Esempio n. 1
0
static void
write_trace (trc_env_t *env, size_t trace_size, ref_t *trace)
{
    string_index_t      si = SIcreate();
    size_t              i = 1;
    int                 last;
    int                 src[env->N];
    write_trace_step_t  ctx;
    ctx.env = env;
    ctx.dst = env->get_state (trace[0], env->get_state_arg);
    ctx.dst_no = SIputC (si, (const char *)&trace[0], sizeof(ref_t));
     // write initial state
    write_trace_state (env, ctx.dst);

    while (i < trace_size) {
        memcpy(src, ctx.dst, sizeof(int[env->N]));
        ctx.src_no = ctx.dst_no;
        ctx.dst = env->get_state (trace[i], env->get_state_arg);
        ctx.dst_no = last = SIlookupC(si, (const char *)&trace[i], sizeof(ref_t));
        if (ctx.dst_no == SI_INDEX_FAILED) {
            ctx.dst_no = SIputC (si, (const char *)&trace[i], sizeof(ref_t));
        }
        write_trace_step (&ctx, src);                           // write step
        if (last == SI_INDEX_FAILED)
            write_trace_state (env, ctx.dst);                   // write dst
        i++;
    }
    SIdestroy (&si);
}
Esempio n. 2
0
archive_t arch_zip_read(const char* name,int buf){
    archive_t arch=(archive_t)HREmalloc(NULL,sizeof(struct archive_s));
    arch_init(arch);
    int err;
    arch->archive=zip_open(name,ZIP_CHECKCONS,&err);
    if (arch->archive==NULL){
        char errstr[1024];
        zip_error_to_str(errstr, sizeof(errstr), err, errno);
        Abort("cannot open zip archive `%s': %s\n",name , errstr);
    }
    arch->stream_index=SIcreate();
#ifdef LIBZIP_VERSION
    int count=zip_get_num_entries(arch->archive,0);
#else
    int count=zip_get_num_files(arch->archive);
#endif
    for(int i=0;i<count;i++){
        struct zip_stat sb;
        int res=zip_stat_index(arch->archive,i,0,&sb);
        if (res<0) {
            Abort("cannot stat zip archive: %s\n",zip_strerror(arch->archive));
        }
        SIputAt(arch->stream_index,sb.name,i);
        Print(infoShort,"stream %d is %s",i,sb.name);
    }
    arch->procs.contains=zip_contains;
    arch->procs.read=hre_zip_read;
    arch->procs.read_raw=hre_zip_read_raw;
    arch->procs.enumerator=zip_enum;
    arch->procs.close=hre_zip_close;
    arch->buf=buf;
    return arch;
}
Esempio n. 3
0
value_table_t HREcreateTable(hre_context_t ctx,const char* name){
    if (HREpeers(ctx)==1) return chunk_table_create(ctx,(char*)name);
    value_table_t vt=VTcreateBase((char*)name,sizeof(struct value_table_s));
    VTdestroySet(vt,destroy);
    VTputChunkSet(vt,put_chunk);
    VTputAtChunkSet(vt,put_at_chunk);
    VTgetChunkSet(vt,get_chunk);
    VTgetCountSet(vt,get_count);
    vt->index=SIcreate();
    vt->ctx=ctx;
    vt->msg_pending=0;
    uint32_t request_tag=HREactionCreate(ctx,1,CHUNK_BUFFER_SIZE,request_action,vt);
    uint32_t answer_tag=HREactionCreate(ctx,0,CHUNK_BUFFER_SIZE,answer_action,vt);
    vt->msg=HREnewMessage(ctx,CHUNK_BUFFER_SIZE);
    if (HREme(ctx)==0){
        vt->msg->tag=answer_tag;
        vt->msg->comm=0;
    } else {
        vt->msg->tag=request_tag;
        vt->msg->comm=1;
    }
    vt->msg->source=HREme(ctx);
    vt->msg->target=0;
    vt->msg->ready=hre_ready_decr;
    vt->msg->ready_ctx=&vt->msg_pending;
    HREbarrier(ctx);
    return vt;
}
Esempio n. 4
0
static void *new_string_index(void* context){
	(void)context;
	Warning(info,"creating a new string index");
	return SIcreate();
}
Esempio n. 5
0
static void *new_string_index(void* context){
	(void)context;
	return SIcreate();
}
Esempio n. 6
0
void
ETFloadGreyboxModel(model_t model, const char *name)
{
    gb_context_t ctx=(gb_context_t)RTmalloc(sizeof(struct grey_box_context));
    GBsetContext(model,ctx);
    etf_model_t etf=etf_parse_file(name);
    lts_type_t ltstype=etf_type(etf);
    int state_length=lts_type_get_state_length(ltstype);
    ctx->edge_labels=lts_type_get_edge_label_count(ltstype);
    if (ctx->edge_labels>1) {
        ctx->label_idx=SIcreate();
    } else {
        ctx->label_idx=NULL;
    }
    GBsetLTStype(model,ltstype);
    matrix_t* p_dm_info = (matrix_t*)RTmalloc(sizeof(matrix_t));
    matrix_t* p_dm_read_info = (matrix_t*)RTmalloc(sizeof(matrix_t));
    matrix_t* p_dm_write_info = (matrix_t*)RTmalloc(sizeof(matrix_t));
    dm_create(p_dm_info, etf_trans_section_count(etf), state_length);
    dm_create(p_dm_read_info, etf_trans_section_count(etf), state_length);
    dm_create(p_dm_write_info, etf_trans_section_count(etf), state_length);
    ctx->trans_key_idx=(string_index_t*)RTmalloc(dm_nrows(p_dm_info)*sizeof(string_index_t));
    ctx->trans_table=(matrix_table_t*)RTmalloc(dm_nrows(p_dm_info)*sizeof(matrix_table_t));
    for(int i=0; i < dm_nrows(p_dm_info); i++) {
        Warning(infoLong,"parsing table %d",i);
        etf_rel_t trans=etf_trans_section(etf,i);
        int used[state_length];
        int src[state_length];
        int dst[state_length];
        int lbl[ctx->edge_labels];
        int proj[state_length];
        ETFrelIterate(trans);
        if (!ETFrelNext(trans,src,dst,lbl)){
            Abort("unexpected empty transition section");
        }
        int len=0;
        for(int j=0;j<state_length;j++){
            if (src[j]) {
                proj[len]=j;
                Warning(debug,"pi[%d]=%d",len,proj[len]);
                len++;
                dm_set(p_dm_info, i, j);
                used[j]=1;
            } else {
                used[j]=0;
            }
        }
        Warning(infoLong,"length is %d",len);
        ctx->trans_key_idx[i]=SIcreate();
        ctx->trans_table[i]=MTcreate(3);
        int src_short[len];
        int dst_short[len];
        uint32_t row[3];
        do {
            /*
             * If an element is non-zero, we always consider it a read. If the
             * value is changed for at least one transition in a group then
             * we also consider it a write. Note that this could be slightly
             * optimized by omitting those elements from read where the value
             * varies over all possible inputs.
             */
            for(int k=0;k<state_length;k++) {
                if (src[k] != 0) {
                    dm_set(p_dm_read_info, i, k);
                    if (src[k] != dst[k]) dm_set(p_dm_write_info, i, k);
                }
            }
            for(int k=0;k<state_length;k++) {
                if(used[k]?(src[k]==0):(src[k]!=0)){
                    Abort("inconsistent section in src vector");
                }
            }
            for(int k=0;k<len;k++) src_short[k]=src[proj[k]]-1;
            for(int k=0;k<state_length;k++) {
                if(used[k]?(dst[k]==0):(dst[k]!=0)){
                    Abort("inconsistent section in dst vector");
                }
            }
            for(int k=0;k<len;k++) dst_short[k]=dst[proj[k]]-1;
            row[0]=(uint32_t)SIputC(ctx->trans_key_idx[i],(char*)src_short,len<<2);
            switch(ctx->edge_labels){
            case 0:
                row[2]=0;
                break;
            case 1:
                row[2]=(uint32_t)lbl[0];
                break;
            default:
                row[2]=(uint32_t)SIputC(ctx->label_idx,(char*)lbl,(ctx->edge_labels)<<2);
                break;
            }
            row[1]=(int32_t)SIputC(ctx->trans_key_idx[i],(char*)dst_short,len<<2);
            MTaddRow(ctx->trans_table[i],row);
        } while(ETFrelNext(trans,src,dst,lbl));
        Warning(infoLong,"table %d has %d states and %d transitions",
                i,SIgetCount(ctx->trans_key_idx[i]),ETFrelCount(trans));
        ETFrelDestroy(&trans);
        MTclusterBuild(ctx->trans_table[i],0,SIgetCount(ctx->trans_key_idx[i]));
    }
    GBsetDMInfo(model, p_dm_info);

    /*
     * Set these again when ETF supports read, write and copy.
       GBsetDMInfoRead(model, p_dm_read_info);
       GBsetDMInfoMustWrite(model, p_dm_write_info);
       GBsetSupportsCopy(model); // no may-write so we support copy.
     */
    GBsetNextStateShort(model,etf_short);

    matrix_t *p_sl_info = RTmalloc(sizeof *p_sl_info);
    dm_create(p_sl_info, etf_map_section_count(etf), state_length);
    ctx->label_key_idx=(string_index_t*)RTmalloc(dm_nrows(p_sl_info)*sizeof(string_index_t));
    ctx->label_data=(int**)RTmalloc(dm_nrows(p_sl_info)*sizeof(int*));
    for(int i=0;i<dm_nrows(p_sl_info);i++){
        Warning(infoLong,"parsing map %d",i);
        etf_map_t map=etf_get_map(etf,i);
        int used[state_length];
        int state[state_length];
        int value;
        ETFmapIterate(map);
        if (!ETFmapNext(map,state,&value)){
            Abort("Unexpected empty map");
        }
        int len=0;
        for(int j=0;j<state_length;j++){
            if (state[j]) {
                used[len]=j;
                len++;
                dm_set(p_sl_info, i, j);
            }
        }
        int*proj=(int*)RTmalloc(len*sizeof(int));
        for(int j=0;j<len;j++) proj[j]=used[j];
        for(int j=0;j<state_length;j++) used[j]=state[j];
        string_index_t key_idx=SIcreate();
        int *data=(int*)RTmalloc(ETFmapCount(map)*sizeof(int));
        int key[len];
        do {
            for(int k=0;k<state_length;k++) {
                if(used[k]?(state[k]==0):(state[k]!=0)){
                    Abort("inconsistent map section");
                }
            }
            for(int k=0;k<len;k++) key[k]=state[proj[k]]-1;
            data[SIputC(key_idx,(char*)key,len<<2)]=value;
        } while(ETFmapNext(map,state,&value));
        ctx->label_key_idx[i]=key_idx;
        ctx->label_data[i]=data;
    }
    GBsetStateLabelInfo(model, p_sl_info);
    GBsetStateLabelShort(model,etf_state_short);
    GBsetTransitionInGroup(model,etf_transition_in_group);

    int type_count=lts_type_get_type_count(ltstype);
    for(int i=0;i<type_count;i++){
        Warning(infoLong,"Setting values for type %d (%s)",i,lts_type_get_type(ltstype,i));
        int count=etf_get_value_count(etf,i);
        for(int j=0;j<count;j++){
            GBchunkPutAt(model,i,etf_get_value(etf,i,j),j);
        }
    }

    int state[state_length];
    etf_get_initial(etf,state);
    GBsetInitialState(model,state);
}