Esempio n. 1
0
void EVENT_CHANGE_LED_state (void) {
  // NUM LOCK
  if (current_LED_state & _BV(HIDKEYBOARD_LEDBIT_NUM_LOCK))	SET_HIGH(LED_NUMLOCK);
  else								SET_LOW(LED_NUMLOCK);

  // CAPS LOCK
  if (current_LED_state & _BV(HIDKEYBOARD_LEDBIT_CAPS_LOCK))	SET_HIGH(LED_CAPSLOCK);
  else								SET_LOW(LED_CAPSLOCK);

  // SCROLL LOCK
  if (current_LED_state & _BV(HIDKEYBOARD_LEDBIT_SCROLL_LOCK))	SET_HIGH(LED_SCROLLLOCK);
  else								SET_LOW(LED_SCROLLLOCK);
}
int main(void){
	// The following four lines are due to my laziness about breadboard.
	SET_OUTPUT(DDRD,3); // +5v
	SET_HIGH(PORTD,3);  // +5V
	SET_OUTPUT(DDRD,4); // GND
	SET_LOW(PORTD,4);   // GND

	// Initial values of channels.
	channels[0]=25;
	channels[1]=75;
	channels[2]=125;
	channels[3]=175;
	channels[4]=225;

	// Set to taste. Start with 0 initially.
	pulse_fine_tune=30;

	// Start.
	init_transmission();
	while(1){
		// Changing channels
		channels[0]++;
		_delay_ms(100);
	}

	return 0;
}
Esempio n. 3
0
// ElTorito - Terminate disk emu
void
cdemu_134b(struct bregs *regs)
{
    // FIXME ElTorito Hardcoded
    SET_INT13ET(regs, size, 0x13);
    SET_INT13ET(regs, media, GET_LOW(CDEmu.media));
    SET_INT13ET(regs, emulated_drive, GET_LOW(CDEmu.emulated_extdrive));
    struct drive_s *drive_gf = GET_LOW(CDEmu.emulated_drive_gf);
    u8 cntl_id = 0;
    if (drive_gf)
        cntl_id = GET_GLOBALFLAT(drive_gf->cntl_id);
    SET_INT13ET(regs, controller_index, cntl_id / 2);
    SET_INT13ET(regs, device_spec, cntl_id % 2);
    SET_INT13ET(regs, ilba, GET_LOW(CDEmu.ilba));
    SET_INT13ET(regs, buffer_segment, GET_LOW(CDEmu.buffer_segment));
    SET_INT13ET(regs, load_segment, GET_LOW(CDEmu.load_segment));
    SET_INT13ET(regs, sector_count, GET_LOW(CDEmu.sector_count));
    SET_INT13ET(regs, cylinders, GET_LOW(CDEmu.lchs.cylinders));
    SET_INT13ET(regs, sectors, GET_LOW(CDEmu.lchs.spt));
    SET_INT13ET(regs, heads, GET_LOW(CDEmu.lchs.heads));

    // If we have to terminate emulation
    if (regs->al == 0x00) {
        // FIXME ElTorito Various. Should be handled accordingly to spec
        SET_LOW(CDEmu.active, 0x00); // bye bye

        // XXX - update floppy/hd count.
    }

    disk_ret(regs, DISK_RET_SUCCESS);
}
Esempio n. 4
0
void ds18b20_write_bit(uint8_t bit){
	// synchronize
	SET_OUTPUT(DS18B20_DDR, DS18B20_DQ);
	SET_LOW(DS18B20_PORT, DS18B20_DQ);
	DS18B20_PRECISE_DELAY(2);

	// put bit
	if(bit){
		SET_HIGH(DS18B20_PORT, DS18B20_DQ);
	}
	DS18B20_PRECISE_DELAY(60);

	// release line
	SET_INPUT(DS18B20_DDR, DS18B20_DQ);
	SET_LOW(DS18B20_PORT, DS18B20_DQ);
	DS18B20_PRECISE_DELAY(2);
}
Esempio n. 5
0
void set_led (uint8_t ebene)
{
	uint8_t offset = ebene*9;
	uint8_t i =0;
	for (i =0; i<255;i++)
	{
		if (led_values[0+offset]>i)
			{SET_HIGH(LED1);}
		else{SET_LOW(LED1);}

		if (led_values[1+offset]>i)
			{SET_HIGH(LED2);}
		else{SET_LOW(LED2);}
		
		if (led_values[2+offset]>i)
			{SET_HIGH(LED3);}
		else{SET_LOW(LED3);}

		if (led_values[3+offset]>i)
			{SET_HIGH(LED4);}
		else{SET_LOW(LED4);}

		if (led_values[4+offset]>i)
			{SET_HIGH(LED5);}
		else{SET_LOW(LED5);}

		if (led_values[5+offset]>i)
			{SET_HIGH(LED6);}
		else{SET_LOW(LED6);}
		
		if (led_values[6+offset]>i)
			{SET_HIGH(LED7);}
		else{SET_LOW(LED7);}
		
		if (led_values[7+offset]>i)
			{SET_HIGH(LED8);}
		else{SET_LOW(LED8);}
		
		if (led_values[8+offset]>i)
			{SET_HIGH(LED9);}
		else{SET_LOW(LED9);}
		
	//	__asm("nop");__asm("nop");__asm("nop");
	//	__asm("nop");__asm("nop");__asm("nop");
	}
}
Esempio n. 6
0
// lock
static void
disk_134500(struct bregs *regs, struct drive_s *drive_gf)
{
    int cdid = regs->dl - EXTSTART_CD;
    u8 locks = GET_LOW(CDRom_locks[cdid]);
    if (locks == 0xff) {
        regs->al = 1;
        disk_ret(regs, DISK_RET_ETOOMANYLOCKS);
        return;
    }
    SET_LOW(CDRom_locks[cdid], locks + 1);
    regs->al = 1;
    disk_ret(regs, DISK_RET_SUCCESS);
}
Esempio n. 7
0
// ElTorito - Terminate disk emu
static void
cdemu_134b(struct bregs *regs)
{
    memcpy_far(regs->ds, (void*)(regs->si+0), SEG_LOW, &CDEmu, sizeof(CDEmu));

    // If we have to terminate emulation
    if (regs->al == 0x00) {
        // FIXME ElTorito Various. Should be handled accordingly to spec
        SET_LOW(CDEmu.media, 0x00); // bye bye

        // XXX - update floppy/hd count.
    }

    disk_ret(regs, DISK_RET_SUCCESS);
}
Esempio n. 8
0
// unlock
static void
disk_134501(struct bregs *regs, struct drive_s *drive_gf)
{
    int cdid = regs->dl - EXTSTART_CD;
    u8 locks = GET_LOW(CDRom_locks[cdid]);
    if (locks == 0x00) {
        regs->al = 0;
        disk_ret(regs, DISK_RET_ENOTLOCKED);
        return;
    }
    locks--;
    SET_LOW(CDRom_locks[cdid], locks);
    regs->al = (locks ? 1 : 0);
    disk_ret(regs, DISK_RET_SUCCESS);
}
Esempio n. 9
0
uint8_t ds18b20_read_bit(){
	// synchronize
	SET_LOW(DS18B20_PORT, DS18B20_DQ);
	SET_OUTPUT(DS18B20_DDR, DS18B20_DQ);
	DS18B20_PRECISE_DELAY(2);

	// wait until thermometer puts bit
	SET_INPUT(DS18B20_DDR, DS18B20_DQ);
	DS18B20_PRECISE_DELAY(5);

	// read it
	uint8_t ret=IS_HIGH(DS18B20_PIN, DS18B20_DQ);
	DS18B20_PRECISE_DELAY(60);

	return ret;
}
Esempio n. 10
0
uint8_t ds18b20_reset(){
	// reset pulse
	SET_LOW(DS18B20_PORT, DS18B20_DQ);
	SET_OUTPUT(DS18B20_DDR,DS18B20_DQ);
	DS18B20_PRECISE_DELAY(480);

	// presence pulse
	SET_INPUT(DS18B20_DDR, DS18B20_DQ);
	DS18B20_PRECISE_DELAY(100);
	if(IS_HIGH(DS18B20_PIN, DS18B20_DQ)){
		return 0; // not present
	}
	DS18B20_PRECISE_DELAY(380);
	if(IS_LOW(DS18B20_PIN, DS18B20_DQ)){
		return 0; // not present
	}

	return 1;
}
Esempio n. 11
0
void main(void)
{
    WD_STOP();
    CAL_CLOCK();
    
//    TimerAInit();
    HardwareInit();
    I2cInit(0x02, 0x00);
    _EINT();
    
    while (1)
    {
        //LPM0;
        //_NOP();
        if (GetWriteEndpoint(0))
            SET_LOW(RED_LED);
        else
            SET_HIGH(RED_LED);
        
        SetReadEndpoint(0, READ_IN(LP_SWITCH));
    }
}
Esempio n. 12
0
void write_cube(uint8_t ebene)
{
	switch (ebene)
	{
		case 0:
			SET_LOW(TOP);SET_LOW(MIDDLE);SET_HIGH(LOW);
			break;
		case 1: 
			SET_LOW(TOP);SET_HIGH(MIDDLE);SET_LOW(LOW); 
			break;
		case 2: 
			SET_HIGH(TOP);SET_LOW(MIDDLE);SET_LOW(LOW);
			break;
		default:return;
	}
	set_led(ebene);
	//sleep_us(4);
	//SET_LOW(TOP);SET_LOW(MIDDLE);SET_LOW(LOW);
}
Esempio n. 13
0
// Process USB keyboard data.
static void
handle_key(struct keyevent *data)
{
    dprintf(9, "Got key %x %x\n", data->modifiers, data->keys[0]);

    // Load old keys.
    struct usbkeyinfo old;
    old.data = GET_LOW(LastUSBkey.data);

    // Check for keys no longer pressed.
    int addpos = 0;
    int i;
    for (i=0; i<ARRAY_SIZE(old.keys); i++) {
        u8 key = old.keys[i];
        if (!key)
            break;
        int j;
        for (j=0;; j++) {
            if (j>=ARRAY_SIZE(data->keys)) {
                // Key released.
                procscankey(key, RELEASEBIT, data->modifiers);
                if (i+1 >= ARRAY_SIZE(old.keys) || !old.keys[i+1])
                    // Last pressed key released - disable repeat.
                    old.repeatcount = 0xff;
                break;
            }
            if (data->keys[j] == key) {
                // Key still pressed.
                data->keys[j] = 0;
                old.keys[addpos++] = key;
                break;
            }
        }
    }
    procmodkey(old.modifiers & ~data->modifiers, RELEASEBIT);

    // Process new keys
    procmodkey(data->modifiers & ~old.modifiers, 0);
    old.modifiers = data->modifiers;
    for (i=0; i<ARRAY_SIZE(data->keys); i++) {
        u8 key = data->keys[i];
        if (!key)
            continue;
        // New key pressed.
        procscankey(key, 0, data->modifiers);
        old.keys[addpos++] = key;
        old.repeatcount = KEYREPEATWAITMS / KEYREPEATMS + 1;
    }
    if (addpos < ARRAY_SIZE(old.keys))
        old.keys[addpos] = 0;

    // Check for key repeat event.
    if (addpos) {
        if (!old.repeatcount)
            procscankey(old.keys[addpos-1], 0, data->modifiers);
        else if (old.repeatcount != 0xff)
            old.repeatcount--;
    }

    // Update old keys
    SET_LOW(LastUSBkey.data, old.data);
}
Esempio n. 14
0
static void smc91c111_writeb(void *opaque, hwaddr offset,
                             uint32_t value)
{
    smc91c111_state *s = (smc91c111_state *)opaque;

    if (offset == 14) {
        s->bank = value;
        return;
    }
    if (offset == 15)
        return;
    switch (s->bank) {
    case 0:
        switch (offset) {
        case 0: /* TCR */
            SET_LOW(tcr, value);
            return;
        case 1:
            SET_HIGH(tcr, value);
            return;
        case 4: /* RCR */
            SET_LOW(rcr, value);
            return;
        case 5:
            SET_HIGH(rcr, value);
            if (s->rcr & RCR_SOFT_RST)
                smc91c111_reset(s);
            return;
        case 10: case 11: /* RPCR */
            /* Ignored */
            return;
        }
        break;

    case 1:
        switch (offset) {
        case 0: /* CONFIG */
            SET_LOW(cr, value);
            return;
        case 1:
            SET_HIGH(cr,value);
            return;
        case 2: case 3: /* BASE */
        case 4: case 5: case 6: case 7: case 8: case 9: /* IA */
            /* Not implemented.  */
            return;
        case 10: /* Genral Purpose */
            SET_LOW(gpr, value);
            return;
        case 11:
            SET_HIGH(gpr, value);
            return;
        case 12: /* Control */
            if (value & 1)
                fprintf(stderr, "smc91c111:EEPROM store not implemented\n");
            if (value & 2)
                fprintf(stderr, "smc91c111:EEPROM reload not implemented\n");
            value &= ~3;
            SET_LOW(ctr, value);
            return;
        case 13:
            SET_HIGH(ctr, value);
            return;
        }
        break;

    case 2:
        switch (offset) {
        case 0: /* MMU Command */
            switch (value >> 5) {
            case 0: /* no-op */
                break;
            case 1: /* Allocate for TX.  */
                s->tx_alloc = 0x80;
                s->int_level &= ~INT_ALLOC;
                smc91c111_update(s);
                smc91c111_tx_alloc(s);
                break;
            case 2: /* Reset MMU.  */
                s->allocated = 0;
                s->tx_fifo_len = 0;
                s->tx_fifo_done_len = 0;
                s->rx_fifo_len = 0;
                s->tx_alloc = 0;
                break;
            case 3: /* Remove from RX FIFO.  */
                smc91c111_pop_rx_fifo(s);
                break;
            case 4: /* Remove from RX FIFO and release.  */
                if (s->rx_fifo_len > 0) {
                    smc91c111_release_packet(s, s->rx_fifo[0]);
                }
                smc91c111_pop_rx_fifo(s);
                break;
            case 5: /* Release.  */
                smc91c111_release_packet(s, s->packet_num);
                break;
            case 6: /* Add to TX FIFO.  */
                smc91c111_queue_tx(s, s->packet_num);
                break;
            case 7: /* Reset TX FIFO.  */
                s->tx_fifo_len = 0;
                s->tx_fifo_done_len = 0;
                break;
            }
            return;
        case 1:
            /* Ignore.  */
            return;
        case 2: /* Packet Number Register */
            s->packet_num = value;
            return;
        case 3: case 4: case 5:
            /* Should be readonly, but linux writes to them anyway. Ignore.  */
            return;
        case 6: /* Pointer */
            SET_LOW(ptr, value);
            return;
        case 7:
            SET_HIGH(ptr, value);
            return;
        case 8: case 9: case 10: case 11: /* Data */
            {
                int p;
                int n;

                if (s->ptr & 0x8000)
                    n = s->rx_fifo[0];
                else
                    n = s->packet_num;
                p = s->ptr & 0x07ff;
                if (s->ptr & 0x4000) {
                    s->ptr = (s->ptr & 0xf800) | ((s->ptr + 1) & 0x7ff);
                } else {
                    p += (offset & 3);
                }
                s->data[n][p] = value;
            }
            return;
        case 12: /* Interrupt ACK.  */
            s->int_level &= ~(value & 0xd6);
            if (value & INT_TX)
                smc91c111_pop_tx_fifo_done(s);
            smc91c111_update(s);
            return;
        case 13: /* Interrupt mask.  */
            s->int_mask = value;
            smc91c111_update(s);
            return;
        }
        break;;

    case 3:
        switch (offset) {
        case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7:
            /* Multicast table.  */
            /* Not implemented.  */
            return;
        case 8: case 9: /* Management Interface.  */
            /* Not implemented.  */
            return;
        case 12: /* Early receive.  */
            s->ercv = value & 0x1f;
        case 13:
            /* Ignore.  */
            return;
        }
        break;
    }
    hw_error("smc91c111_write: Bad reg %d:%x\n", s->bank, (int)offset);
}
Esempio n. 15
0
/* Effects marked with 'special' are handled specifically in itrender.c */
void _dumb_it_xm_convert_effect(int effect, int value, IT_ENTRY *entry)
{
const int log = 0;

	if ((!effect && !value) || (effect >= XM_N_EFFECTS))
		return;

if (log) printf("%c%02X", (effect<10)?('0'+effect):('A'+effect-10), value);

	/* Linearisation of the effect number... */
	if (effect == XM_E) {
		effect = EBASE + HIGH(value);
		value = LOW(value);
	} else if (effect == XM_X) {
		effect = XBASE + HIGH(value);
		value = LOW(value);
	}

if (log) printf(" - %2d %02X", effect, value);

#if 0 // This should be handled in itrender.c!
	/* update effect memory */
	switch (xm_has_memory[effect]) {
		case 1:
			if (!value)
				value = memory[entry->channel][effect];
			else
				memory[entry->channel][effect] = value;
			break;

		case 2:
			if (!HIGH(value))
				SET_HIGH(value, HIGH(memory[entry->channel][effect]));
			else
				SET_HIGH(memory[entry->channel][effect], HIGH(value));

			if (!LOW(value))
				SET_LOW(value, LOW(memory[entry->channel][effect]));
			else
				SET_LOW(memory[entry->channel][effect], LOW(value));
			break;
	}
#endif

	/* convert effect */
	entry->mask |= IT_ENTRY_EFFECT;
	switch (effect) {

		case XM_APPREGIO:           effect = IT_ARPEGGIO;           break;
		case XM_VIBRATO:            effect = IT_VIBRATO;            break;
		case XM_TONE_PORTAMENTO:    effect = IT_TONE_PORTAMENTO;    break; /** TODO: glissando control */
		case XM_TREMOLO:            effect = IT_TREMOLO;            break;
		case XM_SET_PANNING:        effect = IT_SET_PANNING;        break;
		case XM_SAMPLE_OFFSET:      effect = IT_SET_SAMPLE_OFFSET;  break;
		case XM_POSITION_JUMP:      effect = IT_JUMP_TO_ORDER;      break;
		case XM_MULTI_RETRIG:       effect = IT_RETRIGGER_NOTE;     break;
		case XM_TREMOR:             effect = IT_TREMOR;             break;
		case XM_PORTAMENTO_UP:      effect = IT_XM_PORTAMENTO_UP;   break;
		case XM_PORTAMENTO_DOWN:    effect = IT_XM_PORTAMENTO_DOWN; break;
		case XM_SET_CHANNEL_VOLUME: effect = IT_SET_CHANNEL_VOLUME; break; /* special */
		case XM_VOLSLIDE_TONEPORTA: effect = IT_VOLSLIDE_TONEPORTA; break; /* special */
		case XM_VOLSLIDE_VIBRATO:   effect = IT_VOLSLIDE_VIBRATO;   break; /* special */

		case XM_PATTERN_BREAK:
			effect = IT_BREAK_TO_ROW;
			value = BCD_TO_NORMAL(value);
			break;

		case XM_VOLUME_SLIDE: /* special */
			effect = IT_VOLUME_SLIDE;
			value = HIGH(value) ? EFFECT_VALUE(HIGH(value), 0) : EFFECT_VALUE(0, LOW(value));
			break;

		case XM_PANNING_SLIDE:
			effect = IT_PANNING_SLIDE;
			value = HIGH(value) ? EFFECT_VALUE(HIGH(value), 0) : EFFECT_VALUE(0, LOW(value));
			//value = HIGH(value) ? EFFECT_VALUE(0, HIGH(value)) : EFFECT_VALUE(LOW(value), 0);
			break;

		case XM_GLOBAL_VOLUME_SLIDE: /* special */
			effect = IT_GLOBAL_VOLUME_SLIDE;
			value = HIGH(value) ? EFFECT_VALUE(HIGH(value), 0) : EFFECT_VALUE(0, LOW(value));
			break;

		case XM_SET_TEMPO_BPM:
			effect = (value < 0x20) ? (IT_SET_SPEED) : (IT_SET_SONG_TEMPO);
			break;

		case XM_SET_GLOBAL_VOLUME:
			effect = IT_SET_GLOBAL_VOLUME;
			value *= 2;
			break;

		case XM_KEY_OFF:
			effect = IT_XM_KEY_OFF;
			break;

		case XM_SET_ENVELOPE_POSITION:
			effect = IT_XM_SET_ENVELOPE_POSITION;
			break;

		case EBASE+XM_E_SET_FILTER:            effect = SBASE+IT_S_SET_FILTER;            break;
		case EBASE+XM_E_SET_GLISSANDO_CONTROL: effect = SBASE+IT_S_SET_GLISSANDO_CONTROL; break; /** TODO */
		case EBASE+XM_E_SET_FINETUNE:          effect = SBASE+IT_S_FINETUNE;              break; /** TODO */
		case EBASE+XM_E_SET_LOOP:              effect = SBASE+IT_S_PATTERN_LOOP;          break;
		case EBASE+XM_E_NOTE_CUT:              effect = SBASE+IT_S_DELAYED_NOTE_CUT;      break;
		case EBASE+XM_E_NOTE_DELAY:            effect = SBASE+IT_S_NOTE_DELAY;            break;
		case EBASE+XM_E_PATTERN_DELAY:         effect = SBASE+IT_S_PATTERN_DELAY;         break;
		case EBASE+XM_E_FINE_VOLSLIDE_UP:      effect = IT_XM_FINE_VOLSLIDE_UP;           break;
		case EBASE+XM_E_FINE_VOLSLIDE_DOWN:    effect = IT_XM_FINE_VOLSLIDE_DOWN;         break;

		case EBASE + XM_E_FINE_PORTA_UP:
			effect = IT_PORTAMENTO_UP;
			value = EFFECT_VALUE(0xF, value);
			break;

		case EBASE + XM_E_FINE_PORTA_DOWN:
			effect = IT_PORTAMENTO_DOWN;
			value = EFFECT_VALUE(0xF, value);
			break;

		case EBASE + XM_E_RETRIG_NOTE:
			effect = IT_XM_RETRIGGER_NOTE;
			value = EFFECT_VALUE(0, value);
			break;

		case EBASE + XM_E_SET_VIBRATO_CONTROL:
			effect = SBASE+IT_S_SET_VIBRATO_WAVEFORM;
			value &= ~4; /** TODO: value&4 -> don't retrig wave */
			break;

		case EBASE + XM_E_SET_TREMOLO_CONTROL:
			effect = SBASE+IT_S_SET_TREMOLO_WAVEFORM;
			value &= ~4; /** TODO: value&4 -> don't retrig wave */
			break;

		case XBASE + XM_X_EXTRAFINE_PORTA_UP:
			effect = IT_PORTAMENTO_UP;
			value = EFFECT_VALUE(0xE, value);
			break;

		case XBASE + XM_X_EXTRAFINE_PORTA_DOWN:
			effect = IT_PORTAMENTO_DOWN;
			value = EFFECT_VALUE(0xE, value);
			break;

		default:
			/* user effect (often used in demos for synchronisation) */
			entry->mask &= ~IT_ENTRY_EFFECT;
	}

if (log) printf(" - %2d %02X", effect, value);

	/* Inverse linearisation... */
	if (effect >= SBASE && effect < SBASE+16) {
		value = EFFECT_VALUE(effect-SBASE, value);
		effect = IT_S;
	}

if (log) printf(" - %c%02X\n", 'A'+effect-1, value);

	entry->effect = effect;
	entry->effectvalue = value;
}
Esempio n. 16
0
static void smc91c111_writeb(void *opaque, target_phys_addr_t offset,
                             uint32_t value)
{
    smc91c111_state *s = (smc91c111_state *)opaque;

    if (offset == 14) {
        s->bank = value;
        return;
    }
    if (offset == 15)
        return;
    switch (s->bank) {
    case 0:
        switch (offset) {
        case 0: 
            SET_LOW(tcr, value);
            return;
        case 1:
            SET_HIGH(tcr, value);
            return;
        case 4: 
            SET_LOW(rcr, value);
            return;
        case 5:
            SET_HIGH(rcr, value);
            if (s->rcr & RCR_SOFT_RST)
                smc91c111_reset(s);
            return;
        case 10: case 11: 
            
            return;
        }
        break;

    case 1:
        switch (offset) {
        case 0: 
            SET_LOW(cr, value);
            return;
        case 1:
            SET_HIGH(cr,value);
            return;
        case 2: case 3: 
        case 4: case 5: case 6: case 7: case 8: case 9: 
            
            return;
        case 10: 
            SET_LOW(gpr, value);
            return;
        case 11:
            SET_HIGH(gpr, value);
            return;
        case 12: 
            if (value & 1)
                fprintf(stderr, "smc91c111:EEPROM store not implemented\n");
            if (value & 2)
                fprintf(stderr, "smc91c111:EEPROM reload not implemented\n");
            value &= ~3;
            SET_LOW(ctr, value);
            return;
        case 13:
            SET_HIGH(ctr, value);
            return;
        }
        break;

    case 2:
        switch (offset) {
        case 0: 
            switch (value >> 5) {
            case 0: 
                break;
            case 1: 
                s->tx_alloc = 0x80;
                s->int_level &= ~INT_ALLOC;
                smc91c111_update(s);
                smc91c111_tx_alloc(s);
                break;
            case 2: 
                s->allocated = 0;
                s->tx_fifo_len = 0;
                s->tx_fifo_done_len = 0;
                s->rx_fifo_len = 0;
                s->tx_alloc = 0;
                break;
            case 3: 
                smc91c111_pop_rx_fifo(s);
                break;
            case 4: 
                if (s->rx_fifo_len > 0) {
                    smc91c111_release_packet(s, s->rx_fifo[0]);
                }
                smc91c111_pop_rx_fifo(s);
                break;
            case 5: 
                smc91c111_release_packet(s, s->packet_num);
                break;
            case 6: 
                smc91c111_queue_tx(s, s->packet_num);
                break;
            case 7: 
                s->tx_fifo_len = 0;
                s->tx_fifo_done_len = 0;
                break;
            }
            return;
        case 1:
            
            return;
        case 2: 
            s->packet_num = value;
            return;
        case 3: case 4: case 5:
            
            return;
        case 6: 
            SET_LOW(ptr, value);
            return;
        case 7:
            SET_HIGH(ptr, value);
            return;
        case 8: case 9: case 10: case 11: 
            {
                int p;
                int n;

                if (s->ptr & 0x8000)
                    n = s->rx_fifo[0];
                else
                    n = s->packet_num;
                p = s->ptr & 0x07ff;
                if (s->ptr & 0x4000) {
                    s->ptr = (s->ptr & 0xf800) | ((s->ptr + 1) & 0x7ff);
                } else {
                    p += (offset & 3);
                }
                s->data[n][p] = value;
            }
            return;
        case 12: 
            s->int_level &= ~(value & 0xd6);
            if (value & INT_TX)
                smc91c111_pop_tx_fifo_done(s);
            smc91c111_update(s);
            return;
        case 13: 
            s->int_mask = value;
            smc91c111_update(s);
            return;
        }
        break;;

    case 3:
        switch (offset) {
        case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7:
            
            
            return;
        case 8: case 9: 
            
            return;
        case 12: 
            s->ercv = value & 0x1f;
        case 13:
            
            return;
        }
        break;
    }
    hw_error("smc91c111_write: Bad reg %d:%x\n", s->bank, (int)offset);
}
Esempio n. 17
0
// IBM/MS get drive parameters
static void noinline
disk_1348(struct bregs *regs, struct drive_s *drive_gf)
{
    u16 seg = regs->ds;
    struct int13dpt_s *param_far = (struct int13dpt_s*)(regs->si+0);
    u16 size = GET_FARVAR(seg, param_far->size);
    u16 t13 = size == 74;

    // Buffer is too small
    if (size < 26) {
        disk_ret(regs, DISK_RET_EPARAM);
        return;
    }

    // EDD 1.x

    u8  type    = GET_GLOBALFLAT(drive_gf->type);
    u16 npc     = GET_GLOBALFLAT(drive_gf->pchs.cylinder);
    u16 nph     = GET_GLOBALFLAT(drive_gf->pchs.head);
    u16 nps     = GET_GLOBALFLAT(drive_gf->pchs.sector);
    u64 lba     = GET_GLOBALFLAT(drive_gf->sectors);
    u16 blksize = GET_GLOBALFLAT(drive_gf->blksize);

    dprintf(DEBUG_HDL_13, "disk_1348 size=%d t=%d chs=%d,%d,%d lba=%d bs=%d\n"
            , size, type, npc, nph, nps, (u32)lba, blksize);

    SET_FARVAR(seg, param_far->size, 26);
    if (type == DTYPE_ATA_ATAPI) {
        // 0x74 = removable, media change, lockable, max values
        SET_FARVAR(seg, param_far->infos, 0x74);
        SET_FARVAR(seg, param_far->cylinders, 0xffffffff);
        SET_FARVAR(seg, param_far->heads, 0xffffffff);
        SET_FARVAR(seg, param_far->spt, 0xffffffff);
        SET_FARVAR(seg, param_far->sector_count, (u64)-1);
    } else {
        if (lba > (u64)nps*nph*0x3fff) {
            SET_FARVAR(seg, param_far->infos, 0x00); // geometry is invalid
            SET_FARVAR(seg, param_far->cylinders, 0x3fff);
        } else {
            SET_FARVAR(seg, param_far->infos, 0x02); // geometry is valid
            SET_FARVAR(seg, param_far->cylinders, (u32)npc);
        }
        SET_FARVAR(seg, param_far->heads, (u32)nph);
        SET_FARVAR(seg, param_far->spt, (u32)nps);
        SET_FARVAR(seg, param_far->sector_count, lba);
    }
    SET_FARVAR(seg, param_far->blksize, blksize);

    if (size < 30 ||
        (type != DTYPE_ATA && type != DTYPE_ATA_ATAPI &&
         type != DTYPE_VIRTIO_BLK && type != DTYPE_VIRTIO_SCSI)) {
        disk_ret(regs, DISK_RET_SUCCESS);
        return;
    }

    // EDD 2.x

    int bdf;
    u16 iobase1 = 0;
    u64 device_path = 0;
    u8 channel = 0;
    SET_FARVAR(seg, param_far->size, 30);
    if (type == DTYPE_ATA || type == DTYPE_ATA_ATAPI) {
        SET_FARVAR(seg, param_far->dpte, SEGOFF(SEG_LOW, (u32)&DefaultDPTE));

        // Fill in dpte
        struct atadrive_s *adrive_gf = container_of(
            drive_gf, struct atadrive_s, drive);
        struct ata_channel_s *chan_gf = GET_GLOBALFLAT(adrive_gf->chan_gf);
        u8 slave = GET_GLOBALFLAT(adrive_gf->slave);
        u16 iobase2 = GET_GLOBALFLAT(chan_gf->iobase2);
        u8 irq = GET_GLOBALFLAT(chan_gf->irq);
        iobase1 = GET_GLOBALFLAT(chan_gf->iobase1);
        bdf = GET_GLOBALFLAT(chan_gf->pci_bdf);
        device_path = slave;
        channel = GET_GLOBALFLAT(chan_gf->chanid);

        u16 options = 0;
        if (type == DTYPE_ATA) {
            u8 translation = GET_GLOBALFLAT(drive_gf->translation);
            if (translation != TRANSLATION_NONE) {
                options |= 1<<3; // CHS translation
                if (translation == TRANSLATION_LBA)
                    options |= 1<<9;
                if (translation == TRANSLATION_RECHS)
                    options |= 3<<9;
            }
        } else {
            // ATAPI
            options |= 1<<5; // removable device
            options |= 1<<6; // atapi device
        }
        options |= 1<<4; // lba translation
        if (CONFIG_ATA_PIO32)
            options |= 1<<7;

        SET_LOW(DefaultDPTE.iobase1, iobase1);
        SET_LOW(DefaultDPTE.iobase2, iobase2 + ATA_CB_DC);
        SET_LOW(DefaultDPTE.prefix, ((slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0)
                                  | ATA_CB_DH_LBA));
        SET_LOW(DefaultDPTE.unused, 0xcb);
        SET_LOW(DefaultDPTE.irq, irq);
        SET_LOW(DefaultDPTE.blkcount, 1);
        SET_LOW(DefaultDPTE.dma, 0);
        SET_LOW(DefaultDPTE.pio, 0);
        SET_LOW(DefaultDPTE.options, options);
        SET_LOW(DefaultDPTE.reserved, 0);
        SET_LOW(DefaultDPTE.revision, 0x11);

        u8 sum = checksum_far(SEG_LOW, &DefaultDPTE, 15);
        SET_LOW(DefaultDPTE.checksum, -sum);
    } else {
Esempio n. 18
0
void init_io(void)
{
SET_OUTPUT(TOP);
SET_OUTPUT(MIDDLE);
SET_OUTPUT(LOW);

SET_LOW(TOP);
SET_LOW(MIDDLE);
SET_LOW(LOW);


SET_OUTPUT(LED1);
SET_OUTPUT(LED2);
SET_OUTPUT(LED3);
SET_OUTPUT(LED4);
SET_OUTPUT(LED5);
SET_OUTPUT(LED6);	
SET_OUTPUT(LED7);
SET_OUTPUT(LED8);
SET_OUTPUT(LED9);

SET_LOW(LED1);
SET_LOW(LED2);
SET_LOW(LED3);
SET_LOW(LED4);
SET_LOW(LED5);
SET_LOW(LED6);	
SET_LOW(LED7);
SET_LOW(LED8);
SET_LOW(LED9);


led_values[0]=0;
led_values[1]=0;
led_values[2]=0;
led_values[3]=0;
led_values[4]=0;
led_values[5]=0;
led_values[6]=0;
led_values[7]=0;
led_values[8]=0;

led_values[9]=85;
led_values[10]=85;
led_values[11]=85;
led_values[12]=85;
led_values[13]=85;
led_values[14]=85;
led_values[15]=85;
led_values[16]=85;
led_values[17]=85;

led_values[18]=170;
led_values[19]=170;
led_values[20]=170;
led_values[21]=85;
led_values[22]=0;
led_values[23]=85;
led_values[24]=170;
led_values[25]=170;
led_values[26]=170;
}