Esempio n. 1
0
/*
 * Low-level block read/write IO operations.
 */
static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
                               int npages, bool is_read)
{
    struct bio *bio;

    bio = f2fs_bio_alloc(npages);

    bio->bi_bdev = sbi->sb->s_bdev;
    bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
    bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
    bio->bi_private = is_read ? NULL : sbi;

    return bio;
}
Esempio n. 2
0
/*
 * This function was originally taken from fs/mpage.c, and customized for f2fs.
 * Major change was from block_size == page_size in f2fs by default.
 */
static int f2fs_mpage_readpages(struct address_space *mapping,
                                struct list_head *pages, struct page *page,
                                unsigned nr_pages)
{
    struct bio *bio = NULL;
    unsigned page_idx;
    sector_t last_block_in_bio = 0;
    struct inode *inode = mapping->host;
    const unsigned blkbits = inode->i_blkbits;
    const unsigned blocksize = 1 << blkbits;
    sector_t block_in_file;
    sector_t last_block;
    sector_t last_block_in_file;
    sector_t block_nr;
    struct block_device *bdev = inode->i_sb->s_bdev;
    struct f2fs_map_blocks map;

    map.m_pblk = 0;
    map.m_lblk = 0;
    map.m_len = 0;
    map.m_flags = 0;

    for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {

        prefetchw(&page->flags);
        if (pages) {
            page = list_entry(pages->prev, struct page, lru);
            list_del(&page->lru);
            if (add_to_page_cache_lru(page, mapping,
                                      page->index, GFP_KERNEL))
                goto next_page;
        }

        block_in_file = (sector_t)page->index;
        last_block = block_in_file + nr_pages;
        last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
                             blkbits;
        if (last_block > last_block_in_file)
            last_block = last_block_in_file;

        /*
         * Map blocks using the previous result first.
         */
        if ((map.m_flags & F2FS_MAP_MAPPED) &&
                block_in_file > map.m_lblk &&
                block_in_file < (map.m_lblk + map.m_len))
            goto got_it;

        /*
         * Then do more f2fs_map_blocks() calls until we are
         * done with this page.
         */
        map.m_flags = 0;

        if (block_in_file < last_block) {
            map.m_lblk = block_in_file;
            map.m_len = last_block - block_in_file;

            if (f2fs_map_blocks(inode, &map, 0, false))
                goto set_error_page;
        }
got_it:
        if ((map.m_flags & F2FS_MAP_MAPPED)) {
            block_nr = map.m_pblk + block_in_file - map.m_lblk;
            SetPageMappedToDisk(page);

            if (!PageUptodate(page) && !cleancache_get_page(page)) {
                SetPageUptodate(page);
                goto confused;
            }
        } else {
            zero_user_segment(page, 0, PAGE_CACHE_SIZE);
            SetPageUptodate(page);
            unlock_page(page);
            goto next_page;
        }

        /*
         * This page will go to BIO.  Do we need to send this
         * BIO off first?
         */
        if (bio && (last_block_in_bio != block_nr - 1)) {
submit_and_realloc:
            submit_bio(READ, bio);
            bio = NULL;
        }
        if (bio == NULL) {
            struct f2fs_crypto_ctx *ctx = NULL;

            if (f2fs_encrypted_inode(inode) &&
                    S_ISREG(inode->i_mode)) {
                struct page *cpage;

                ctx = f2fs_get_crypto_ctx(inode);
                if (IS_ERR(ctx))
                    goto set_error_page;

                /* wait the page to be moved by cleaning */
                cpage = find_lock_page(
                            META_MAPPING(F2FS_I_SB(inode)),
                            block_nr);
                if (cpage) {
                    f2fs_wait_on_page_writeback(cpage,
                                                DATA);
                    f2fs_put_page(cpage, 1);
                }
            }

            bio = bio_alloc(GFP_KERNEL,
                            min_t(int, nr_pages, BIO_MAX_PAGES));
            if (!bio) {
                if (ctx)
                    f2fs_release_crypto_ctx(ctx);
                goto set_error_page;
            }
            bio->bi_bdev = bdev;
            bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
            bio->bi_end_io = f2fs_read_end_io;
            bio->bi_private = ctx;
        }

        if (bio_add_page(bio, page, blocksize, 0) < blocksize)
            goto submit_and_realloc;

        last_block_in_bio = block_nr;
        goto next_page;
set_error_page:
        SetPageError(page);
        zero_user_segment(page, 0, PAGE_CACHE_SIZE);
        unlock_page(page);
        goto next_page;
confused:
        if (bio) {
            submit_bio(READ, bio);
            bio = NULL;
        }
        unlock_page(page);
next_page:
        if (pages)
            page_cache_release(page);
    }
    BUG_ON(pages && !list_empty(pages));
    if (bio)
        submit_bio(READ, bio);
    return 0;
}
Esempio n. 3
0
File: inode.c Progetto: Lyude/linux
static int do_read_inode(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct f2fs_inode_info *fi = F2FS_I(inode);
	struct page *node_page;
	struct f2fs_inode *ri;
	projid_t i_projid;
	int err;

	/* Check if ino is within scope */
	if (f2fs_check_nid_range(sbi, inode->i_ino))
		return -EINVAL;

	node_page = f2fs_get_node_page(sbi, inode->i_ino);
	if (IS_ERR(node_page))
		return PTR_ERR(node_page);

	ri = F2FS_INODE(node_page);

	inode->i_mode = le16_to_cpu(ri->i_mode);
	i_uid_write(inode, le32_to_cpu(ri->i_uid));
	i_gid_write(inode, le32_to_cpu(ri->i_gid));
	set_nlink(inode, le32_to_cpu(ri->i_links));
	inode->i_size = le64_to_cpu(ri->i_size);
	inode->i_blocks = SECTOR_FROM_BLOCK(le64_to_cpu(ri->i_blocks) - 1);

	inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
	inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
	inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
	inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
	inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
	inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
	inode->i_generation = le32_to_cpu(ri->i_generation);
	if (S_ISDIR(inode->i_mode))
		fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
	else if (S_ISREG(inode->i_mode))
		fi->i_gc_failures[GC_FAILURE_PIN] =
					le16_to_cpu(ri->i_gc_failures);
	fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
	fi->i_flags = le32_to_cpu(ri->i_flags);
	fi->flags = 0;
	fi->i_advise = ri->i_advise;
	fi->i_pino = le32_to_cpu(ri->i_pino);
	fi->i_dir_level = ri->i_dir_level;

	if (f2fs_init_extent_tree(inode, &ri->i_ext))
		set_page_dirty(node_page);

	get_inline_info(inode, ri);

	fi->i_extra_isize = f2fs_has_extra_attr(inode) ?
					le16_to_cpu(ri->i_extra_isize) : 0;

	if (f2fs_sb_has_flexible_inline_xattr(sbi->sb)) {
		fi->i_inline_xattr_size = le16_to_cpu(ri->i_inline_xattr_size);
	} else if (f2fs_has_inline_xattr(inode) ||
				f2fs_has_inline_dentry(inode)) {
		fi->i_inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
	} else {

		/*
		 * Previous inline data or directory always reserved 200 bytes
		 * in inode layout, even if inline_xattr is disabled. In order
		 * to keep inline_dentry's structure for backward compatibility,
		 * we get the space back only from inline_data.
		 */
		fi->i_inline_xattr_size = 0;
	}

	if (!sanity_check_inode(inode, node_page)) {
		f2fs_put_page(node_page, 1);
		return -EINVAL;
	}

	/* check data exist */
	if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
		__recover_inline_status(inode, node_page);

	/* get rdev by using inline_info */
	__get_inode_rdev(inode, ri);

	if (S_ISREG(inode->i_mode)) {
		err = __written_first_block(sbi, ri);
		if (err < 0) {
			f2fs_put_page(node_page, 1);
			return err;
		}
		if (!err)
			set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
	}

	if (!f2fs_need_inode_block_update(sbi, inode->i_ino))
		fi->last_disk_size = inode->i_size;

	if (fi->i_flags & F2FS_PROJINHERIT_FL)
		set_inode_flag(inode, FI_PROJ_INHERIT);

	if (f2fs_has_extra_attr(inode) && f2fs_sb_has_project_quota(sbi->sb) &&
			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
		i_projid = (projid_t)le32_to_cpu(ri->i_projid);
	else
		i_projid = F2FS_DEF_PROJID;
	fi->i_projid = make_kprojid(&init_user_ns, i_projid);

	if (f2fs_has_extra_attr(inode) && f2fs_sb_has_inode_crtime(sbi->sb) &&
			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
		fi->i_crtime.tv_sec = le64_to_cpu(ri->i_crtime);
		fi->i_crtime.tv_nsec = le32_to_cpu(ri->i_crtime_nsec);
	}

	F2FS_I(inode)->i_disk_time[0] = inode->i_atime;
	F2FS_I(inode)->i_disk_time[1] = inode->i_ctime;
	F2FS_I(inode)->i_disk_time[2] = inode->i_mtime;
	F2FS_I(inode)->i_disk_time[3] = F2FS_I(inode)->i_crtime;
	f2fs_put_page(node_page, 1);

	stat_inc_inline_xattr(inode);
	stat_inc_inline_inode(inode);
	stat_inc_inline_dir(inode);

	return 0;
}