization */ /* find the first facet of the octahedron hit by a ray shot from rayorigin into direction raydirection */ for( i = 0; i < nsubspacevars && negquotient[i] * q > p; ++i ) { facets[0][i] = FALSE; p += 2 * rayorigin[i]; q -= 2 * raydirection[i]; assert(SCIPisPositive(scip, p)); assert(SCIPisPositive(scip, q)); } /* avoid dividing by values close to 0.0 */ if( !SCIPisFeasPositive(scip, q) ) continue; /* assert necessary for flexelint */ assert(q > 0); lambda[0] = p / q; nfacets = 1; /* find the first facets hit by the ray */ for( i = 0; i < nfacets && i < f_first; ++i) generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets); /* construct the first ffirst possible solutions */ for( i = 0; i < nfacets && i < f_first; ++i ) { SCIP_CALL( SCIPcreateSol(scip, &first_sols[i], heur) ); SCIP_CALL( getSolFromFacet(scip, facets[i], first_sols[i], sign, subspacevars, nsubspacevars) ); assert( first_sols[i] != NULL ); } /* try, whether there is a row violated by all of the first ffirst solutions */ cons_viol = FALSE; SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); for( i = nrows - 1; i >= 0; --i ) { if( !SCIProwIsLocal(rows[i]) ) { SCIP_COL** cols; SCIP_Real constant; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real rowval; SCIP_Real* coeffs; int nnonzerovars; int k; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]); rhs = SCIProwGetRhs(rows[i]); coeffs = SCIProwGetVals(rows[i]); nnonzerovars = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[0], SCIPcolGetVar(cols[j])); /* if the row's lhs is violated by the first sol, test, whether it is violated by the next ones, too */ if( lhs > rowval ) { cons_viol = TRUE; for( k = MIN(f_first, nfacets) - 1; k > 0; --k ) { rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j])); if( lhs <= rowval ) { cons_viol = FALSE; break; } } } /* dito for the right hand side */ else if( rhs < rowval ) { cons_viol = TRUE; for( k = MIN(f_first, nfacets) - 1; k > 0; --k ) { rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j])); if( rhs >= rowval ) { cons_viol = FALSE; break; } } } /* break as soon as one row is violated by all of the ffirst solutions */ if( cons_viol ) break; } } if( !cons_viol ) { /* if there was no row violated by all solutions, try whether one or more of them are feasible */ for( i = MIN(f_first, nfacets) - 1; i >= 0; --i ) { assert(first_sols[i] != NULL); SCIP_CALL( SCIPtrySol(scip, first_sols[i], FALSE, TRUE, FALSE, TRUE, &success) ); if( success ) *result = SCIP_FOUNDSOL; } /* search for further facets and construct and try solutions out of facets fixed as closest ones */ for( i = f_first; i < f_max; ++i) { if( i >= nfacets ) break; generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets); SCIP_CALL( getSolFromFacet(scip, facets[i], sol, sign, subspacevars, nsubspacevars) ); SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &success) ); if( success ) *result = SCIP_FOUNDSOL; } } /* finished OCTANE */ for( i = MIN(f_first, nfacets) - 1; i >= 0; --i ) { SCIP_CALL( SCIPfreeSol(scip, &first_sols[i]) ); } } heurdata->lastrule = r; if( *result == SCIP_FOUNDSOL ) ++(heurdata->nsuccess); /* free temporary memory */ SCIPfreeBufferArray(scip, &first_sols); for( i = f_max; i >= 0; --i ) SCIPfreeBufferArray(scip, &facets[i]); SCIPfreeBufferArray(scip, &facets); SCIPfreeBufferArray(scip, &lambda); SCIPfreeBufferArray(scip, &perm); SCIPfreeBufferArray(scip, &sign); SCIPfreeBufferArray(scip, &negquotient); SCIPfreeBufferArray(scip, &raydirection); SCIPfreeBufferArray(scip, &rayorigin); SCIPfreeBufferArray(scip, &subspacevars); SCIPfreeBufferArray(scip, &fracspace); return SCIP_OKAY; }
/** returns a score value for the given variable based on the active constraints that the variable appears in */ static SCIP_Real getNActiveConsScore( SCIP* scip, /**< SCIP data structure */ SCIP_SOL* sol, /**< working solution */ SCIP_VAR* var, /**< variable to get the score value for */ SCIP_Real* downscore, /**< pointer to store the score for branching downwards */ SCIP_Real* upscore /**< pointer to store the score for branching upwards */ ) { SCIP_COL* col; SCIP_ROW** rows; SCIP_Real* vals; int nrows; int r; int nactrows; SCIP_Real nlprows; SCIP_Real downcoefsum; SCIP_Real upcoefsum; SCIP_Real score; assert(downscore != NULL); assert(upscore != NULL); *downscore = 0.0; *upscore = 0.0; if( SCIPvarGetStatus(var) != SCIP_VARSTATUS_COLUMN ) return 0.0; col = SCIPvarGetCol(var); assert(col != NULL); rows = SCIPcolGetRows(col); vals = SCIPcolGetVals(col); nrows = SCIPcolGetNLPNonz(col); nactrows = 0; downcoefsum = 0.0; upcoefsum = 0.0; for( r = 0; r < nrows; ++r ) { SCIP_ROW* row; SCIP_Real activity; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real dualsol; row = rows[r]; /* calculate number of active constraint sides, i.e., count equations as two */ lhs = SCIProwGetLhs(row); rhs = SCIProwGetRhs(row); /* @todo this is suboptimal because activity is calculated by looping over all nonzeros of this row, need to * store LP activities instead (which cannot be retrieved if no LP was solved at this node) */ activity = SCIPgetRowSolActivity(scip, row, sol); dualsol = SCIProwGetDualsol(row); if( SCIPisFeasEQ(scip, activity, lhs) ) { SCIP_Real coef; nactrows++; coef = vals[r] / SCIProwGetNorm(row); if( SCIPisFeasPositive(scip, dualsol) ) { if( coef > 0.0 ) downcoefsum += coef; else upcoefsum -= coef; } } else if( SCIPisFeasEQ(scip, activity, rhs) ) { SCIP_Real coef; nactrows++; coef = vals[r] / SCIProwGetNorm(row); if( SCIPisFeasNegative(scip, dualsol) ) { if( coef > 0.0 ) upcoefsum += coef; else downcoefsum -= coef; } } } /* use the number of LP rows for normalization */ nlprows = (SCIP_Real)SCIPgetNLPRows(scip); upcoefsum /= nlprows; downcoefsum /= nlprows; /* calculate the score using SCIP's branch score. Pass NULL as variable to not have the var branch factor influence * the result */ score = nactrows / nlprows + SCIPgetBranchScore(scip, NULL, downcoefsum, upcoefsum); assert(score <= 3.0); assert(score >= 0.0); *downscore = downcoefsum; *upscore = upcoefsum; return score; }
/** process a variable from the queue of changed variables */ static SCIP_RETCODE varProcessBoundChanges( SCIP* scip, /**< SCIP data structure */ SCIP_HEURDATA* heurdata, /**< heuristic data */ SCIP_VAR* var /**< the variable whose bound changes need to be processed */ ) { SCIP_ROW** colrows; SCIP_COL* varcol; SCIP_Real* colvals; SCIP_Real oldmean; SCIP_Real newmean; SCIP_Real oldvariance; SCIP_Real newvariance; SCIP_Real oldlb; SCIP_Real newlb; SCIP_Real oldub; SCIP_Real newub; SCIP_VARTYPE vartype; int ncolrows; int r; int varindex; /* ensure that this is a probing bound change */ assert(SCIPinProbing(scip)); assert(var != NULL); varcol = SCIPvarGetCol(var); assert(varcol != NULL); colrows = SCIPcolGetRows(varcol); colvals = SCIPcolGetVals(varcol); ncolrows = SCIPcolGetNNonz(varcol); varindex = SCIPvarGetProbindex(var); oldlb = heurdata->currentlbs[varindex]; oldub = heurdata->currentubs[varindex]; /* skip update if the variable has never been subject of previously calculated row activities */ assert((oldlb == SCIP_INVALID) == (oldub == SCIP_INVALID)); /*lint !e777 doesn't like comparing floats for equality */ if( oldlb == SCIP_INVALID ) /*lint !e777 */ return SCIP_OKAY; newlb = SCIPvarGetLbLocal(var); newub = SCIPvarGetUbLocal(var); /* skip update if the bound change events have cancelled out */ if( SCIPisFeasEQ(scip, oldlb, newlb) && SCIPisFeasEQ(scip, oldub, newub) ) return SCIP_OKAY; /* calculate old and new variable distribution mean and variance */ oldvariance = 0.0; newvariance = 0.0; oldmean = 0.0; newmean = 0.0; vartype = SCIPvarGetType(var); SCIPvarCalcDistributionParameters(scip, oldlb, oldub, vartype, &oldmean, &oldvariance); SCIPvarCalcDistributionParameters(scip, newlb, newub, vartype, &newmean, &newvariance); /* loop over all rows of this variable and update activity distribution */ for( r = 0; r < ncolrows; ++r ) { int rowpos; assert(colrows[r] != NULL); rowpos = SCIProwGetIndex(colrows[r]); assert(rowpos >= 0); SCIP_CALL( heurdataEnsureArraySize(scip, heurdata, rowpos) ); /* only consider rows for which activity distribution was already calculated */ if( heurdata->rowmeans[rowpos] != SCIP_INVALID ) /*lint !e777 doesn't like comparing floats for equality */ { SCIP_Real coeff; SCIP_Real coeffsquared; assert(heurdata->rowvariances[rowpos] != SCIP_INVALID && SCIPisFeasGE(scip, heurdata->rowvariances[rowpos], 0.0)); /*lint !e777 */ coeff = colvals[r]; coeffsquared = SQUARED(coeff); /* update variable contribution to row activity distribution */ heurdata->rowmeans[rowpos] += coeff * (newmean - oldmean); heurdata->rowvariances[rowpos] += coeffsquared * (newvariance - oldvariance); heurdata->rowvariances[rowpos] = MAX(0.0, heurdata->rowvariances[rowpos]); /* account for changes of the infinite contributions to row activities */ if( coeff > 0.0 ) { /* if the coefficient is positive, upper bounds affect activity up */ if( SCIPisInfinity(scip, newub) && !SCIPisInfinity(scip, oldub) ) ++heurdata->rowinfinitiesup[rowpos]; else if( !SCIPisInfinity(scip, newub) && SCIPisInfinity(scip, oldub) ) --heurdata->rowinfinitiesup[rowpos]; if( SCIPisInfinity(scip, newlb) && !SCIPisInfinity(scip, oldlb) ) ++heurdata->rowinfinitiesdown[rowpos]; else if( !SCIPisInfinity(scip, newlb) && SCIPisInfinity(scip, oldlb) ) --heurdata->rowinfinitiesdown[rowpos]; } else if( coeff < 0.0 ) { if( SCIPisInfinity(scip, newub) && !SCIPisInfinity(scip, oldub) ) ++heurdata->rowinfinitiesdown[rowpos]; else if( !SCIPisInfinity(scip, newub) && SCIPisInfinity(scip, oldub) ) --heurdata->rowinfinitiesdown[rowpos]; if( SCIPisInfinity(scip, newlb) && !SCIPisInfinity(scip, oldlb) ) ++heurdata->rowinfinitiesup[rowpos]; else if( !SCIPisInfinity(scip, newlb) && SCIPisInfinity(scip, oldlb) ) --heurdata->rowinfinitiesup[rowpos]; } assert(heurdata->rowinfinitiesdown[rowpos] >= 0); assert(heurdata->rowinfinitiesup[rowpos] >= 0); } } /* store the new local bounds in the data */ heurdataUpdateCurrentBounds(scip, heurdata, var); return SCIP_OKAY; }
/** calculate the branching score of a variable, depending on the chosen score parameter */ static SCIP_RETCODE calcBranchScore( SCIP* scip, /**< current SCIP */ SCIP_HEURDATA* heurdata, /**< branch rule data */ SCIP_VAR* var, /**< candidate variable */ SCIP_Real lpsolval, /**< current fractional LP-relaxation solution value */ SCIP_Real* upscore, /**< pointer to store the variable score when branching on it in upward direction */ SCIP_Real* downscore, /**< pointer to store the variable score when branching on it in downward direction */ char scoreparam /**< the score parameter of this heuristic */ ) { SCIP_COL* varcol; SCIP_ROW** colrows; SCIP_Real* rowvals; SCIP_Real varlb; SCIP_Real varub; SCIP_Real squaredbounddiff; /* current squared difference of variable bounds (ub - lb)^2 */ SCIP_Real newub; /* new upper bound if branching downwards */ SCIP_Real newlb; /* new lower bound if branching upwards */ SCIP_Real squaredbounddiffup; /* squared difference after branching upwards (ub - lb')^2 */ SCIP_Real squaredbounddiffdown; /* squared difference after branching downwards (ub' - lb)^2 */ SCIP_Real currentmean; /* current mean value of variable uniform distribution */ SCIP_Real meanup; /* mean value of variable uniform distribution after branching up */ SCIP_Real meandown; /* mean value of variable uniform distribution after branching down*/ SCIP_VARTYPE vartype; int ncolrows; int i; SCIP_Bool onlyactiverows; /* should only rows which are active at the current node be considered? */ assert(scip != NULL); assert(var != NULL); assert(upscore != NULL); assert(downscore != NULL); assert(!SCIPisIntegral(scip, lpsolval) || SCIPvarIsBinary(var)); assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN); varcol = SCIPvarGetCol(var); assert(varcol != NULL); colrows = SCIPcolGetRows(varcol); rowvals = SCIPcolGetVals(varcol); ncolrows = SCIPcolGetNNonz(varcol); varlb = SCIPvarGetLbLocal(var); varub = SCIPvarGetUbLocal(var); assert(SCIPisFeasLT(scip, varlb, varub)); vartype = SCIPvarGetType(var); /* calculate mean and variance of variable uniform distribution before and after branching */ currentmean = 0.0; squaredbounddiff = 0.0; SCIPvarCalcDistributionParameters(scip, varlb, varub, vartype, ¤tmean, &squaredbounddiff); /* unfixed binary variables may have an integer solution value in the LP solution, eg, at the presence of indicator constraints */ if( !SCIPvarIsBinary(var) ) { newlb = SCIPfeasCeil(scip, lpsolval); newub = SCIPfeasFloor(scip, lpsolval); } else { newlb = 1.0; newub = 0.0; } /* calculate the variable's uniform distribution after branching up and down, respectively. */ squaredbounddiffup = 0.0; meanup = 0.0; SCIPvarCalcDistributionParameters(scip, newlb, varub, vartype, &meanup, &squaredbounddiffup); /* calculate the distribution mean and variance for a variable with finite lower bound */ squaredbounddiffdown = 0.0; meandown = 0.0; SCIPvarCalcDistributionParameters(scip, varlb, newub, vartype, &meandown, &squaredbounddiffdown); /* initialize the variable's up and down score */ *upscore = 0.0; *downscore = 0.0; onlyactiverows = FALSE; /* loop over the variable rows and calculate the up and down score */ for( i = 0; i < ncolrows; ++i ) { SCIP_ROW* row; SCIP_Real changedrowmean; SCIP_Real rowmean; SCIP_Real rowvariance; SCIP_Real changedrowvariance; SCIP_Real currentrowprob; SCIP_Real newrowprobup; SCIP_Real newrowprobdown; SCIP_Real squaredcoeff; SCIP_Real rowval; int rowinfinitiesdown; int rowinfinitiesup; int rowpos; row = colrows[i]; rowval = rowvals[i]; assert(row != NULL); /* we access the rows by their index */ rowpos = SCIProwGetIndex(row); /* skip non-active rows if the user parameter was set this way */ if( onlyactiverows && SCIPisSumPositive(scip, SCIPgetRowLPFeasibility(scip, row)) ) continue; /* call method to ensure sufficient data capacity */ SCIP_CALL( heurdataEnsureArraySize(scip, heurdata, rowpos) ); /* calculate row activity distribution if this is the first candidate to appear in this row */ if( heurdata->rowmeans[rowpos] == SCIP_INVALID ) /*lint !e777 doesn't like comparing floats for equality */ { rowCalculateGauss(scip, heurdata, row, &heurdata->rowmeans[rowpos], &heurdata->rowvariances[rowpos], &heurdata->rowinfinitiesdown[rowpos], &heurdata->rowinfinitiesup[rowpos]); } /* retrieve the row distribution parameters from the branch rule data */ rowmean = heurdata->rowmeans[rowpos]; rowvariance = heurdata->rowvariances[rowpos]; rowinfinitiesdown = heurdata->rowinfinitiesdown[rowpos]; rowinfinitiesup = heurdata->rowinfinitiesup[rowpos]; assert(!SCIPisNegative(scip, rowvariance)); currentrowprob = SCIProwCalcProbability(scip, row, rowmean, rowvariance, rowinfinitiesdown, rowinfinitiesup); /* get variable's current expected contribution to row activity */ squaredcoeff = SQUARED(rowval); /* first, get the probability change for the row if the variable is branched on upwards. The probability * can only be affected if the variable upper bound is finite */ if( !SCIPisInfinity(scip, varub) ) { int rowinftiesdownafterbranch; int rowinftiesupafterbranch; /* calculate how branching would affect the row parameters */ changedrowmean = rowmean + rowval * (meanup - currentmean); changedrowvariance = rowvariance + squaredcoeff * (squaredbounddiffup - squaredbounddiff); changedrowvariance = MAX(0.0, changedrowvariance); rowinftiesdownafterbranch = rowinfinitiesdown; rowinftiesupafterbranch = rowinfinitiesup; /* account for changes of the row's infinite bound contributions */ if( SCIPisInfinity(scip, -varlb) && rowval < 0.0 ) rowinftiesupafterbranch--; if( SCIPisInfinity(scip, -varlb) && rowval > 0.0 ) rowinftiesdownafterbranch--; assert(rowinftiesupafterbranch >= 0); assert(rowinftiesdownafterbranch >= 0); newrowprobup = SCIProwCalcProbability(scip, row, changedrowmean, changedrowvariance, rowinftiesdownafterbranch, rowinftiesupafterbranch); } else newrowprobup = currentrowprob; /* do the same for the other branching direction */ if( !SCIPisInfinity(scip, varlb) ) { int rowinftiesdownafterbranch; int rowinftiesupafterbranch; changedrowmean = rowmean + rowval * (meandown - currentmean); changedrowvariance = rowvariance + squaredcoeff * (squaredbounddiffdown - squaredbounddiff); changedrowvariance = MAX(0.0, changedrowvariance); rowinftiesdownafterbranch = rowinfinitiesdown; rowinftiesupafterbranch = rowinfinitiesup; /* account for changes of the row's infinite bound contributions */ if( SCIPisInfinity(scip, varub) && rowval > 0.0 ) rowinftiesupafterbranch -= 1; if( SCIPisInfinity(scip, varub) && rowval < 0.0 ) rowinftiesdownafterbranch -= 1; assert(rowinftiesdownafterbranch >= 0); assert(rowinftiesupafterbranch >= 0); newrowprobdown = SCIProwCalcProbability(scip, row, changedrowmean, changedrowvariance, rowinftiesdownafterbranch, rowinftiesupafterbranch); } else newrowprobdown = currentrowprob; /* update the up and down score depending on the chosen scoring parameter */ SCIP_CALL( SCIPupdateDistributionScore(scip, currentrowprob, newrowprobup, newrowprobdown, upscore, downscore, scoreparam) ); SCIPdebugMessage(" Variable %s changes probability of row %s from %g to %g (branch up) or %g;\n", SCIPvarGetName(var), SCIProwGetName(row), currentrowprob, newrowprobup, newrowprobdown); SCIPdebugMessage(" --> new variable score: %g (for branching up), %g (for branching down)\n", *upscore, *downscore); } return SCIP_OKAY; }
/** LP solution separation method for disjunctive cuts */ static SCIP_DECL_SEPAEXECLP(sepaExeclpDisjunctive) { SCIP_SEPADATA* sepadata; SCIP_CONSHDLR* conshdlr; SCIP_DIGRAPH* conflictgraph; SCIP_ROW** rows; SCIP_COL** cols; SCIP_Real* cutcoefs = NULL; SCIP_Real* simplexcoefs1 = NULL; SCIP_Real* simplexcoefs2 = NULL; SCIP_Real* coef = NULL; SCIP_Real* binvrow = NULL; SCIP_Real* rowsmaxval = NULL; SCIP_Real* violationarray = NULL; int* fixings1 = NULL; int* fixings2 = NULL; int* basisind = NULL; int* basisrow = NULL; int* varrank = NULL; int* edgearray = NULL; int nedges; int ndisjcuts; int nrelevantedges; int nsos1vars; int nconss; int maxcuts; int ncalls; int depth; int ncols; int nrows; int ind; int j; int i; assert( sepa != NULL ); assert( strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0 ); assert( scip != NULL ); assert( result != NULL ); *result = SCIP_DIDNOTRUN; /* only generate disjunctive cuts if we are not close to terminating */ if ( SCIPisStopped(scip) ) return SCIP_OKAY; /* only generate disjunctive cuts if an optimal LP solution is at hand */ if ( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only generate disjunctive cuts if the LP solution is basic */ if ( ! SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* get LP data */ SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) ); SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); /* return if LP has no columns or no rows */ if ( ncols == 0 || nrows == 0 ) return SCIP_OKAY; assert( cols != NULL ); assert( rows != NULL ); /* get sepa data */ sepadata = SCIPsepaGetData(sepa); assert( sepadata != NULL ); /* get constraint handler */ conshdlr = sepadata->conshdlr; if ( conshdlr == NULL ) return SCIP_OKAY; /* get number of constraints */ nconss = SCIPconshdlrGetNConss(conshdlr); if ( nconss == 0 ) return SCIP_OKAY; /* check for maxdepth < depth, maxinvcutsroot = 0 and maxinvcuts = 0 */ depth = SCIPgetDepth(scip); if ( ( sepadata->maxdepth >= 0 && sepadata->maxdepth < depth ) || ( depth == 0 && sepadata->maxinvcutsroot == 0 ) || ( depth > 0 && sepadata->maxinvcuts == 0 ) ) return SCIP_OKAY; /* only call the cut separator a given number of times at each node */ ncalls = SCIPsepaGetNCallsAtNode(sepa); if ( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot) || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) ) return SCIP_OKAY; /* get conflict graph and number of conflict graph edges (note that the digraph arcs were added in both directions) */ conflictgraph = SCIPgetConflictgraphSOS1(conshdlr); nedges = (int)SCIPceil(scip, (SCIP_Real)SCIPdigraphGetNArcs(conflictgraph)/2); /* if too many conflict graph edges, the separator can be slow: delay it until no other cuts have been found */ if ( sepadata->maxconfsdelay >= 0 && nedges >= sepadata->maxconfsdelay ) { int ncutsfound; ncutsfound = SCIPgetNCutsFound(scip); if ( ncutsfound > sepadata->lastncutsfound || ! SCIPsepaWasLPDelayed(sepa) ) { sepadata->lastncutsfound = ncutsfound; *result = SCIP_DELAYED; return SCIP_OKAY; } } /* check basis status */ for (j = 0; j < ncols; ++j) { if ( SCIPcolGetBasisStatus(cols[j]) == SCIP_BASESTAT_ZERO ) return SCIP_OKAY; } /* get number of SOS1 variables */ nsos1vars = SCIPgetNSOS1Vars(conshdlr); /* allocate buffer arrays */ SCIP_CALL( SCIPallocBufferArray(scip, &edgearray, nedges) ); SCIP_CALL( SCIPallocBufferArray(scip, &fixings1, nedges) ); SCIP_CALL( SCIPallocBufferArray(scip, &fixings2, nedges) ); SCIP_CALL( SCIPallocBufferArray(scip, &violationarray, nedges) ); /* get all violated conflicts {i, j} in the conflict graph and sort them based on the degree of a violation value */ nrelevantedges = 0; for (j = 0; j < nsos1vars; ++j) { SCIP_VAR* var; var = SCIPnodeGetVarSOS1(conflictgraph, j); if ( SCIPvarIsActive(var) && ! SCIPisFeasZero(scip, SCIPcolGetPrimsol(SCIPvarGetCol(var))) && SCIPcolGetBasisStatus(SCIPvarGetCol(var)) == SCIP_BASESTAT_BASIC ) { int* succ; int nsucc; /* get successors and number of successors */ nsucc = SCIPdigraphGetNSuccessors(conflictgraph, j); succ = SCIPdigraphGetSuccessors(conflictgraph, j); for (i = 0; i < nsucc; ++i) { SCIP_VAR* varsucc; int succind; succind = succ[i]; varsucc = SCIPnodeGetVarSOS1(conflictgraph, succind); if ( SCIPvarIsActive(varsucc) && succind < j && ! SCIPisFeasZero(scip, SCIPgetSolVal(scip, NULL, varsucc) ) && SCIPcolGetBasisStatus(SCIPvarGetCol(varsucc)) == SCIP_BASESTAT_BASIC ) { fixings1[nrelevantedges] = j; fixings2[nrelevantedges] = succind; edgearray[nrelevantedges] = nrelevantedges; violationarray[nrelevantedges++] = SCIPgetSolVal(scip, NULL, var) * SCIPgetSolVal(scip, NULL, varsucc); } } } } /* sort violation score values */ if ( nrelevantedges > 0) SCIPsortDownRealInt(violationarray, edgearray, nrelevantedges); else { SCIPfreeBufferArrayNull(scip, &violationarray); SCIPfreeBufferArrayNull(scip, &fixings2); SCIPfreeBufferArrayNull(scip, &fixings1); SCIPfreeBufferArrayNull(scip, &edgearray); return SCIP_OKAY; } SCIPfreeBufferArrayNull(scip, &violationarray); /* compute maximal number of cuts */ if ( SCIPgetDepth(scip) == 0 ) maxcuts = MIN(sepadata->maxinvcutsroot, nrelevantedges); else maxcuts = MIN(sepadata->maxinvcuts, nrelevantedges); assert( maxcuts > 0 ); /* allocate buffer arrays */ SCIP_CALL( SCIPallocBufferArray(scip, &varrank, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &rowsmaxval, nrows) ); SCIP_CALL( SCIPallocBufferArray(scip, &basisrow, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) ); SCIP_CALL( SCIPallocBufferArray(scip, &coef, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &simplexcoefs1, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &simplexcoefs2, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) ); /* get basis indices */ SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) ); /* create vector "basisrow" with basisrow[column of non-slack basis variable] = corresponding row of B^-1; * compute maximum absolute value of nonbasic row coefficients */ for (j = 0; j < nrows; ++j) { SCIP_COL** rowcols; SCIP_Real* rowvals; SCIP_ROW* row; SCIP_Real val; SCIP_Real max = 0.0; int nnonz; /* fill basisrow vector */ ind = basisind[j]; if ( ind >= 0 ) basisrow[ind] = j; /* compute maximum absolute value of nonbasic row coefficients */ row = rows[j]; assert( row != NULL ); rowvals = SCIProwGetVals(row); nnonz = SCIProwGetNNonz(row); rowcols = SCIProwGetCols(row); for (i = 0; i < nnonz; ++i) { if ( SCIPcolGetBasisStatus(rowcols[i]) == SCIP_BASESTAT_LOWER || SCIPcolGetBasisStatus(rowcols[i]) == SCIP_BASESTAT_UPPER ) { val = REALABS(rowvals[i]); if ( SCIPisFeasGT(scip, val, max) ) max = REALABS(val); } } /* handle slack variable coefficient and save maximum value */ rowsmaxval[j] = MAX(max, 1.0); } /* initialize variable ranks with -1 */ for (j = 0; j < ncols; ++j) varrank[j] = -1; /* free buffer array */ SCIPfreeBufferArrayNull(scip, &basisind); /* for the most promising disjunctions: try to generate disjunctive cuts */ ndisjcuts = 0; for (i = 0; i < maxcuts; ++i) { SCIP_Bool madeintegral; SCIP_Real cutlhs1; SCIP_Real cutlhs2; SCIP_Real bound1; SCIP_Real bound2; SCIP_ROW* row = NULL; SCIP_VAR* var; SCIP_COL* col; int nonbasicnumber; int cutrank = 0; int edgenumber; int rownnonz; edgenumber = edgearray[i]; /* determine first simplex row */ var = SCIPnodeGetVarSOS1(conflictgraph, fixings1[edgenumber]); col = SCIPvarGetCol(var); ind = SCIPcolGetLPPos(col); assert( ind >= 0 ); assert( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_BASIC ); /* get the 'ind'th row of B^-1 and B^-1 \cdot A */ SCIP_CALL( SCIPgetLPBInvRow(scip, basisrow[ind], binvrow, NULL, NULL) ); SCIP_CALL( SCIPgetLPBInvARow(scip, basisrow[ind], binvrow, coef, NULL, NULL) ); /* get the simplex-coefficients of the non-basic variables */ SCIP_CALL( getSimplexCoefficients(scip, rows, nrows, cols, ncols, coef, binvrow, simplexcoefs1, &nonbasicnumber) ); /* get rank of variable if not known already */ if ( varrank[ind] < 0 ) varrank[ind] = getVarRank(scip, binvrow, rowsmaxval, sepadata->maxweightrange, rows, nrows); cutrank = MAX(cutrank, varrank[ind]); /* get right hand side and bound of simplex talbeau row */ cutlhs1 = SCIPcolGetPrimsol(col); if ( SCIPisFeasPositive(scip, cutlhs1) ) bound1 = SCIPcolGetUb(col); else bound1 = SCIPcolGetLb(col); /* determine second simplex row */ var = SCIPnodeGetVarSOS1(conflictgraph, fixings2[edgenumber]); col = SCIPvarGetCol(var); ind = SCIPcolGetLPPos(col); assert( ind >= 0 ); assert( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_BASIC ); /* get the 'ind'th row of B^-1 and B^-1 \cdot A */ SCIP_CALL( SCIPgetLPBInvRow(scip, basisrow[ind], binvrow, NULL, NULL) ); SCIP_CALL( SCIPgetLPBInvARow(scip, basisrow[ind], binvrow, coef, NULL, NULL) ); /* get the simplex-coefficients of the non-basic variables */ SCIP_CALL( getSimplexCoefficients(scip, rows, nrows, cols, ncols, coef, binvrow, simplexcoefs2, &nonbasicnumber) ); /* get rank of variable if not known already */ if ( varrank[ind] < 0 ) varrank[ind] = getVarRank(scip, binvrow, rowsmaxval, sepadata->maxweightrange, rows, nrows); cutrank = MAX(cutrank, varrank[ind]); /* get right hand side and bound of simplex talbeau row */ cutlhs2 = SCIPcolGetPrimsol(col); if ( SCIPisFeasPositive(scip, cutlhs2) ) bound2 = SCIPcolGetUb(col); else bound2 = SCIPcolGetLb(col); /* add coefficients to cut */ SCIP_CALL( generateDisjCutSOS1(scip, sepa, rows, nrows, cols, ncols, ndisjcuts, TRUE, sepadata->strengthen, cutlhs1, cutlhs2, bound1, bound2, simplexcoefs1, simplexcoefs2, cutcoefs, &row, &madeintegral) ); if ( row == NULL ) continue; /* raise cutrank for present cut */ ++cutrank; /* check if there are numerical evidences */ if ( ( madeintegral && ( sepadata->maxrankintegral == -1 || cutrank <= sepadata->maxrankintegral ) ) || ( ! madeintegral && ( sepadata->maxrank == -1 || cutrank <= sepadata->maxrank ) ) ) { /* possibly add cut to LP if it is useful; in case the lhs of the cut is minus infinity (due to scaling) the cut is useless */ rownnonz = SCIProwGetNNonz(row); if ( rownnonz > 0 && ! SCIPisInfinity(scip, -SCIProwGetLhs(row)) && ! SCIProwIsInLP(row) && SCIPisCutEfficacious(scip, NULL, row) ) { SCIP_Bool infeasible; /* set cut rank */ SCIProwChgRank(row, cutrank); /* add cut */ SCIP_CALL( SCIPaddCut(scip, NULL, row, FALSE, &infeasible) ); SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) ); if ( infeasible ) { *result = SCIP_CUTOFF; break; } ++ndisjcuts; } } /* release row */ SCIP_CALL( SCIPreleaseRow(scip, &row) ); } /* save total number of cuts found so far */ sepadata->lastncutsfound = SCIPgetNCutsFound(scip); /* evaluate the result of the separation */ if ( *result != SCIP_CUTOFF ) { if ( ndisjcuts > 0 ) *result = SCIP_SEPARATED; else *result = SCIP_DIDNOTFIND; } SCIPdebugMessage("Number of found disjunctive cuts: %d.\n", ndisjcuts); /* free buffer arrays */ SCIPfreeBufferArrayNull(scip, &cutcoefs); SCIPfreeBufferArrayNull(scip, &simplexcoefs2); SCIPfreeBufferArrayNull(scip, &simplexcoefs1); SCIPfreeBufferArrayNull(scip, &coef); SCIPfreeBufferArrayNull(scip, &binvrow); SCIPfreeBufferArrayNull(scip, &basisrow); SCIPfreeBufferArrayNull(scip, &fixings2); SCIPfreeBufferArrayNull(scip, &fixings1); SCIPfreeBufferArrayNull(scip, &edgearray); SCIPfreeBufferArrayNull(scip, &rowsmaxval); SCIPfreeBufferArrayNull(scip, &varrank); return SCIP_OKAY; }
/** update row activities after a variable's solution value changed */ static SCIP_RETCODE updateActivities( SCIP* scip, /**< SCIP data structure */ SCIP_Real* activities, /**< LP row activities */ SCIP_ROW** violrows, /**< array with currently violated rows */ int* violrowpos, /**< position of LP rows in violrows array */ int* nviolrows, /**< pointer to the number of currently violated rows */ int nlprows, /**< number of rows in current LP */ SCIP_VAR* var, /**< variable that has been changed */ SCIP_Real oldsolval, /**< old solution value of variable */ SCIP_Real newsolval /**< new solution value of variable */ ) { SCIP_COL* col; SCIP_ROW** colrows; SCIP_Real* colvals; SCIP_Real delta; int ncolrows; int r; assert(activities != NULL); assert(nviolrows != NULL); assert(0 <= *nviolrows && *nviolrows <= nlprows); delta = newsolval - oldsolval; col = SCIPvarGetCol(var); colrows = SCIPcolGetRows(col); colvals = SCIPcolGetVals(col); ncolrows = SCIPcolGetNLPNonz(col); assert(ncolrows == 0 || (colrows != NULL && colvals != NULL)); for( r = 0; r < ncolrows; ++r ) { SCIP_ROW* row; int rowpos; row = colrows[r]; rowpos = SCIProwGetLPPos(row); assert(-1 <= rowpos && rowpos < nlprows); if( rowpos >= 0 && !SCIProwIsLocal(row) ) { SCIP_Real oldactivity; SCIP_Real newactivity; assert(SCIProwIsInLP(row)); /* update row activity */ oldactivity = activities[rowpos]; if( !SCIPisInfinity(scip, -oldactivity) && !SCIPisInfinity(scip, oldactivity) ) { newactivity = oldactivity + delta * colvals[r]; if( SCIPisInfinity(scip, newactivity) ) newactivity = SCIPinfinity(scip); else if( SCIPisInfinity(scip, -newactivity) ) newactivity = -SCIPinfinity(scip); activities[rowpos] = newactivity; /* update row violation arrays */ updateViolations(scip, row, violrows, violrowpos, nviolrows, oldactivity, newactivity); } } } return SCIP_OKAY; }
/** adds problem variables with negative reduced costs to pricing storage */ SCIP_RETCODE SCIPpricestoreAddProbVars( SCIP_PRICESTORE* pricestore, /**< pricing storage */ BMS_BLKMEM* blkmem, /**< block memory buffers */ SCIP_SET* set, /**< global SCIP settings */ SCIP_STAT* stat, /**< dynamic problem statistics */ SCIP_PROB* prob, /**< transformed problem after presolve */ SCIP_TREE* tree, /**< branch and bound tree */ SCIP_LP* lp, /**< LP data */ SCIP_BRANCHCAND* branchcand, /**< branching candidate storage */ SCIP_EVENTQUEUE* eventqueue /**< event queue */ ) { SCIP_VAR* var; SCIP_COL* col; SCIP_Bool root; SCIP_Bool added; int v; int abortpricevars; int maxpricevars; int nfoundvars; assert(pricestore != NULL); assert(set != NULL); assert(stat != NULL); assert(prob != NULL); assert(lp != NULL); assert(lp->solved); assert(tree != NULL); assert(SCIPtreeHasCurrentNodeLP(tree)); assert(prob->nvars >= SCIPlpGetNCols(lp)); /* if all problem variables of status COLUMN are already in the LP, nothing has to be done */ if( prob->ncolvars == SCIPlpGetNCols(lp) ) return SCIP_OKAY; root = (SCIPtreeGetCurrentDepth(tree) == 0); maxpricevars = SCIPsetGetPriceMaxvars(set, root); assert(maxpricevars >= 1); abortpricevars = (int)(set->price_abortfac * maxpricevars); assert(abortpricevars >= maxpricevars); /**@todo test pricing: is abortpricevars a good idea? -> like strong branching, lookahead, ... */ pricestore->nprobpricings++; /* start timing */ SCIPclockStart(pricestore->probpricingtime, set); /* price already existing problem variables */ nfoundvars = 0; for( v = 0; v < prob->nvars && nfoundvars < abortpricevars; ++v ) { var = prob->vars[v]; if( SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ) { col = SCIPvarGetCol(var); assert(col != NULL); assert(col->var == var); assert(col->len >= 0); assert(col->lppos >= -1); assert(col->lpipos >= -1); assert(SCIPcolIsInLP(col) == (col->lpipos >= 0)); if( !SCIPcolIsInLP(col) ) { SCIPdebugMessage("price column variable <%s> in bounds [%g,%g]\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)); /* add variable to pricing storage, if zero is not best bound w.r.t. objective function */ SCIP_CALL( addBoundViolated(pricestore, blkmem, set, stat, tree, lp, branchcand, eventqueue, var, &added) ); if( added ) { pricestore->nprobvarsfound++; nfoundvars++; } else if( SCIPcolGetNNonz(col) > 0 ) { SCIP_Real feasibility; /* a column not in LP that doesn't have zero in its bounds was added by bound checking above */ assert(!SCIPsetIsPositive(set, SCIPvarGetLbLocal(col->var))); assert(!SCIPsetIsNegative(set, SCIPvarGetUbLocal(col->var))); if( SCIPlpGetSolstat(lp) == SCIP_LPSOLSTAT_INFEASIBLE ) { /* The LP was proven infeasible, so we have an infeasibility proof by the dual Farkas multipliers y. * The valid inequality y^T A x >= y^T b is violated by all x, especially by the (for this * inequality most feasible solution) x' defined by * x'_i = ub_i, if y^T A_i > 0 * x'_i = lb_i, if y^T A_i <= 0. * Pricing in this case means to add variables i with positive Farkas value, i.e. y^T A_i x'_i > 0 */ feasibility = -SCIPcolGetFarkasValue(col, stat, lp); SCIPdebugMessage(" <%s> Farkas feasibility: %e\n", SCIPvarGetName(col->var), feasibility); } else { /* The dual LP is feasible, and we have a feasible dual solution. Pricing in this case means to * add variables with negative feasibility, that is * - positive reduced costs for variables with negative lower bound * - negative reduced costs for variables with positive upper bound */ feasibility = SCIPcolGetFeasibility(col, set, stat, lp); SCIPdebugMessage(" <%s> reduced cost feasibility: %e\n", SCIPvarGetName(col->var), feasibility); } /* the score is -feasibility / (#nonzeros in column + 1) to prefer short columns * we must add variables with negative feasibility, but in order to not get a too large lower bound * due to missing columns, we better also add variables, that have a very small feasibility */ if( !SCIPsetIsPositive(set, feasibility) ) { SCIP_CALL( SCIPpricestoreAddVar(pricestore, blkmem, set, eventqueue, lp, var, -feasibility / (col->len+1), root) ); pricestore->nprobvarsfound++; nfoundvars++; } } } } } /* stop timing */ SCIPclockStop(pricestore->probpricingtime, set); return SCIP_OKAY; }
/** compute value by which the solution of variable @p var can be shifted */ static SCIP_Real calcShiftVal( SCIP* scip, /**< SCIP data structure */ SCIP_VAR* var, /**< variable that should be shifted */ SCIP_Real solval, /**< current solution value */ SCIP_Real* activities /**< LP row activities */ ) { SCIP_Real lb; SCIP_Real ub; SCIP_Real obj; SCIP_Real shiftval; SCIP_COL* col; SCIP_ROW** colrows; SCIP_Real* colvals; SCIP_Bool shiftdown; int ncolrows; int i; /* get variable's solution value, global bounds and objective coefficient */ lb = SCIPvarGetLbGlobal(var); ub = SCIPvarGetUbGlobal(var); obj = SCIPvarGetObj(var); shiftval = 0.0; shiftdown = TRUE; /* determine shifting direction and maximal possible shifting w.r.t. corresponding bound */ if( obj > 0.0 && SCIPisFeasGE(scip, solval - 1.0, lb) ) shiftval = SCIPfeasFloor(scip, solval - lb); else if( obj < 0.0 && SCIPisFeasLE(scip, solval + 1.0, ub) ) { shiftval = SCIPfeasFloor(scip, ub - solval); shiftdown = FALSE; } else return 0.0; SCIPdebugMessage("Try to shift %s variable <%s> with\n", shiftdown ? "down" : "up", SCIPvarGetName(var) ); SCIPdebugMessage(" lb:<%g> <= val:<%g> <= ub:<%g> and obj:<%g> by at most: <%g>\n", lb, solval, ub, obj, shiftval); /* get data of LP column */ col = SCIPvarGetCol(var); colrows = SCIPcolGetRows(col); colvals = SCIPcolGetVals(col); ncolrows = SCIPcolGetNLPNonz(col); assert(ncolrows == 0 || (colrows != NULL && colvals != NULL)); /* find minimal shift value, st. all rows stay valid */ for( i = 0; i < ncolrows && shiftval > 0.0; ++i ) { SCIP_ROW* row; int rowpos; row = colrows[i]; rowpos = SCIProwGetLPPos(row); assert(-1 <= rowpos && rowpos < SCIPgetNLPRows(scip) ); /* only global rows need to be valid */ if( rowpos >= 0 && !SCIProwIsLocal(row) ) { SCIP_Real shiftvalrow; assert(SCIProwIsInLP(row)); if( shiftdown == (colvals[i] > 0) ) shiftvalrow = SCIPfeasFloor(scip, (activities[rowpos] - SCIProwGetLhs(row)) / ABS(colvals[i])); else shiftvalrow = SCIPfeasFloor(scip, (SCIProwGetRhs(row) - activities[rowpos]) / ABS(colvals[i])); #ifdef SCIP_DEBUG if( shiftvalrow < shiftval ) { SCIPdebugMessage(" -> The shift value had to be reduced to <%g>, because of row <%s>.\n", shiftvalrow, SCIProwGetName(row)); SCIPdebugMessage(" lhs:<%g> <= act:<%g> <= rhs:<%g>, colval:<%g>\n", SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row), colvals[i]); } #endif shiftval = MIN(shiftval, shiftvalrow); /* shiftvalrow might be negative, if we detected infeasibility -> make sure that shiftval is >= 0 */ shiftval = MAX(shiftval, 0.0); } } if( shiftdown ) shiftval *= -1.0; /* we must not shift variables to infinity */ if( SCIPisInfinity(scip, solval + shiftval) ) shiftval = 0.0; return shiftval; }
/** adds priced variables to the LP */ SCIP_RETCODE SCIPpricestoreApplyVars( SCIP_PRICESTORE* pricestore, /**< pricing storage */ BMS_BLKMEM* blkmem, /**< block memory buffers */ SCIP_SET* set, /**< global SCIP settings */ SCIP_STAT* stat, /**< dynamic problem statistics */ SCIP_EVENTQUEUE* eventqueue, /**< event queue */ SCIP_PROB* prob, /**< transformed problem after presolve */ SCIP_TREE* tree, /**< branch and bound tree */ SCIP_LP* lp /**< LP data */ ) { SCIP_VAR* var; SCIP_COL* col; int v; assert(pricestore != NULL); assert(pricestore->naddedbdviolvars <= pricestore->nbdviolvars); assert(set != NULL); assert(prob != NULL); assert(lp != NULL); assert(tree != NULL); assert(SCIPtreeIsFocusNodeLPConstructed(tree)); SCIPdebugMessage("adding %d variables (%d bound violated and %d priced vars) to %d LP columns\n", SCIPpricestoreGetNVars(pricestore), pricestore->nbdviolvars - pricestore->naddedbdviolvars, pricestore->nvars, SCIPlpGetNCols(lp)); /* add the variables with violated bounds to LP */ for( v = pricestore->naddedbdviolvars; v < pricestore->nbdviolvars; ++v ) { var = pricestore->bdviolvars[v]; assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN); assert(SCIPvarGetProbindex(var) >= 0); assert(var->nuses >= 2); /* at least used in pricing storage and in problem */ if( SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE ) { /* transform loose variable into column variable */ SCIP_CALL( SCIPvarColumn(var, blkmem, set, stat, prob, lp) ); } assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN); col = SCIPvarGetCol(var); assert(col != NULL); assert(col->lppos == -1); SCIPdebugMessage("adding bound violated variable <%s> (lb=%g, ub=%g)\n", SCIPvarGetName(var), pricestore->bdviolvarslb[v], pricestore->bdviolvarsub[v]); SCIP_CALL( SCIPlpAddCol(lp, set, col, SCIPtreeGetCurrentDepth(tree)) ); if( !pricestore->initiallp ) pricestore->nvarsapplied++; } pricestore->naddedbdviolvars = pricestore->nbdviolvars; /* add the selected pricing variables to LP */ for( v = 0; v < pricestore->nvars; ++v ) { var = pricestore->vars[v]; assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN); assert(SCIPvarGetProbindex(var) >= 0); assert(var->nuses >= 2); /* at least used in pricing storage and in problem */ /* transform variable into column variable, if needed */ if( SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE ) { SCIP_CALL( SCIPvarColumn(var, blkmem, set, stat, prob, lp) ); } assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN); col = SCIPvarGetCol(var); assert(col != NULL); assert(col->lppos == -1); SCIPdebugMessage("adding priced variable <%s> (score=%g)\n", SCIPvarGetName(var), pricestore->scores[v]); SCIP_CALL( SCIPlpAddCol(lp, set, col, SCIPtreeGetCurrentDepth(tree)) ); /* release the variable */ SCIP_CALL( SCIPvarRelease(&pricestore->vars[v], blkmem, set, eventqueue, lp) ); if( !pricestore->initiallp ) pricestore->nvarsapplied++; } /* clear the pricing storage */ pricestore->nvars = 0; return SCIP_OKAY; }
/** generates the direction of the shooting ray as the average of the extreme rays of the basic cone */ static SCIP_RETCODE generateAverageRay( SCIP* scip, /**< SCIP data structure */ SCIP_Real* raydirection, /**< shooting ray */ SCIP_VAR** subspacevars, /**< pointer to fractional space variables */ int nsubspacevars, /**< dimension of fractional space */ SCIP_Bool weighted /**< should the rays be weighted? */ ) { SCIP_ROW** rows; SCIP_Real** tableaurows; SCIP_Real* rownorm; SCIP_Real rowweight; int nrows; int i; int j; assert(scip != NULL); assert(raydirection != NULL); assert(subspacevars != NULL); /* get data */ SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); /* allocate memory */ SCIP_CALL( SCIPallocBufferArray(scip, &tableaurows, nsubspacevars) ); for( j = nsubspacevars - 1; j >= 0; --j ) { /*lint --e{866}*/ SCIP_CALL( SCIPallocBufferArray(scip, &tableaurows[j], nrows) ); } SCIP_CALL( SCIPallocBufferArray(scip, &rownorm, nrows) ); for( i = nrows - 1; i >= 0; --i ) rownorm[i] = 0; /* get the relevant columns of the simplex tableau */ for( j = nsubspacevars-1; j >= 0; --j ) { assert(SCIPcolGetLPPos(SCIPvarGetCol(subspacevars[j])) >= 0); SCIP_CALL( SCIPgetLPBInvACol(scip, SCIPcolGetLPPos(SCIPvarGetCol(subspacevars[j])), tableaurows[j]) ); for( i = nrows - 1; i >= 0; --i ) rownorm[i] += tableaurows[j][i] * tableaurows[j][i]; } /* take average over all rows of the tableau */ for( i = nrows - 1; i >= 0; --i ) { if( SCIPisFeasZero(scip, rownorm[i]) ) continue; else rownorm[i] = SQRT(rownorm[i]); rowweight = 0.0; if( weighted ) { rowweight = SCIProwGetDualsol(rows[i]); if( SCIPisFeasZero(scip, rowweight) ) continue; } else rowweight = 1.0; for( j = nsubspacevars - 1; j >= 0; --j ) { raydirection[j] += tableaurows[j][i] / (rownorm[i] * rowweight); assert(SCIP_REAL_MIN <= raydirection[j] && raydirection[j] <= SCIP_REAL_MAX); } } /* free memory */ SCIPfreeBufferArray(scip, &rownorm); for( j = nsubspacevars - 1; j >= 0; --j ) { SCIPfreeBufferArray(scip, &tableaurows[j]); } SCIPfreeBufferArray(scip, &tableaurows); return SCIP_OKAY; }