void OUTPUT_CHECK() { if(FILE_CHECK("update.zip")==0) { SHOW_PROGRESS(5); DISPLAY("OUTPUT_CHECK_FAILED",Language); exit(1); } else { SHOW_PROGRESS(6); DISPLAY("OUTPUT_CHECK_DONE",Language); } PAUSE(); }
void COPY_CM7_FILES() { SHOW_PROGRESS(3); if( Device.XPERIA_ARC_LT15i ) { COPY_DIC_HERE("BMSPS_DATA\\LT15i"); } if( Device.XPERIA_ARC_S_LT18i ) { COPY_DIC_HERE("BMSPS_DATA\\LT15i"); COPY_DIC_HERE("BMSPS_DATA\\LT18i"); } if( Device.XPERIA_NEO_MT15i ) { COPY_DIC_HERE("BMSPS_DATA\\MT15i"); } if( Device.XPERIA_NEO_V_MT11i ) { COPY_DIC_HERE("BMSPS_DATA\\MT15i"); COPY_DIC_HERE("BMSPS_DATA\\MT11i"); } if( Device.XPERIA_RAY_ST18i ) { COPY_DIC_HERE("BMSPS_DATA\\ST18i"); } if( Device.XPERIA_PLAY_R800i ) { COPY_DIC_HERE("BMSPS_DATA\\R800i"); } }
void SIGN_ROM() { SHOW_PROGRESS(4); SIGN("temp.zip","update.zip"); //RENAME("temp.zip","update.zip"); DELETE_FILE("temp.zip"); }
void INITIALIZE() { SHOW_PROGRESS(1); COPY_FILE_HERE("MIUI_DHD_ROM\\MIUI.zip"); /* move MIUI.zip to work dic */ RENAME("MIUI.zip","temp.zip"); _7zUNPACK("temp.zip"); DELETE_FILE("temp.zip"); }
void DELETE_DHD_FILES() { SHOW_PROGRESS(2); DELETE_DIC("META-INF"); DELETE_FILE("boot.img"); DELETE_FILE("system\\etc\\bluetooth"); DELETE_FILE("system\\etc\\dhcpcd"); DELETE_FILE("system\\etc\\firmware"); DELETE_FILE("system\\etc\\init.d"); DELETE_FILE("system\\etc\\wifi"); DELETE_FILE("system\\lib\\hw"); DELETE_FILE("system\\app\\FM.apk"); DELETE_FILE("system\\app\\Torch.apk"); DELETE_FILE("system\\app\\FM.odex"); DELETE_FILE("system\\app\\Torch.odex"); DELETE_FILE("system\\app\\PackageInstaller.odex"); COPY_FILE_HERE("system\\build.prop"); }
/* main loop */ static int run_grd(CRF_ENG_PTR crf_ptr) { int r,iterate,old_valid,converged,conv_time,saved = 0; double likelihood,old_likelihood = 0.0; double crf_max_iterate = 0.0; double tmp_epsilon,alpha0,gf_sd,old_gf_sd = 0.0; config_crf(crf_ptr); initialize_weights(); if (crf_learn_mode == 1) { initialize_LBFGS(); printf("L-BFGS mode\n"); } if (crf_learning_rate==1) { printf("learning rate:annealing\n"); } else if (crf_learning_rate==2) { printf("learning rate:backtrack\n"); } else if (crf_learning_rate==3) { printf("learning rate:golden section\n"); } if (max_iterate == -1) { crf_max_iterate = DEFAULT_MAX_ITERATE; } else if (max_iterate >= +1) { crf_max_iterate = max_iterate; } for (r = 0; r < num_restart; r++) { SHOW_PROGRESS_HEAD("#crf-iters", r); initialize_crf_count(); initialize_lambdas(); initialize_visited_flags(); old_valid = 0; iterate = 0; tmp_epsilon = crf_epsilon; LBFGS_index = 0; conv_time = 0; while (1) { if (CTRLC_PRESSED) { SHOW_PROGRESS_INTR(); RET_ERR(err_ctrl_c_pressed); } RET_ON_ERR(crf_ptr->compute_feature()); crf_ptr->compute_crf_probs(); likelihood = crf_ptr->compute_likelihood(); if (verb_em) { prism_printf("Iteration #%d:\tlog_likelihood=%.9f\n", iterate, likelihood); } if (debug_level) { prism_printf("After I-step[%d]:\n", iterate); prism_printf("likelihood = %.9f\n", likelihood); print_egraph(debug_level, PRINT_EM); } if (!isfinite(likelihood)) { emit_internal_error("invalid log likelihood: %s (at iteration #%d)", isnan(likelihood) ? "NaN" : "infinity", iterate); RET_ERR(ierr_invalid_likelihood); } /* if (old_valid && old_likelihood - likelihood > prism_epsilon) { emit_error("log likelihood decreased [old: %.9f, new: %.9f] (at iteration #%d)", old_likelihood, likelihood, iterate); RET_ERR(err_invalid_likelihood); }*/ if (likelihood > 0.0) { emit_error("log likelihood greater than zero [value: %.9f] (at iteration #%d)", likelihood, iterate); RET_ERR(err_invalid_likelihood); } if (crf_learn_mode == 1 && iterate > 0) restore_old_gradient(); RET_ON_ERR(crf_ptr->compute_gradient()); if (crf_learn_mode == 1 && iterate > 0) { compute_LBFGS_y_rho(); compute_hessian(iterate); } else if (crf_learn_mode == 1 && iterate == 0) { initialize_LBFGS_q(); } converged = (old_valid && fabs(likelihood - old_likelihood) <= prism_epsilon); if (converged || REACHED_MAX_ITERATE(iterate)) { break; } old_likelihood = likelihood; old_valid = 1; if (debug_level) { prism_printf("After O-step[%d]:\n", iterate); print_egraph(debug_level, PRINT_EM); } SHOW_PROGRESS(iterate); if (crf_learning_rate == 1) { // annealing tmp_epsilon = (annealing_weight / (annealing_weight + iterate)) * crf_epsilon; } else if (crf_learning_rate == 2) { // line-search(backtrack) if (crf_learn_mode == 1) { gf_sd = compute_gf_sd_LBFGS(); } else { gf_sd = compute_gf_sd(); } if (iterate==0) { alpha0 = 1; } else { alpha0 = tmp_epsilon * old_gf_sd / gf_sd; } if (crf_learn_mode == 1) { tmp_epsilon = line_search_LBFGS(crf_ptr,alpha0,crf_ls_rho,crf_ls_c1,likelihood,gf_sd); } else { tmp_epsilon = line_search(crf_ptr,alpha0,crf_ls_rho,crf_ls_c1,likelihood,gf_sd); } if (tmp_epsilon < EPS) { emit_error("invalid alpha in line search(=0.0) (at iteration #%d)",iterate); RET_ERR(err_line_search); } old_gf_sd = gf_sd; } else if (crf_learning_rate == 3) { // line-search(golden section) if (crf_learn_mode == 1) { tmp_epsilon = golden_section_LBFGS(crf_ptr,0,crf_golden_b); } else { tmp_epsilon = golden_section(crf_ptr,0,crf_golden_b); } } crf_ptr->update_lambdas(tmp_epsilon); iterate++; } SHOW_PROGRESS_TAIL(converged, iterate, likelihood); if (r == 0 || likelihood > crf_ptr->likelihood) { crf_ptr->likelihood = likelihood; crf_ptr->iterate = iterate; saved = (r < num_restart - 1); if (saved) { save_params(); } } } if (crf_learn_mode == 1) clean_LBFGS(); INIT_VISITED_FLAGS; return BP_TRUE; }
int run_em(EM_ENG_PTR em_ptr) { int r, iterate, old_valid, converged, saved = 0; double likelihood, log_prior; double lambda, old_lambda = 0.0; config_em(em_ptr); for (r = 0; r < num_restart; r++) { SHOW_PROGRESS_HEAD("#em-iters", r); initialize_params(); itemp = daem ? itemp_init : 1.0; iterate = 0; /* [21 Aug 2007, by yuizumi] * while-loop for inversed temperature (DAEM). Note that this * loop is evaluated only once for EM without annealing, since * itemp initially set to 1.0 by the code above. */ while (1) { if (daem) { SHOW_PROGRESS_TEMP(itemp); } old_valid = 0; while (1) { if (CTRLC_PRESSED) { SHOW_PROGRESS_INTR(); RET_ERR(err_ctrl_c_pressed); } RET_ON_ERR(em_ptr->compute_inside()); RET_ON_ERR(em_ptr->examine_inside()); likelihood = em_ptr->compute_likelihood(); log_prior = em_ptr->smooth ? em_ptr->compute_log_prior() : 0.0; lambda = likelihood + log_prior; if (verb_em) { if (em_ptr->smooth) { prism_printf("Iteration #%d:\tlog_likelihood=%.9f\tlog_prior=%.9f\tlog_post=%.9f\n", iterate, likelihood, log_prior, lambda); } else { prism_printf("Iteration #%d:\tlog_likelihood=%.9f\n", iterate, likelihood); } } if (debug_level) { prism_printf("After I-step[%d]:\n", iterate); prism_printf("likelihood = %.9f\n", likelihood); print_egraph(debug_level, PRINT_EM); } if (!isfinite(lambda)) { emit_internal_error("invalid log likelihood or log post: %s (at iteration #%d)", isnan(lambda) ? "NaN" : "infinity", iterate); RET_ERR(ierr_invalid_likelihood); } if (old_valid && old_lambda - lambda > prism_epsilon) { emit_error("log likelihood or log post decreased [old: %.9f, new: %.9f] (at iteration #%d)", old_lambda, lambda, iterate); RET_ERR(err_invalid_likelihood); } if (itemp == 1.0 && likelihood > 0.0) { emit_error("log likelihood greater than zero [value: %.9f] (at iteration #%d)", likelihood, iterate); RET_ERR(err_invalid_likelihood); } converged = (old_valid && lambda - old_lambda <= prism_epsilon); if (converged || REACHED_MAX_ITERATE(iterate)) { break; } old_lambda = lambda; old_valid = 1; RET_ON_ERR(em_ptr->compute_expectation()); if (debug_level) { prism_printf("After O-step[%d]:\n", iterate); print_egraph(debug_level, PRINT_EM); } SHOW_PROGRESS(iterate); RET_ON_ERR(em_ptr->update_params()); iterate++; } /* [21 Aug 2007, by yuizumi] * Note that 1.0 can be represented exactly in IEEE 754. */ if (itemp == 1.0) { break; } itemp *= itemp_rate; if (itemp >= 1.0) { itemp = 1.0; } } SHOW_PROGRESS_TAIL(converged, iterate, lambda); if (r == 0 || lambda > em_ptr->lambda) { em_ptr->lambda = lambda; em_ptr->likelihood = likelihood; em_ptr->iterate = iterate; saved = (r < num_restart - 1); if (saved) { save_params(); } } } if (saved) { restore_params(); } em_ptr->bic = compute_bic(em_ptr->likelihood); em_ptr->cs = em_ptr->smooth ? compute_cs(em_ptr->likelihood) : 0.0; return BP_TRUE; }
int mpm_run_em(EM_ENG_PTR emptr) { int r, iterate, old_valid, converged, saved=0; double likelihood, log_prior; double lambda, old_lambda=0.0; config_em(emptr); for (r = 0; r < num_restart; r++) { SHOW_PROGRESS_HEAD("#em-iters", r); initialize_params(); mpm_bcast_inside(); clear_sw_msg_send(); itemp = daem ? itemp_init : 1.0; iterate = 0; while (1) { if (daem) { SHOW_PROGRESS_TEMP(itemp); } old_valid = 0; while (1) { if (CTRLC_PRESSED) { SHOW_PROGRESS_INTR(); RET_ERR(err_ctrl_c_pressed); } if (failure_observed) { inside_failure = mp_sum_value(0.0); } log_prior = emptr->smooth ? emptr->compute_log_prior() : 0.0; lambda = mp_sum_value(log_prior); likelihood = lambda - log_prior; mp_debug("local lambda = %.9f, lambda = %.9f", log_prior, lambda); if (verb_em) { if (emptr->smooth) { prism_printf("Iteration #%d:\tlog_likelihood=%.9f\tlog_prior=%.9f\tlog_post=%.9f\n", iterate, likelihood, log_prior, lambda); } else { prism_printf("Iteration #%d:\tlog_likelihood=%.9f\n", iterate, likelihood); } } if (!isfinite(lambda)) { emit_internal_error("invalid log likelihood or log post: %s (at iterateion #%d)", isnan(lambda) ? "NaN" : "infinity", iterate); RET_ERR(ierr_invalid_likelihood); } if (old_valid && old_lambda - lambda > prism_epsilon) { emit_error("log likelihood or log post decreased [old: %.9f, new: %.9f] (at iteration #%d)", old_lambda, lambda, iterate); RET_ERR(err_invalid_likelihood); } if (itemp == 1.0 && likelihood > 0.0) { emit_error("log likelihood greater than zero [value: %.9f] (at iteration #%d)", likelihood, iterate); RET_ERR(err_invalid_likelihood); } converged = (old_valid && lambda - old_lambda <= prism_epsilon); if (converged || REACHED_MAX_ITERATE(iterate)) { break; } old_lambda = lambda; old_valid = 1; mpm_share_expectation(); SHOW_PROGRESS(iterate); RET_ON_ERR(emptr->update_params()); iterate++; } if (itemp == 1.0) { break; } itemp *= itemp_rate; if (itemp >= 1.0) { itemp = 1.0; } } SHOW_PROGRESS_TAIL(converged, iterate, lambda); if (r == 0 || lambda > emptr->lambda) { emptr->lambda = lambda; emptr->likelihood = likelihood; emptr->iterate = iterate; saved = (r < num_restart - 1); if (saved) { save_params(); } } } if (saved) { restore_params(); } emptr->bic = compute_bic(emptr->likelihood); emptr->cs = emptr->smooth ? compute_cs(emptr->likelihood) : 0.0; return BP_TRUE; }