Esempio n. 1
0
/* Generates excitation for CNG LPC synthesis */
SKP_INLINE void SKP_Silk_CNG_exc(
    SKP_int16                       residual[],         /* O    CNG residual signal Q0                      */
    SKP_int32                       exc_buf_Q10[],      /* I    Random samples buffer Q10                   */
    SKP_int32                       Gain_Q16,           /* I    Gain to apply                               */
    SKP_int                         length,             /* I    Length                                      */
    SKP_int32                       *rand_seed          /* I/O  Seed to random index generator              */
)
{
    SKP_int32 seed;
    SKP_int   i, idx, exc_mask;

    exc_mask = CNG_BUF_MASK_MAX;
    while( exc_mask > length ) {
        exc_mask = SKP_RSHIFT( exc_mask, 1 );
    }

    seed = *rand_seed;
    for( i = 0; i < length; i++ ) {
        seed = SKP_RAND( seed );
        idx = ( SKP_int )( SKP_RSHIFT( seed, 24 ) & exc_mask );
        SKP_assert( idx >= 0 );
        SKP_assert( idx <= CNG_BUF_MASK_MAX );
        residual[ i ] = ( SKP_int16 )SKP_SAT16( SKP_RSHIFT_ROUND( SKP_SMULWW( exc_buf_Q10[ idx ], Gain_Q16 ), 10 ) );
    }
    *rand_seed = seed;
}
/* Processing of gains */
void silk_process_gains_FIX(
    silk_encoder_state_FIX      *psEnc,         /* I/O  Encoder state_FIX                           */
    silk_encoder_control_FIX    *psEncCtrl      /* I/O  Encoder control_FIX                         */
)
{
    silk_shape_state_FIX    *psShapeSt = &psEnc->sShape;
    opus_int     k;
    opus_int32   s_Q16, InvMaxSqrVal_Q16, gain, gain_squared, ResNrg, ResNrgPart, quant_offset_Q10;

    /* Gain reduction when LTP coding gain is high */
    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
        /*s = -0.5f * SKP_sigmoid( 0.25f * ( psEncCtrl->LTPredCodGain - 12.0f ) ); */
        s_Q16 = -silk_sigm_Q15( SKP_RSHIFT_ROUND( psEncCtrl->LTPredCodGain_Q7 - SILK_FIX_CONST( 12.0, 7 ), 4 ) );
        for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
            psEncCtrl->Gains_Q16[ k ] = SKP_SMLAWB( psEncCtrl->Gains_Q16[ k ], psEncCtrl->Gains_Q16[ k ], s_Q16 );
        }
    }

    /* Limit the quantized signal */
    /* InvMaxSqrVal = pow( 2.0f, 0.33f * ( 21.0f - SNR_dB ) ) / subfr_length; */
    InvMaxSqrVal_Q16 = SKP_DIV32_16( silk_log2lin(
                                         SKP_SMULWB( SILK_FIX_CONST( 21 + 16 / 0.33, 7 ) - psEnc->sCmn.SNR_dB_Q7, SILK_FIX_CONST( 0.33, 16 ) ) ), psEnc->sCmn.subfr_length );

    for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
        /* Soft limit on ratio residual energy and squared gains */
        ResNrg     = psEncCtrl->ResNrg[ k ];
        ResNrgPart = SKP_SMULWW( ResNrg, InvMaxSqrVal_Q16 );
        if( psEncCtrl->ResNrgQ[ k ] > 0 ) {
            ResNrgPart = SKP_RSHIFT_ROUND( ResNrgPart, psEncCtrl->ResNrgQ[ k ] );
        } else {
            if( ResNrgPart >= SKP_RSHIFT( SKP_int32_MAX, -psEncCtrl->ResNrgQ[ k ] ) ) {
                ResNrgPart = SKP_int32_MAX;
            } else {
                ResNrgPart = SKP_LSHIFT( ResNrgPart, -psEncCtrl->ResNrgQ[ k ] );
            }
        }
        gain = psEncCtrl->Gains_Q16[ k ];
        gain_squared = SKP_ADD_SAT32( ResNrgPart, SKP_SMMUL( gain, gain ) );
        if( gain_squared < SKP_int16_MAX ) {
            /* recalculate with higher precision */
            gain_squared = SKP_SMLAWW( SKP_LSHIFT( ResNrgPart, 16 ), gain, gain );
            SKP_assert( gain_squared > 0 );
            gain = silk_SQRT_APPROX( gain_squared );                    /* Q8   */
            gain = SKP_min( gain, SKP_int32_MAX >> 8 );
            psEncCtrl->Gains_Q16[ k ] = SKP_LSHIFT_SAT32( gain, 8 );        /* Q16  */
        } else {
SKP_INLINE void SKP_Silk_LS_divide_Q16_FIX(
    SKP_int32 T[],      /* I/O Numenator vector */
    inv_D_t *inv_D,     /* I   1 / D vector     */
    SKP_int M           /* I   Order */
)
{
    SKP_int   i;
    SKP_int32 tmp_32;
    SKP_int32 one_div_diag_Q36, one_div_diag_Q48;

    for( i = 0; i < M; i++ ) {
        one_div_diag_Q36 = inv_D[ i ].Q36_part;
        one_div_diag_Q48 = inv_D[ i ].Q48_part;

        tmp_32 = T[ i ];
        T[ i ] = SKP_ADD32( SKP_SMMUL( tmp_32, one_div_diag_Q48 ), SKP_RSHIFT( SKP_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) );
    }
}
/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
SKP_INLINE void limit_warped_coefs( 
    SKP_int32           *coefs_syn_Q24,
    SKP_int32           *coefs_ana_Q24,
    SKP_int             lambda_Q16,
    SKP_int32           limit_Q24,
    SKP_int             order
) {
    SKP_int   i, iter, ind = 0;
    SKP_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16;
    SKP_int32 nom_Q16, den_Q24;

    /* Convert to monic coefficients */
    lambda_Q16 = -lambda_Q16;
    for( i = order - 1; i > 0; i-- ) {
        coefs_syn_Q24[ i - 1 ] = SKP_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
        coefs_ana_Q24[ i - 1 ] = SKP_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
    }
    lambda_Q16 = -lambda_Q16;
    nom_Q16  = SKP_SMLAWB( SKP_FIX_CONST( 1.0, 16 ), -lambda_Q16,        lambda_Q16 );
    den_Q24  = SKP_SMLAWB( SKP_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
    gain_syn_Q16 = SKP_DIV32_varQ( nom_Q16, den_Q24, 24 );
    den_Q24  = SKP_SMLAWB( SKP_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
    gain_ana_Q16 = SKP_DIV32_varQ( nom_Q16, den_Q24, 24 );
    for( i = 0; i < order; i++ ) {
        coefs_syn_Q24[ i ] = SKP_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
        coefs_ana_Q24[ i ] = SKP_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
    }

    for( iter = 0; iter < 10; iter++ ) {
        /* Find maximum absolute value */
        maxabs_Q24 = -1;
        for( i = 0; i < order; i++ ) {
            tmp = SKP_max( SKP_abs_int32( coefs_syn_Q24[ i ] ), SKP_abs_int32( coefs_ana_Q24[ i ] ) );
            if( tmp > maxabs_Q24 ) {
                maxabs_Q24 = tmp;
                ind = i;
            }
        }
        if( maxabs_Q24 <= limit_Q24 ) {
            /* Coefficients are within range - done */
            return;
        }

        /* Convert back to true warped coefficients */
        for( i = 1; i < order; i++ ) {
            coefs_syn_Q24[ i - 1 ] = SKP_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
            coefs_ana_Q24[ i - 1 ] = SKP_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
        }
        gain_syn_Q16 = SKP_INVERSE32_varQ( gain_syn_Q16, 32 );
        gain_ana_Q16 = SKP_INVERSE32_varQ( gain_ana_Q16, 32 );
        for( i = 0; i < order; i++ ) {
            coefs_syn_Q24[ i ] = SKP_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
            coefs_ana_Q24[ i ] = SKP_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
        }

        /* Apply bandwidth expansion */
        chirp_Q16 = SKP_FIX_CONST( 0.99, 16 ) - SKP_DIV32_varQ(
            SKP_SMULWB( maxabs_Q24 - limit_Q24, SKP_SMLABB( SKP_FIX_CONST( 0.8, 10 ), SKP_FIX_CONST( 0.1, 10 ), iter ) ), 
            SKP_MUL( maxabs_Q24, ind + 1 ), 22 );
        SKP_Silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 );
        SKP_Silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 );

        /* Convert to monic warped coefficients */
        lambda_Q16 = -lambda_Q16;
        for( i = order - 1; i > 0; i-- ) {
            coefs_syn_Q24[ i - 1 ] = SKP_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
            coefs_ana_Q24[ i - 1 ] = SKP_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
        }
        lambda_Q16 = -lambda_Q16;
        nom_Q16  = SKP_SMLAWB( SKP_FIX_CONST( 1.0, 16 ), -lambda_Q16,        lambda_Q16 );
        den_Q24  = SKP_SMLAWB( SKP_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
        gain_syn_Q16 = SKP_DIV32_varQ( nom_Q16, den_Q24, 24 );
        den_Q24  = SKP_SMLAWB( SKP_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
        gain_ana_Q16 = SKP_DIV32_varQ( nom_Q16, den_Q24, 24 );
        for( i = 0; i < order; i++ ) {
            coefs_syn_Q24[ i ] = SKP_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
            coefs_ana_Q24[ i ] = SKP_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
        }
    }
	SKP_assert( 0 );
}
/* High-pass filter with cutoff frequency adaptation based on pitch lag statistics */
void SKP_Silk_HP_variable_cutoff_FIX(
    SKP_Silk_encoder_state_FIX      *psEnc,             /* I/O  Encoder state FIX                           */
    SKP_Silk_encoder_control_FIX    *psEncCtrl,         /* I/O  Encoder control FIX                         */
    SKP_int16                       *out,               /* O    high-pass filtered output signal            */
    const SKP_int16                 *in                 /* I    input signal                                */
)
{
    SKP_int   quality_Q15;
    SKP_int32 B_Q28[ 3 ], A_Q28[ 2 ];
    SKP_int32 Fc_Q19, r_Q28, r_Q22;
    SKP_int32 pitch_freq_Hz_Q16, pitch_freq_log_Q7, delta_freq_Q7;

    /*********************************************/
    /* Estimate Low End of Pitch Frequency Range */
    /*********************************************/
    if( psEnc->sCmn.prev_sigtype == SIG_TYPE_VOICED ) {
        /* difference, in log domain */
        pitch_freq_Hz_Q16 = SKP_DIV32_16( SKP_LSHIFT( SKP_MUL( psEnc->sCmn.fs_kHz, 1000 ), 16 ), psEnc->sCmn.prevLag );
        pitch_freq_log_Q7 = SKP_Silk_lin2log( pitch_freq_Hz_Q16 ) - ( 16 << 7 ); //0x70

        /* adjustment based on quality */
        quality_Q15 = psEncCtrl->input_quality_bands_Q15[ 0 ];
        pitch_freq_log_Q7 = SKP_SUB32( pitch_freq_log_Q7, SKP_SMULWB( SKP_SMULWB( SKP_LSHIFT( quality_Q15, 2 ), quality_Q15 ), 
            pitch_freq_log_Q7 - SKP_LOG2_VARIABLE_HP_MIN_FREQ_Q7 ) );
        pitch_freq_log_Q7 = SKP_ADD32( pitch_freq_log_Q7, SKP_RSHIFT( SKP_FIX_CONST( 0.6, 15 ) - quality_Q15, 9 ) );

        //delta_freq = pitch_freq_log - psEnc->variable_HP_smth1;
        delta_freq_Q7 = pitch_freq_log_Q7 - SKP_RSHIFT( psEnc->variable_HP_smth1_Q15, 8 );
        if( delta_freq_Q7 < 0 ) {
            /* less smoothing for decreasing pitch frequency, to track something close to the minimum */
            delta_freq_Q7 = SKP_MUL( delta_freq_Q7, 3 );
        }

        /* limit delta, to reduce impact of outliers */
        delta_freq_Q7 = SKP_LIMIT_32( delta_freq_Q7, -SKP_FIX_CONST( VARIABLE_HP_MAX_DELTA_FREQ, 7 ), SKP_FIX_CONST( VARIABLE_HP_MAX_DELTA_FREQ, 7 ) );

        /* update smoother */
        psEnc->variable_HP_smth1_Q15 = SKP_SMLAWB( psEnc->variable_HP_smth1_Q15, 
            SKP_MUL( SKP_LSHIFT( psEnc->speech_activity_Q8, 1 ), delta_freq_Q7 ), SKP_FIX_CONST( VARIABLE_HP_SMTH_COEF1, 16 ) );
    }
    /* second smoother */
    psEnc->variable_HP_smth2_Q15 = SKP_SMLAWB( psEnc->variable_HP_smth2_Q15, 
        psEnc->variable_HP_smth1_Q15 - psEnc->variable_HP_smth2_Q15, SKP_FIX_CONST( VARIABLE_HP_SMTH_COEF2, 16 ) );

    /* convert from log scale to Hertz */
    psEncCtrl->pitch_freq_low_Hz = SKP_Silk_log2lin( SKP_RSHIFT( psEnc->variable_HP_smth2_Q15, 8 ) );

    /* limit frequency range */
    psEncCtrl->pitch_freq_low_Hz = SKP_LIMIT_32( psEncCtrl->pitch_freq_low_Hz, 
        SKP_FIX_CONST( VARIABLE_HP_MIN_FREQ, 0 ), SKP_FIX_CONST( VARIABLE_HP_MAX_FREQ, 0 ) );

    /********************************/
    /* Compute Filter Coefficients  */
    /********************************/
    /* compute cut-off frequency, in radians */
    //Fc_num   = (SKP_float)( 0.45f * 2.0f * 3.14159265359 * psEncCtrl->pitch_freq_low_Hz );
    //Fc_denom = (SKP_float)( 1e3f * psEnc->sCmn.fs_kHz );
    SKP_assert( psEncCtrl->pitch_freq_low_Hz <= SKP_int32_MAX / SKP_RADIANS_CONSTANT_Q19 );
    Fc_Q19 = SKP_DIV32_16( SKP_SMULBB( SKP_RADIANS_CONSTANT_Q19, psEncCtrl->pitch_freq_low_Hz ), psEnc->sCmn.fs_kHz ); // range: 3704 - 27787, 11-15 bits
    SKP_assert( Fc_Q19 >=  3704 );
    SKP_assert( Fc_Q19 <= 27787 );

    r_Q28 = SKP_FIX_CONST( 1.0, 28 ) - SKP_MUL( SKP_FIX_CONST( 0.92, 9 ), Fc_Q19 );
    SKP_assert( r_Q28 >= 255347779 );
    SKP_assert( r_Q28 <= 266690872 );

    /* b = r * [ 1; -2; 1 ]; */
    /* a = [ 1; -2 * r * ( 1 - 0.5 * Fc^2 ); r^2 ]; */
    B_Q28[ 0 ] = r_Q28;
    B_Q28[ 1 ] = SKP_LSHIFT( -r_Q28, 1 );
    B_Q28[ 2 ] = r_Q28;
    
    // -r * ( 2 - Fc * Fc );
    r_Q22  = SKP_RSHIFT( r_Q28, 6 );
    A_Q28[ 0 ] = SKP_SMULWW( r_Q22, SKP_SMULWW( Fc_Q19, Fc_Q19 ) - SKP_FIX_CONST( 2.0,  22 ) );
    A_Q28[ 1 ] = SKP_SMULWW( r_Q22, r_Q22 );

    /********************************/
    /* High-Pass Filter             */
    /********************************/
    SKP_Silk_biquad_alt( in, B_Q28, A_Q28, psEnc->sCmn.In_HP_State, out, psEnc->sCmn.frame_length );
}
SKP_INLINE void SKP_Silk_LDL_factorize_FIX(
    SKP_int32           *A,         /* I   Pointer to Symetric Square Matrix */
    SKP_int             M,          /* I   Size of Matrix */
    SKP_int32           *L_Q16,     /* I/O Pointer to Square Upper triangular Matrix */
    inv_D_t             *inv_D      /* I/O Pointer to vector holding inverted diagonal elements of D */
)
{
    SKP_int   i, j, k, status, loop_count;
    const SKP_int32 *ptr1, *ptr2;
    SKP_int32 diag_min_value, tmp_32, err;
    SKP_int32 v_Q0[ MAX_MATRIX_SIZE ], D_Q0[ MAX_MATRIX_SIZE ];
    SKP_int32 one_div_diag_Q36, one_div_diag_Q40, one_div_diag_Q48;

    SKP_assert( M <= MAX_MATRIX_SIZE );

    status = 1;
    diag_min_value = SKP_max_32( SKP_SMMUL( SKP_ADD_SAT32( A[ 0 ], A[ SKP_SMULBB( M, M ) - 1 ] ), SKP_FIX_CONST( FIND_LTP_COND_FAC, 31 ) ), 1 << 9 );
    for( loop_count = 0; loop_count < M && status == 1; loop_count++ ) {
        status = 0;
        for( j = 0; j < M; j++ ) {
            ptr1 = matrix_adr( L_Q16, j, 0, M );
            tmp_32 = 0;
            for( i = 0; i < j; i++ ) {
                v_Q0[ i ] = SKP_SMULWW(         D_Q0[ i ], ptr1[ i ] ); /* Q0 */
                tmp_32    = SKP_SMLAWW( tmp_32, v_Q0[ i ], ptr1[ i ] ); /* Q0 */
            }
            tmp_32 = SKP_SUB32( matrix_ptr( A, j, j, M ), tmp_32 );

            if( tmp_32 < diag_min_value ) {
                tmp_32 = SKP_SUB32( SKP_SMULBB( loop_count + 1, diag_min_value ), tmp_32 );
                /* Matrix not positive semi-definite, or ill conditioned */
                for( i = 0; i < M; i++ ) {
                    matrix_ptr( A, i, i, M ) = SKP_ADD32( matrix_ptr( A, i, i, M ), tmp_32 );
                }
                status = 1;
                break;
            }
            D_Q0[ j ] = tmp_32;                         /* always < max(Correlation) */
        
            /* two-step division */
            one_div_diag_Q36 = SKP_INVERSE32_varQ( tmp_32, 36 );                    /* Q36 */
            one_div_diag_Q40 = SKP_LSHIFT( one_div_diag_Q36, 4 );                   /* Q40 */
            err = SKP_SUB32( 1 << 24, SKP_SMULWW( tmp_32, one_div_diag_Q40 ) );     /* Q24 */
            one_div_diag_Q48 = SKP_SMULWW( err, one_div_diag_Q40 );                 /* Q48 */

            /* Save 1/Ds */
            inv_D[ j ].Q36_part = one_div_diag_Q36;
            inv_D[ j ].Q48_part = one_div_diag_Q48;

            matrix_ptr( L_Q16, j, j, M ) = 65536; /* 1.0 in Q16 */
            ptr1 = matrix_adr( A, j, 0, M );
            ptr2 = matrix_adr( L_Q16, j + 1, 0, M );
            for( i = j + 1; i < M; i++ ) { 
                tmp_32 = 0;
                for( k = 0; k < j; k++ ) {
                    tmp_32 = SKP_SMLAWW( tmp_32, v_Q0[ k ], ptr2[ k ] ); /* Q0 */
                }
                tmp_32 = SKP_SUB32( ptr1[ i ], tmp_32 ); /* always < max(Correlation) */

                /* tmp_32 / D_Q0[j] : Divide to Q16 */
                matrix_ptr( L_Q16, i, j, M ) = SKP_ADD32( SKP_SMMUL( tmp_32, one_div_diag_Q48 ),
                    SKP_RSHIFT( SKP_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) );

                /* go to next column */
                ptr2 += M; 
            }
        }
    }

    SKP_assert( status == 0 );
}
Esempio n. 7
0
void SKP_Silk_PLC_conceal(
    SKP_Silk_decoder_state      *psDec,             /* I/O Decoder state */
    SKP_Silk_decoder_control    *psDecCtrl,         /* I/O Decoder control */
    SKP_int16                   signal[],           /* O concealed signal */
    SKP_int                     length              /* I length of residual */
)
{
    SKP_int   i, j, k;
    SKP_int16 *B_Q14, exc_buf[ MAX_FRAME_LENGTH ], *exc_buf_ptr;
    SKP_int16 rand_scale_Q14, A_Q12_tmp[ MAX_LPC_ORDER ];
    SKP_int32 rand_seed, harm_Gain_Q15, rand_Gain_Q15;
    SKP_int   lag, idx, shift1, shift2;
    SKP_int32 energy1, energy2, *rand_ptr, *pred_lag_ptr, Atmp;
    SKP_int32 sig_Q10[ MAX_FRAME_LENGTH ], *sig_Q10_ptr, LPC_exc_Q10, LPC_pred_Q10,  LTP_pred_Q14;
    SKP_Silk_PLC_struct *psPLC;

    psPLC = &psDec->sPLC;

    /* Update LTP buffer */
    SKP_memcpy( psDec->sLTP_Q16, &psDec->sLTP_Q16[ psDec->frame_length ], psDec->frame_length * sizeof( SKP_int32 ) );

    /* LPC concealment. Apply BWE to previous LPC */
    SKP_Silk_bwexpander( psPLC->prevLPC_Q12, psDec->LPC_order, BWE_COEF_Q16 );

    /* Find random noise component */
    /* Scale previous excitation signal */
    exc_buf_ptr = exc_buf;
    for( k = ( NB_SUBFR >> 1 ); k < NB_SUBFR; k++ ) {
        for( i = 0; i < psDec->subfr_length; i++ ) {
            exc_buf_ptr[ i ] = ( SKP_int16 )SKP_RSHIFT( 
                SKP_SMULWW( psDec->exc_Q10[ i + k * psDec->subfr_length ], psPLC->prevGain_Q16[ k ] ), 10 );
        }
        exc_buf_ptr += psDec->subfr_length;
    }
    /* Find the subframe with lowest energy of the last two and use that as random noise generator */ 
    SKP_Silk_sum_sqr_shift( &energy1, &shift1, exc_buf,                         psDec->subfr_length );
    SKP_Silk_sum_sqr_shift( &energy2, &shift2, &exc_buf[ psDec->subfr_length ], psDec->subfr_length );
        
    if( SKP_RSHIFT( energy1, shift2 ) < SKP_RSHIFT( energy1, shift2 ) ) {
        /* First sub-frame has lowest energy */
        rand_ptr = &psDec->exc_Q10[ SKP_max_int( 0, 3 * psDec->subfr_length - RAND_BUF_SIZE ) ];
    } else {
        /* Second sub-frame has lowest energy */
        rand_ptr = &psDec->exc_Q10[ SKP_max_int( 0, psDec->frame_length - RAND_BUF_SIZE ) ];
    }

    /* Setup Gain to random noise component */ 
    B_Q14          = psPLC->LTPCoef_Q14;
    rand_scale_Q14 = psPLC->randScale_Q14;

    /* Setup attenuation gains */
    harm_Gain_Q15 = HARM_ATT_Q15[ SKP_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    if( psDec->prev_sigtype == SIG_TYPE_VOICED ) {
        rand_Gain_Q15 = PLC_RAND_ATTENUATE_V_Q15[  SKP_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    } else {
        rand_Gain_Q15 = PLC_RAND_ATTENUATE_UV_Q15[ SKP_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    }

    /* First Lost frame */
    if( psDec->lossCnt == 0 ) {
        rand_scale_Q14 = (1 << 14 );
    
        /* Reduce random noise Gain for voiced frames */
        if( psDec->prev_sigtype == SIG_TYPE_VOICED ) {
            for( i = 0; i < LTP_ORDER; i++ ) {
                rand_scale_Q14 -= B_Q14[ i ];
            }
            rand_scale_Q14 = SKP_max_16( 3277, rand_scale_Q14 ); /* 0.2 */
            rand_scale_Q14 = ( SKP_int16 )SKP_RSHIFT( SKP_SMULBB( rand_scale_Q14, psPLC->prevLTP_scale_Q14 ), 14 );
        }

        /* Reduce random noise for unvoiced frames with high LPC gain */
        if( psDec->prev_sigtype == SIG_TYPE_UNVOICED ) {
            SKP_int32 invGain_Q30, down_scale_Q30;
            
            SKP_Silk_LPC_inverse_pred_gain( &invGain_Q30, psPLC->prevLPC_Q12, psDec->LPC_order );
            
            down_scale_Q30 = SKP_min_32( SKP_RSHIFT( ( 1 << 30 ), LOG2_INV_LPC_GAIN_HIGH_THRES ), invGain_Q30 );
            down_scale_Q30 = SKP_max_32( SKP_RSHIFT( ( 1 << 30 ), LOG2_INV_LPC_GAIN_LOW_THRES ), down_scale_Q30 );
            down_scale_Q30 = SKP_LSHIFT( down_scale_Q30, LOG2_INV_LPC_GAIN_HIGH_THRES );
            
            rand_Gain_Q15 = SKP_RSHIFT( SKP_SMULWB( down_scale_Q30, rand_Gain_Q15 ), 14 );
        }
    }

    rand_seed           = psPLC->rand_seed;
    lag                 = SKP_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 );
    psDec->sLTP_buf_idx = psDec->frame_length;

    /***************************/
    /* LTP synthesis filtering */
    /***************************/
    sig_Q10_ptr = sig_Q10;
    for( k = 0; k < NB_SUBFR; k++ ) {
        /* Setup pointer */
        pred_lag_ptr = &psDec->sLTP_Q16[ psDec->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
        for( i = 0; i < psDec->subfr_length; i++ ) {
            rand_seed = SKP_RAND( rand_seed );
            idx = SKP_RSHIFT( rand_seed, 25 ) & RAND_BUF_MASK;

            /* Unrolled loop */
            LTP_pred_Q14 = SKP_SMULWB(               pred_lag_ptr[  0 ], B_Q14[ 0 ] );
            LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], B_Q14[ 1 ] );
            LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], B_Q14[ 2 ] );
            LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], B_Q14[ 3 ] );
            LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], B_Q14[ 4 ] );
            pred_lag_ptr++;
            
            /* Generate LPC residual */
            LPC_exc_Q10 = SKP_LSHIFT( SKP_SMULWB( rand_ptr[ idx ], rand_scale_Q14 ), 2 ); /* Random noise part */
            LPC_exc_Q10 = SKP_ADD32( LPC_exc_Q10, SKP_RSHIFT_ROUND( LTP_pred_Q14, 4 ) );  /* Harmonic part */
            
            /* Update states */
            psDec->sLTP_Q16[ psDec->sLTP_buf_idx ] = SKP_LSHIFT( LPC_exc_Q10, 6 );
            psDec->sLTP_buf_idx++;
                
            /* Save LPC residual */
            sig_Q10_ptr[ i ] = LPC_exc_Q10;
        }
        sig_Q10_ptr += psDec->subfr_length;
        /* Gradually reduce LTP gain */
        for( j = 0; j < LTP_ORDER; j++ ) {
            B_Q14[ j ] = SKP_RSHIFT( SKP_SMULBB( harm_Gain_Q15, B_Q14[ j ] ), 15 );
        }
        /* Gradually reduce excitation gain */
        rand_scale_Q14 = SKP_RSHIFT( SKP_SMULBB( rand_scale_Q14, rand_Gain_Q15 ), 15 );

        /* Slowly increase pitch lag */
        psPLC->pitchL_Q8 += SKP_SMULWB( psPLC->pitchL_Q8, PITCH_DRIFT_FAC_Q16 );
        psPLC->pitchL_Q8 = SKP_min_32( psPLC->pitchL_Q8, SKP_LSHIFT( SKP_SMULBB( MAX_PITCH_LAG_MS, psDec->fs_kHz ), 8 ) );
        lag = SKP_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 );
    }

    /***************************/
    /* LPC synthesis filtering */
    /***************************/
    sig_Q10_ptr = sig_Q10;
    /* Preload LPC coeficients to array on stack. Gives small performance gain */
    SKP_memcpy( A_Q12_tmp, psPLC->prevLPC_Q12, psDec->LPC_order * sizeof( SKP_int16 ) );
    SKP_assert( psDec->LPC_order >= 10 ); /* check that unrolling works */
    for( k = 0; k < NB_SUBFR; k++ ) {
        for( i = 0; i < psDec->subfr_length; i++ ){
            /* unrolled */
            Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 0 ] );    /* read two coefficients at once */
            LPC_pred_Q10 = SKP_SMULWB(               psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  1 ], Atmp );
            LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  2 ], Atmp );
            Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 2 ] );
            LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  3 ], Atmp );
            LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  4 ], Atmp );
            Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 4 ] );
            LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  5 ], Atmp );
            LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  6 ], Atmp );
            Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 6 ] );
            LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  7 ], Atmp );
            LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  8 ], Atmp );
            Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 8 ] );
            LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  9 ], Atmp );
            LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 10 ], Atmp );
            for( j = 10 ; j < psDec->LPC_order ; j+=2 ) {
                Atmp = *( ( SKP_int32* )&A_Q12_tmp[ j ] );
                LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  1 - j ], Atmp );
                LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  2 - j ], Atmp );
            }

            /* Add prediction to LPC residual */
            sig_Q10_ptr[ i ] = SKP_ADD32( sig_Q10_ptr[ i ], LPC_pred_Q10 );
                
            /* Update states */
            psDec->sLPC_Q14[ MAX_LPC_ORDER + i ] = SKP_LSHIFT( sig_Q10_ptr[ i ], 4 );
        }
        sig_Q10_ptr += psDec->subfr_length;
        /* Update LPC filter state */
        SKP_memcpy( psDec->sLPC_Q14, &psDec->sLPC_Q14[ psDec->subfr_length ], MAX_LPC_ORDER * sizeof( SKP_int32 ) );
    }

    /* Scale with Gain */
    for( i = 0; i < psDec->frame_length; i++ ) {
        signal[ i ] = ( SKP_int16 )SKP_SAT16( SKP_RSHIFT_ROUND( SKP_SMULWW( sig_Q10[ i ], psPLC->prevGain_Q16[ NB_SUBFR - 1 ] ), 10 ) );
    }

    /**************************************/
    /* Update states                      */
    /**************************************/
    psPLC->rand_seed     = rand_seed;
    psPLC->randScale_Q14 = rand_scale_Q14;
    for( i = 0; i < NB_SUBFR; i++ ) {
        psDecCtrl->pitchL[ i ] = lag;
    }
}
void SKP_Silk_noise_shape_analysis_FIX(
    SKP_Silk_encoder_state_FIX      *psEnc,         /* I/O  Encoder state FIX                           */
    SKP_Silk_encoder_control_FIX    *psEncCtrl,     /* I/O  Encoder control FIX                         */
    const SKP_int16                 *pitch_res,     /* I    LPC residual from pitch analysis            */
    const SKP_int16                 *x              /* I    Input signal [ frame_length + la_shape ]    */
)
{
    SKP_Silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
    SKP_int     k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0;
    SKP_int32   SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32;
    SKP_int32   nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
    SKP_int32   delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
    SKP_int32   auto_corr[     MAX_SHAPE_LPC_ORDER + 1 ];
    SKP_int32   refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
    SKP_int32   AR1_Q24[       MAX_SHAPE_LPC_ORDER ];
    SKP_int32   AR2_Q24[       MAX_SHAPE_LPC_ORDER ];
    SKP_int16   x_windowed[    SHAPE_LPC_WIN_MAX ];
    const SKP_int16 *x_ptr, *pitch_res_ptr;

    SKP_int32   sqrt_nrg[ NB_SUBFR ], Qnrg_vec[ NB_SUBFR ];

    /* Point to start of first LPC analysis block */
    x_ptr = x - psEnc->sCmn.la_shape;

    /****************/
    /* CONTROL SNR  */
    /****************/
    /* Reduce SNR_dB values if recent bitstream has exceeded TargetRate */
    psEncCtrl->current_SNR_dB_Q7 = psEnc->SNR_dB_Q7 - SKP_SMULWB( SKP_LSHIFT( ( SKP_int32 )psEnc->BufferedInChannel_ms, 7 ), 
        SKP_FIX_CONST( 0.05, 16 ) );

    /* Reduce SNR_dB if inband FEC used */
    if( psEnc->speech_activity_Q8 > SKP_FIX_CONST( LBRR_SPEECH_ACTIVITY_THRES, 8 ) ) {
        psEncCtrl->current_SNR_dB_Q7 -= SKP_RSHIFT( psEnc->inBandFEC_SNR_comp_Q8, 1 );
    }

    /****************/
    /* GAIN CONTROL */
    /****************/
    /* Input quality is the average of the quality in the lowest two VAD bands */
    psEncCtrl->input_quality_Q14 = ( SKP_int )SKP_RSHIFT( ( SKP_int32 )psEncCtrl->input_quality_bands_Q15[ 0 ] 
        + psEncCtrl->input_quality_bands_Q15[ 1 ], 2 );

    /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
    psEncCtrl->coding_quality_Q14 = SKP_RSHIFT( SKP_Silk_sigm_Q15( SKP_RSHIFT_ROUND( psEncCtrl->current_SNR_dB_Q7 - 
        SKP_FIX_CONST( 18.0, 7 ), 4 ) ), 1 );

    /* Reduce coding SNR during low speech activity */
    b_Q8 = SKP_FIX_CONST( 1.0, 8 ) - psEnc->speech_activity_Q8;
    b_Q8 = SKP_SMULWB( SKP_LSHIFT( b_Q8, 8 ), b_Q8 );
    SNR_adj_dB_Q7 = SKP_SMLAWB( psEncCtrl->current_SNR_dB_Q7,
        SKP_SMULBB( SKP_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ),                                       // Q11
        SKP_SMULWB( SKP_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) );     // Q12

    if( psEncCtrl->sCmn.sigtype == SIG_TYPE_VOICED ) {
        /* Reduce gains for periodic signals */
        SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, SKP_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
    } else { 
        /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
        SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, 
            SKP_SMLAWB( SKP_FIX_CONST( 6.0, 9 ), -SKP_FIX_CONST( 0.4, 18 ), psEncCtrl->current_SNR_dB_Q7 ),
            SKP_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
    }

    /*************************/
    /* SPARSENESS PROCESSING */
    /*************************/
    /* Set quantizer offset */
    if( psEncCtrl->sCmn.sigtype == SIG_TYPE_VOICED ) {
        /* Initally set to 0; may be overruled in process_gains(..) */
        psEncCtrl->sCmn.QuantOffsetType = 0;
        psEncCtrl->sparseness_Q8 = 0;
    } else {
        /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
        nSamples = SKP_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
        energy_variation_Q7 = 0;
        log_energy_prev_Q7  = 0;
        pitch_res_ptr = pitch_res;
        for( k = 0; k < FRAME_LENGTH_MS / 2; k++ ) {    
            SKP_Silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
            nrg += SKP_RSHIFT( nSamples, scale );           // Q(-scale)
            
            log_energy_Q7 = SKP_Silk_lin2log( nrg );
            if( k > 0 ) {
                energy_variation_Q7 += SKP_abs( log_energy_Q7 - log_energy_prev_Q7 );
            }
            log_energy_prev_Q7 = log_energy_Q7;
            pitch_res_ptr += nSamples;
        }

        psEncCtrl->sparseness_Q8 = SKP_RSHIFT( SKP_Silk_sigm_Q15( SKP_SMULWB( energy_variation_Q7 - 
            SKP_FIX_CONST( 5.0, 7 ), SKP_FIX_CONST( 0.1, 16 ) ) ), 7 );

        /* Set quantization offset depending on sparseness measure */
        if( psEncCtrl->sparseness_Q8 > SKP_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) {
            psEncCtrl->sCmn.QuantOffsetType = 0;
        } else {
            psEncCtrl->sCmn.QuantOffsetType = 1;
        }
        
        /* Increase coding SNR for sparse signals */
        SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, SKP_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SKP_FIX_CONST( 0.5, 8 ) );
    }

    /*******************************/
    /* Control bandwidth expansion */
    /*******************************/
    /* More BWE for signals with high prediction gain */
    strength_Q16 = SKP_SMULWB( psEncCtrl->predGain_Q16, SKP_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
    BWExp1_Q16 = BWExp2_Q16 = SKP_DIV32_varQ( SKP_FIX_CONST( BANDWIDTH_EXPANSION, 16 ), 
        SKP_SMLAWW( SKP_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
    delta_Q16  = SKP_SMULWB( SKP_FIX_CONST( 1.0, 16 ) - SKP_SMULBB( 3, psEncCtrl->coding_quality_Q14 ), 
        SKP_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) );
    BWExp1_Q16 = SKP_SUB32( BWExp1_Q16, delta_Q16 );
    BWExp2_Q16 = SKP_ADD32( BWExp2_Q16, delta_Q16 );
    /* BWExp1 will be applied after BWExp2, so make it relative */
    BWExp1_Q16 = SKP_DIV32_16( SKP_LSHIFT( BWExp1_Q16, 14 ), SKP_RSHIFT( BWExp2_Q16, 2 ) );

    if( psEnc->sCmn.warping_Q16 > 0 ) {
        /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
        warping_Q16 = SKP_SMLAWB( psEnc->sCmn.warping_Q16, psEncCtrl->coding_quality_Q14, SKP_FIX_CONST( 0.01, 18 ) );
    } else {
        warping_Q16 = 0;
    }

    /********************************************/
    /* Compute noise shaping AR coefs and gains */
    /********************************************/
    for( k = 0; k < NB_SUBFR; k++ ) {
        /* Apply window: sine slope followed by flat part followed by cosine slope */
        SKP_int shift, slope_part, flat_part;
        flat_part = psEnc->sCmn.fs_kHz * 5;
        slope_part = SKP_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );

        SKP_Silk_apply_sine_window_new( x_windowed, x_ptr, 1, slope_part );
        shift = slope_part;
        SKP_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(SKP_int16) );
        shift += flat_part;
        SKP_Silk_apply_sine_window_new( x_windowed + shift, x_ptr + shift, 2, slope_part );
        
        /* Update pointer: next LPC analysis block */
        x_ptr += psEnc->sCmn.subfr_length;

        if( psEnc->sCmn.warping_Q16 > 0 ) {
            /* Calculate warped auto correlation */
            SKP_Silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder ); 
        } else {
            /* Calculate regular auto correlation */
            SKP_Silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1 );
        }

        /* Add white noise, as a fraction of energy */
        auto_corr[0] = SKP_ADD32( auto_corr[0], SKP_max_32( SKP_SMULWB( SKP_RSHIFT( auto_corr[ 0 ], 4 ), 
            SKP_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) ); 

        /* Calculate the reflection coefficients using schur */
        nrg = SKP_Silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
        SKP_assert( nrg >= 0 );

        /* Convert reflection coefficients to prediction coefficients */
        SKP_Silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );

        Qnrg = -scale;          // range: -12...30
        SKP_assert( Qnrg >= -12 );
        SKP_assert( Qnrg <=  30 );

        /* Make sure that Qnrg is an even number */
        if( Qnrg & 1 ) {
            Qnrg -= 1;
            nrg >>= 1;
        }

        tmp32 = SKP_Silk_SQRT_APPROX( nrg );
        Qnrg >>= 1;             // range: -6...15

        sqrt_nrg[ k ] = tmp32;
        Qnrg_vec[ k ] = Qnrg;

        psEncCtrl->Gains_Q16[ k ] = SKP_LSHIFT_SAT32( tmp32, 16 - Qnrg );

        if( psEnc->sCmn.warping_Q16 > 0 ) {
            /* Adjust gain for warping */
            gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
            SKP_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
            psEncCtrl->Gains_Q16[ k ] = SKP_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
            if( psEncCtrl->Gains_Q16[ k ] < 0 ) {
                psEncCtrl->Gains_Q16[ k ] = SKP_int32_MAX;
            }
        }

        /* Bandwidth expansion for synthesis filter shaping */
        SKP_Silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 );

        /* Compute noise shaping filter coefficients */
        SKP_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( SKP_int32 ) );

        /* Bandwidth expansion for analysis filter shaping */
        SKP_assert( BWExp1_Q16 <= SKP_FIX_CONST( 1.0, 16 ) );
        SKP_Silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 );

        /* Ratio of prediction gains, in energy domain */
        SKP_Silk_LPC_inverse_pred_gain_Q24( &pre_nrg_Q30, AR2_Q24, psEnc->sCmn.shapingLPCOrder );
        SKP_Silk_LPC_inverse_pred_gain_Q24( &nrg,         AR1_Q24, psEnc->sCmn.shapingLPCOrder );

        //psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;
        pre_nrg_Q30 = SKP_LSHIFT32( SKP_SMULWB( pre_nrg_Q30, SKP_FIX_CONST( 0.7, 15 ) ), 1 );
        psEncCtrl->GainsPre_Q14[ k ] = ( SKP_int ) SKP_FIX_CONST( 0.3, 14 ) + SKP_DIV32_varQ( pre_nrg_Q30, nrg, 14 );

        /* Convert to monic warped prediction coefficients and limit absolute values */
        limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SKP_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );

        /* Convert from Q24 to Q13 and store in int16 */
        for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
            psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (SKP_int16)SKP_SAT16( SKP_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) );
            psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (SKP_int16)SKP_SAT16( SKP_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) );
        }
    }
        /* Convert from Q24 to Q13 and store in int16 */
        for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
            psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (SKP_int16)SKP_SAT16( SKP_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) );
            psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (SKP_int16)SKP_SAT16( SKP_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) );
        }
    }

    /*****************/
    /* Gain tweaking */
    /*****************/
    /* Increase gains during low speech activity and put lower limit on gains */
    gain_mult_Q16 = SKP_Silk_log2lin( -SKP_SMLAWB( -SKP_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7,                            SKP_FIX_CONST( 0.16, 16 ) ) );
    gain_add_Q16  = SKP_Silk_log2lin(  SKP_SMLAWB(  SKP_FIX_CONST( 16.0, 7 ), SKP_FIX_CONST( NOISE_FLOOR_dB, 7 ),       SKP_FIX_CONST( 0.16, 16 ) ) );
    tmp32         = SKP_Silk_log2lin(  SKP_SMLAWB(  SKP_FIX_CONST( 16.0, 7 ), SKP_FIX_CONST( RELATIVE_MIN_GAIN_dB, 7 ), SKP_FIX_CONST( 0.16, 16 ) ) );
    tmp32 = SKP_SMULWW( psEnc->avgGain_Q16, tmp32 );
    gain_add_Q16 = SKP_ADD_SAT32( gain_add_Q16, tmp32 );
    SKP_assert( gain_mult_Q16 >= 0 );

    for( k = 0; k < NB_SUBFR; k++ ) {
        psEncCtrl->Gains_Q16[ k ] = SKP_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
        if( psEncCtrl->Gains_Q16[ k ] < 0 ) {
            psEncCtrl->Gains_Q16[ k ] = SKP_int32_MAX;
        }
    }

    for( k = 0; k < NB_SUBFR; k++ ) {
        psEncCtrl->Gains_Q16[ k ] = SKP_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
        psEnc->avgGain_Q16 = SKP_ADD_SAT32( 
            psEnc->avgGain_Q16, 
            SKP_SMULWB(
/* Processing of gains */
void SKP_Silk_process_gains_FIX(
    SKP_Silk_encoder_state_FIX      *psEnc,         /* I/O  Encoder state_FIX                           */
    SKP_Silk_encoder_control_FIX    *psEncCtrl      /* I/O  Encoder control_FIX                         */
)
{
    SKP_Silk_shape_state_FIX    *psShapeSt = &psEnc->sShape;
    SKP_int     k;
    SKP_int32   s_Q16, InvMaxSqrVal_Q16, gain, gain_squared, ResNrg, ResNrgPart;

    /* Gain reduction when LTP coding gain is high */
    if( psEncCtrl->sCmn.sigtype == SIG_TYPE_VOICED ) {
        /*s = -0.5f * SKP_sigmoid( 0.25f * ( psEncCtrl->LTPredCodGain - 12.0f ) ); */
        s_Q16 = -SKP_Silk_sigm_Q15( SKP_RSHIFT_ROUND( psEncCtrl->LTPredCodGain_Q7 - (12 << 7), 4 ) );
        for( k = 0; k < NB_SUBFR; k++ ) {
            psEncCtrl->Gains_Q16[ k ] = SKP_SMLAWB( psEncCtrl->Gains_Q16[ k ], psEncCtrl->Gains_Q16[ k ], s_Q16 );
        }
    }

    /* Limit the quantized signal */
    /*  69 = 21.0f + 16/0.33    */
    InvMaxSqrVal_Q16 = SKP_DIV32_16( SKP_Silk_log2lin( 
        SKP_SMULWB( (69 << 7) - psEncCtrl->current_SNR_dB_Q7, SKP_FIX_CONST( 0.33, 16 )) ), psEnc->sCmn.subfr_length );

    for( k = 0; k < NB_SUBFR; k++ ) {
        /* Soft limit on ratio residual energy and squared gains */
        ResNrg     = psEncCtrl->ResNrg[ k ];
        ResNrgPart = SKP_SMULWW( ResNrg, InvMaxSqrVal_Q16 );
        if( psEncCtrl->ResNrgQ[ k ] > 0 ) {
            if( psEncCtrl->ResNrgQ[ k ] < 32 ) {
                ResNrgPart = SKP_RSHIFT_ROUND( ResNrgPart, psEncCtrl->ResNrgQ[ k ] );
            } else {
                ResNrgPart = 0;
            }
        } else if( psEncCtrl->ResNrgQ[k] != 0 ) {
            if( ResNrgPart > SKP_RSHIFT( SKP_int32_MAX, -psEncCtrl->ResNrgQ[ k ] ) ) {
                ResNrgPart = SKP_int32_MAX;
            } else {
                ResNrgPart = SKP_LSHIFT( ResNrgPart, -psEncCtrl->ResNrgQ[ k ] );
            }
        }
        gain = psEncCtrl->Gains_Q16[ k ];
        gain_squared = SKP_ADD_SAT32( ResNrgPart, SKP_SMMUL( gain, gain ) );
        if( gain_squared < SKP_int16_MAX ) {
            /* recalculate with higher precision */
            gain_squared = SKP_SMLAWW( SKP_LSHIFT( ResNrgPart, 16 ), gain, gain );
            SKP_assert( gain_squared > 0 );
            gain = SKP_Silk_SQRT_APPROX( gain_squared );                  /* Q8   */
            psEncCtrl->Gains_Q16[ k ] = SKP_LSHIFT_SAT32( gain, 8 );        /* Q16  */
        } else {
            gain = SKP_Silk_SQRT_APPROX( gain_squared );                  /* Q0   */
            psEncCtrl->Gains_Q16[ k ] = SKP_LSHIFT_SAT32( gain, 16 );       /* Q16  */
        }
    }

    /* Noise shaping quantization */
    SKP_Silk_gains_quant( psEncCtrl->sCmn.GainsIndices, psEncCtrl->Gains_Q16, 
        &psShapeSt->LastGainIndex, psEnc->sCmn.nFramesInPayloadBuf );
    /* Set quantizer offset for voiced signals. Larger offset when LTP coding gain is low or tilt is high (ie low-pass) */
    if( psEncCtrl->sCmn.sigtype == SIG_TYPE_VOICED ) {
        if( psEncCtrl->LTPredCodGain_Q7 + SKP_RSHIFT( psEncCtrl->input_tilt_Q15, 8 ) > ( 1 << 7 ) ) {
            psEncCtrl->sCmn.QuantOffsetType = 0;
        } else {
            psEncCtrl->sCmn.QuantOffsetType = 1;
        }
    }

    /* Quantizer boundary adjustment */
    if( psEncCtrl->sCmn.sigtype == SIG_TYPE_VOICED ) {
        psEncCtrl->Lambda_Q10 = SKP_FIX_CONST( 1.3, 10 )
                  - SKP_SMULWB( SKP_FIX_CONST( 0.5, 18 ), psEnc->speech_activity_Q8       )
                  - SKP_SMULWB( SKP_FIX_CONST( 0.3, 12 ), psEncCtrl->input_quality_Q14    )
                  + SKP_SMULBB( SKP_FIX_CONST( 0.2, 10 ), psEncCtrl->sCmn.QuantOffsetType )
                  - SKP_SMULWB( SKP_FIX_CONST( 0.1, 12 ), psEncCtrl->coding_quality_Q14   );
    } else {
        psEncCtrl->Lambda_Q10 = SKP_FIX_CONST( 1.3, 10 )
                  - SKP_SMULWB( SKP_FIX_CONST( 0.5, 18 ), psEnc->speech_activity_Q8       )
                  - SKP_SMULWB( SKP_FIX_CONST( 0.4, 12 ), psEncCtrl->input_quality_Q14    )
                  + SKP_SMULBB( SKP_FIX_CONST( 0.4, 10 ), psEncCtrl->sCmn.QuantOffsetType )
                  - SKP_SMULWB( SKP_FIX_CONST( 0.1, 12 ), psEncCtrl->coding_quality_Q14   );
    }
    SKP_assert( psEncCtrl->Lambda_Q10 >= 0 );
    SKP_assert( psEncCtrl->Lambda_Q10 < SKP_FIX_CONST( 2, 10 ) );
    
}