Esempio n. 1
0
File: clocks.c Progetto: eren/lk
static uint32_t get_io_pll_freq(void)
{
    LTRACEF("IO_PLL_CTRL 0x%x\n", SLCR_REG(IO_PLL_CTRL));

    // XXX test that the pll is actually enabled

    uint32_t fdiv = BITS_SHIFT(SLCR_REG(IO_PLL_CTRL), 18, 12);

    return EXTERNAL_CLOCK_FREQ * fdiv;
}
Esempio n. 2
0
void platform_init(void)
{
    uart_init();

    /* enable if we want to see some hardware boot status */
#if 0
    printf("zynq boot status:\n");
    printf("\tREBOOT_STATUS 0x%x\n", SLCR_REG(REBOOT_STATUS));
    printf("\tBOOT_MODE 0x%x\n", SLCR_REG(BOOT_MODE));

    zynq_dump_clocks();
#endif
}
Esempio n. 3
0
void platform_early_init(void)
{
    zynq_mio_init();
    zynq_pll_init();
    zynq_clk_init();
#if ZYNQ_SDRAM_INIT
    zynq_ddr_init();
#endif

    zynq_slcr_unlock();

    /* Enable all level shifters */
    SLCR_REG(LVL_SHFTR_EN) = 0xF;
    /* FPGA SW reset (not documented, but mandatory) */
    SLCR_REG(FPGA_RST_CTRL) = 0x0;

    /* zynq manual says this is mandatory for cache init */
    *REG32(SLCR_BASE + 0xa1c) = 0x020202;

    zynq_slcr_lock();

    /* early initialize the uart so we can printf */
    uart_init_early();

    /* initialize the interrupt controller */
    arm_gic_init();

    /* initialize the timer block */
    arm_cortex_a9_timer_init(CPUPRIV_BASE, zynq_get_arm_timer_freq());

    /* add the main memory arena */
#if !ZYNQ_CODE_IN_SDRAM && SDRAM_SIZE != 0
    /* In the case of running from SRAM, and we are using SDRAM,
     * there is a discontinuity between the end of SRAM (256K) and the start of SDRAM (1MB),
     * so intentionally bump the boot-time allocator to start in the base of SDRAM.
     */
    extern uintptr_t boot_alloc_start;
    extern uintptr_t boot_alloc_end;

    boot_alloc_start = KERNEL_BASE + MB;
    boot_alloc_end = KERNEL_BASE + MB;
#endif

#if SDRAM_SIZE != 0
    pmm_add_arena(&sdram_arena);
#endif
    pmm_add_arena(&sram_arena);
}
Esempio n. 4
0
int zynq_mio_init(void)
{

    /* This DDRIOB configuration applies to both zybo and uzed, but it's possible
     * it may not work for all boards in the future. Just something to keep in mind
     * with different memory configurations.
     */
    SLCR_REG(GPIOB_CTRL) = GPIOB_CTRL_VREF_EN;

    for (size_t pin = 0; pin < countof(zynq_mio_cfg); pin++) {
        if (zynq_mio_cfg[pin] != MIO_DEFAULT) {
            SLCR_REG(MIO_PIN_00 + (pin * 4)) = zynq_mio_cfg[pin];
        }
    }

    SLCR_REG(SD0_WP_CD_SEL) = SDIO0_WP_SEL(0x37) | SDIO0_CD_SEL(0x2F);

    return 0;
}
Esempio n. 5
0
static inline int pll_poll(uint32_t mask)
{
    uint32_t iters = UINT_MAX;
    while (iters-- && !(SLCR_REG(PLL_STATUS) & mask)) ;

    if (iters) {
        return 0;
    }

    return -1;
}
Esempio n. 6
0
void platform_quiesce(void)
{
#if ZYNQ_WITH_GEM_ETH
    gem_disable();
#endif

    platform_stop_timer();

    /* stop the 2nd cpu and hold in reset */
    SLCR_REG(A9_CPU_RST_CTRL) |= (1<<1); // reset cpu 1
}
Esempio n. 7
0
File: platform.c Progetto: singoc/lk
void platform_init(void)
{
    uart_init();

    /* enable if we want to see some hardware boot status */
#if 0
    printf("zynq boot status:\n");
    printf("\tREBOOT_STATUS 0x%x\n", SLCR_REG(REBOOT_STATUS));
    printf("\tBOOT_MODE 0x%x\n", SLCR_REG(BOOT_MODE));

    zynq_dump_clocks();

    printf("zynq mio:\n");
    for (size_t i = 0; i < 54; i++) {
        printf("\t%02u: 0x%08x", i, *REG32((uintptr_t)&SLCR->MIO_PIN_00 + (i * 4)));
        if (i % 4 == 3 || i == 53) {
            putchar('\n');
        }
    }
#endif

    gem_init(GEM0_BASE, 256*1024);
}
Esempio n. 8
0
File: clocks.c Progetto: eren/lk
static uint32_t get_cpu_input_freq(void)
{
    LTRACEF("ARM_CLK_CTRL 0x%x\n", SLCR_REG(ARM_CLK_CTRL));

    uint32_t divisor = BITS_SHIFT(SLCR_REG(ARM_CLK_CTRL), 13, 8);
    uint32_t srcsel = BITS_SHIFT(SLCR_REG(ARM_CLK_CTRL), 5, 4);

    uint32_t srcclk;
    switch (srcsel) {
        default: case 0: case 1: // arm pll
            srcclk = get_arm_pll_freq();
            break;
        case 2: // ddr pll
            srcclk = get_ddr_pll_freq();
            break;
        case 3: // io pll
            srcclk = get_io_pll_freq();
            break;
    }

    // cpu 6x4x
    return srcclk / divisor;
}
Esempio n. 9
0
File: clocks.c Progetto: eren/lk
static uint32_t get_cpu_1x_freq(void)
{
    // cpu 1x is either /6 or /4 the speed of 6x4x
    return get_cpu_input_freq() / ((SLCR_REG(CLK_621_TRUE) & 1) ? 6 : 4);
}
Esempio n. 10
0
File: clocks.c Progetto: eren/lk
static uint32_t get_cpu_2x_freq(void)
{
    // cpu 2x is either /3 or /2 the speed of 6x4x
    return get_cpu_input_freq() / ((SLCR_REG(CLK_621_TRUE) & 1) ? 3 : 2);
}
Esempio n. 11
0
void zynq_clk_init(void)
{
    zynq_slcr_unlock();
    SLCR_REG(DCI_CLK_CTRL)   = zynq_clk_cfg.dci_clk;
    SLCR_REG(GEM0_CLK_CTRL)  = zynq_clk_cfg.gem0_clk;
    SLCR_REG(GEM0_RCLK_CTRL) = zynq_clk_cfg.gem0_rclk;
    SLCR_REG(GEM1_CLK_CTRL)  = zynq_clk_cfg.gem1_clk;
    SLCR_REG(GEM1_RCLK_CTRL) = zynq_clk_cfg.gem1_rclk;
    SLCR_REG(LQSPI_CLK_CTRL) = zynq_clk_cfg.lqspi_clk;
    SLCR_REG(SDIO_CLK_CTRL)  = zynq_clk_cfg.sdio_clk;
    SLCR_REG(UART_CLK_CTRL)  = zynq_clk_cfg.uart_clk;
    SLCR_REG(PCAP_CLK_CTRL)  = zynq_clk_cfg.pcap_clk;
    SLCR_REG(FPGA0_CLK_CTRL) = zynq_clk_cfg.fpga0_clk;
    SLCR_REG(FPGA1_CLK_CTRL) = zynq_clk_cfg.fpga1_clk;
    SLCR_REG(FPGA2_CLK_CTRL) = zynq_clk_cfg.fpga2_clk;
    SLCR_REG(FPGA3_CLK_CTRL) = zynq_clk_cfg.fpga3_clk;
    SLCR_REG(APER_CLK_CTRL)  = zynq_clk_cfg.aper_clk;
    SLCR_REG(CLK_621_TRUE)   = zynq_clk_cfg.clk_621_true;
    zynq_slcr_lock();
}
Esempio n. 12
0
void platform_early_init(void)
{
#if 0
    ps7_init();
#else
    /* Unlock the registers and leave them that way */
    zynq_slcr_unlock();
    zynq_mio_init();
    zynq_pll_init();
    zynq_clk_init();
#if ZYNQ_SDRAM_INIT
    zynq_ddr_init();
#endif
#endif

    /* Enable all level shifters */
    SLCR_REG(LVL_SHFTR_EN) = 0xF;
    /* FPGA SW reset (not documented, but mandatory) */
    SLCR_REG(FPGA_RST_CTRL) = 0x0;

    /* zynq manual says this is mandatory for cache init */
    *REG32(SLCR_BASE + 0xa1c) = 0x020202;

    /* early initialize the uart so we can printf */
    uart_init_early();

    /* initialize the interrupt controller */
    arm_gic_init();
    zynq_gpio_init();

    /* initialize the timer block */
    arm_cortex_a9_timer_init(CPUPRIV_BASE, zynq_get_arm_timer_freq());

    /* bump the 2nd cpu into our code space and remap the top SRAM block */
    if (KERNEL_LOAD_OFFSET != 0) {
        /* construct a trampoline to get the 2nd cpu up to the trap routine */

        /* figure out the offset of the trampoline routine in physical space from address 0 */
        extern void platform_reset(void);
        addr_t tramp = (addr_t)&platform_reset;
        tramp -= KERNEL_BASE;
        tramp += MEMBASE;

        /* stuff in a ldr pc, [nextaddrress], and a target address */
        uint32_t *ptr = (uint32_t *)KERNEL_BASE;

        ptr[0] = 0xe51ff004; // ldr pc, [pc, #-4]
        ptr[1] = tramp;
        arch_clean_invalidate_cache_range((addr_t)ptr, 8);
    }

    /* reset the 2nd cpu, letting it go through its reset vector (at 0x0 physical) */
    SLCR_REG(A9_CPU_RST_CTRL) |= (1<<1); // reset cpu 1
    spin(10);
    SLCR_REG(A9_CPU_RST_CTRL) &= ~(1<<1); // unreset cpu 1

    /* wait for the 2nd cpu to reset, go through the usual reset vector, and get trapped by our code */
    /* see platform/zynq/reset.S */
    extern volatile int __cpu_trapped;
    uint count = 100000;
    while (--count) {
        arch_clean_invalidate_cache_range((addr_t)&__cpu_trapped, sizeof(__cpu_trapped));
        if (__cpu_trapped != 0)
            break;
    }
    if (count == 0) {
        panic("ZYNQ: failed to trap 2nd cpu\n");
    }

    /* bounce the 4th sram region down to lower address */
    SLCR_REG(OCM_CFG) &= ~0xf; /* all banks at low address */

    /* add the main memory arena */
#if !ZYNQ_CODE_IN_SDRAM && SDRAM_SIZE != 0
    /* In the case of running from SRAM, and we are using SDRAM,
     * there is a discontinuity between the end of SRAM (256K) and the start of SDRAM (1MB),
     * so intentionally bump the boot-time allocator to start in the base of SDRAM.
     */
    extern uintptr_t boot_alloc_start;
    extern uintptr_t boot_alloc_end;

    boot_alloc_start = KERNEL_BASE + MB;
    boot_alloc_end = KERNEL_BASE + MB;
#endif

#if SDRAM_SIZE != 0
    pmm_add_arena(&sdram_arena);
#endif
    pmm_add_arena(&sram_arena);
}
Esempio n. 13
0
void zynq_ddr_init(void)
{
    SLCR_REG(DDRIOB_ADDR0) = zynq_ddriob_cfg.addr0;
    SLCR_REG(DDRIOB_ADDR1) = zynq_ddriob_cfg.addr1;
    SLCR_REG(DDRIOB_DATA0) = zynq_ddriob_cfg.data0;
    SLCR_REG(DDRIOB_DATA1) = zynq_ddriob_cfg.data1;
    SLCR_REG(DDRIOB_DIFF0) = zynq_ddriob_cfg.diff0;
    SLCR_REG(DDRIOB_DIFF1) = zynq_ddriob_cfg.diff1;
    SLCR_REG(DDRIOB_CLOCK) = DDRIOB_OUTPUT_EN(0x3);

    /* These register fields are not documented in the TRM. These
     * values represent the defaults generated via the Zynq tools
     */
    SLCR_REG(DDRIOB_DRIVE_SLEW_ADDR) = 0x0018C61CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_DATA) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_DIFF) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_CLOCK) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DDR_CTRL) = 0x00000E60U;
    SLCR_REG(DDRIOB_DCI_CTRL) = 0x00000001U;
    SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000020U;
    SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000823U;

    /* Write addresss / value pairs from target table */
    for (size_t i = 0; i < zynq_ddr_cfg_cnt; i += 2) {
        *REG32(zynq_ddr_cfg[i]) = zynq_ddr_cfg[i+1];
    }

    /* Wait for DCI done */
    reg_poll((uintptr_t)&SLCR->DDRIOB_DCI_STATUS, 0x2000);

    /* Bring ddr out of reset and wait until self refresh */
    *REG32(DDRC_CTRL) |= DDRC_CTRL_OUT_OF_RESET;
    reg_poll(DDRC_MODE_STATUS, DDRC_STS_SELF_REFRESH);

    /* Switch timer to 64k */
    *REG32(0XF8007000) = *REG32(0xF8007000) & ~0x20000000U;

    if (zynq_ddriob_cfg.ibuf_disable) {
        SLCR_REG(DDRIOB_DATA0) |= DDRIOB_IBUF_DISABLE_MODE;
        SLCR_REG(DDRIOB_DATA1) |= DDRIOB_IBUF_DISABLE_MODE;
        SLCR_REG(DDRIOB_DIFF0) |= DDRIOB_IBUF_DISABLE_MODE;
        SLCR_REG(DDRIOB_DIFF1) |= DDRIOB_IBUF_DISABLE_MODE;
    }

    if (zynq_ddriob_cfg.term_disable) {
        SLCR_REG(DDRIOB_DATA0) |= DDRIOB_TERM_DISABLE_MODE;
        SLCR_REG(DDRIOB_DATA1) |= DDRIOB_TERM_DISABLE_MODE;
        SLCR_REG(DDRIOB_DIFF0) |= DDRIOB_TERM_DISABLE_MODE;
        SLCR_REG(DDRIOB_DIFF1) |= DDRIOB_TERM_DISABLE_MODE;
    }
}
Esempio n. 14
0
void zynq_clk_init(void)
{
    SLCR_REG(DCI_CLK_CTRL)   = zynq_clk_cfg.dci_clk;
    SLCR_REG(GEM0_CLK_CTRL)  = zynq_clk_cfg.gem0_clk;
    SLCR_REG(GEM0_RCLK_CTRL) = zynq_clk_cfg.gem0_rclk;
    SLCR_REG(GEM1_CLK_CTRL)  = zynq_clk_cfg.gem1_clk;
    SLCR_REG(GEM1_RCLK_CTRL) = zynq_clk_cfg.gem1_rclk;
    SLCR_REG(SMC_CLK_CTRL)   = zynq_clk_cfg.smc_clk;
    SLCR_REG(LQSPI_CLK_CTRL) = zynq_clk_cfg.lqspi_clk;
    SLCR_REG(SDIO_CLK_CTRL)  = zynq_clk_cfg.sdio_clk;
    SLCR_REG(UART_CLK_CTRL)  = zynq_clk_cfg.uart_clk;
    SLCR_REG(SPI_CLK_CTRL)   = zynq_clk_cfg.spi_clk;
    SLCR_REG(CAN_CLK_CTRL)   = zynq_clk_cfg.can_clk;
    SLCR_REG(CAN_MIOCLK_CTRL)= zynq_clk_cfg.can_mioclk;
    SLCR_REG(USB0_CLK_CTRL)  = zynq_clk_cfg.usb0_clk;
    SLCR_REG(USB1_CLK_CTRL)  = zynq_clk_cfg.usb1_clk;
    SLCR_REG(PCAP_CLK_CTRL)  = zynq_clk_cfg.pcap_clk;
    SLCR_REG(FPGA0_CLK_CTRL) = zynq_clk_cfg.fpga0_clk;
    SLCR_REG(FPGA1_CLK_CTRL) = zynq_clk_cfg.fpga1_clk;
    SLCR_REG(FPGA2_CLK_CTRL) = zynq_clk_cfg.fpga2_clk;
    SLCR_REG(FPGA3_CLK_CTRL) = zynq_clk_cfg.fpga3_clk;
    SLCR_REG(APER_CLK_CTRL)  = zynq_clk_cfg.aper_clk;
    SLCR_REG(CLK_621_TRUE)   = zynq_clk_cfg.clk_621_true;
}
Esempio n. 15
0
/* For each PLL we need to configure the cp / res / lock_cnt and then place the PLL in bypass
 * before doing a reset to switch to the new values. Then bypass is removed to switch back to using
 * the PLL once its locked.
 */
int zynq_pll_init(void) {
    const zynq_pll_cfg_tree_t *cfg = &zynq_pll_cfg;

    zynq_slcr_unlock();
    SLCR_REG(ARM_PLL_CFG)  = PLL_CFG_LOCK_CNT(cfg->arm.lock_cnt) | PLL_CFG_PLL_CP(cfg->arm.cp) |
                                PLL_CFG_PLL_RES(cfg->arm.res);
    SLCR_REG(ARM_PLL_CTRL) = PLL_FDIV(cfg->arm.fdiv) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(ARM_PLL_CTRL) &= ~PLL_RESET;

    if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_ARM_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(ARM_PLL_CTRL) &= ~PLL_BYPASS_FORCE;
    SLCR_REG(ARM_CLK_CTRL) = zynq_clk_cfg.arm_clk;

#if ZYNQ_SDRAM_INIT
    SLCR_REG(DDR_PLL_CFG)  = PLL_CFG_LOCK_CNT(cfg->ddr.lock_cnt) | PLL_CFG_PLL_CP(cfg->ddr.cp) |
                                PLL_CFG_PLL_RES(cfg->ddr.res);
    SLCR_REG(DDR_PLL_CTRL) = PLL_FDIV(cfg->ddr.fdiv) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(DDR_PLL_CTRL) &= ~PLL_RESET;

    if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_DDR_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(DDR_PLL_CTRL) &= ~PLL_BYPASS_FORCE;
    SLCR_REG(DDR_CLK_CTRL) = zynq_clk_cfg.ddr_clk;
#endif
    SLCR_REG(IO_PLL_CFG)  = PLL_CFG_LOCK_CNT(cfg->io.lock_cnt) | PLL_CFG_PLL_CP(cfg->io.cp) |
                                PLL_CFG_PLL_RES(cfg->io.res);
    SLCR_REG(IO_PLL_CTRL) = PLL_FDIV(cfg->io.fdiv) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(IO_PLL_CTRL) &= ~PLL_RESET;

    if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_IO_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(IO_PLL_CTRL) &= ~PLL_BYPASS_FORCE;
    zynq_slcr_lock();
    return 0;
}
Esempio n. 16
0
int zynq_clk_init(void)
{
    zynq_slcr_unlock();

    SLCR_REG(DCI_CLK_CTRL)   = CLK_CTRL_CLKACT1 | CLK_CTRL_DIVISOR1(52) | CLK_CTRL_DIVISOR2(2);
    SLCR_REG(GEM0_RCLK_CTRL) = CLK_CTRL_CLKACT1;
    SLCR_REG(GEM0_CLK_CTRL)  = CLK_CTRL_CLKACT1 | CLK_CTRL_DIVISOR1(8) | CLK_CTRL_DIVISOR2(1);
    SLCR_REG(LQSPI_CLK_CTRL) = CLK_CTRL_CLKACT1 | CLK_CTRL_DIVISOR1(5);
    SLCR_REG(SDIO_CLK_CTRL)  = CLK_CTRL_CLKACT1 | CLK_CTRL_DIVISOR1(20);
    SLCR_REG(UART_CLK_CTRL)  = CLK_CTRL_CLKACT2 | CLK_CTRL_DIVISOR1(20);
    SLCR_REG(PCAP_CLK_CTRL)  = CLK_CTRL_CLKACT1 | CLK_CTRL_DIVISOR1(5);
    SLCR_REG(FPGA0_CLK_CTRL) = CLK_CTRL_DIVISOR1(10) | CLK_CTRL_DIVISOR2(1);
    SLCR_REG(FPGA1_CLK_CTRL) = CLK_CTRL_SRCSEL(3) | CLK_CTRL_DIVISOR1(6) | CLK_CTRL_DIVISOR2(1);
    SLCR_REG(FPGA2_CLK_CTRL) = CLK_CTRL_SRCSEL(2) | CLK_CTRL_DIVISOR1(53) | CLK_CTRL_DIVISOR2(2);
    SLCR_REG(FPGA3_CLK_CTRL) = CLK_CTRL_DIVISOR2(1);
    SLCR_REG(CLK_621_TRUE)   = CLK_621_ENABLE;
    SLCR_REG(APER_CLK_CTRL)  = DMA_CPU_CLK_EN | USB0_CPU_CLK_EN | USB1_CPU_CLK_EN |
                               GEM0_CPU_CLK_EN | SDI0_CPU_CLK_EN | I2C0_CPU_CLK_EN |
                               I2C1_CPU_CLK_EN | UART1_CPU_CLK_EN | GPIO_CPU_CLK_EN |
                               LQSPI_CPU_CLK_EN | SMC_CPU_CLK_EN;
    zynq_slcr_lock();

    return 0;
}
Esempio n. 17
0
int zynq_mio_init(void)
{
    zynq_slcr_unlock();

    SLCR_REG(GPIOB_CTRL) = GPIOB_CTRL_VREF_EN;
    SLCR_REG(DDRIOB_ADDR0) = DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_ADDR1) = DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_DATA0) = DDRIOB_INP_TYPE(1) | DDRIOB_TERM_EN |
                             DDRIOB_DCI_TYPE(0x3) | DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_DATA1) = DDRIOB_INP_TYPE(1) | DDRIOB_TERM_EN |
                             DDRIOB_DCI_TYPE(0x3) | DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_DIFF0) = DDRIOB_INP_TYPE(2) | DDRIOB_TERM_EN |
                             DDRIOB_DCI_TYPE(0x3) | DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_DIFF1) = DDRIOB_INP_TYPE(2) | DDRIOB_TERM_EN |
                             DDRIOB_DCI_TYPE(0x3) | DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_CLOCK) = DDRIOB_OUTPUT_EN(0x3);

    /* These register fields are not documented in the TRM. These
     * values represent the defaults generated via the Zynq tools
     */
    SLCR_REG(DDRIOB_DRIVE_SLEW_ADDR) = 0x0018C61CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_DATA) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_DIFF) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_CLOCK) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DDR_CTRL) = 0x00000E60U;
    SLCR_REG(DDRIOB_DCI_CTRL) = 0x00000001U;
    SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000020U;
    SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000823U;

    /* mio pin config */
    SLCR_REG(MIO_PIN_01) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS33;
    SLCR_REG(MIO_PIN_02) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS33;
    SLCR_REG(MIO_PIN_03) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS33;
    SLCR_REG(MIO_PIN_04) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS33;
    SLCR_REG(MIO_PIN_05) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS33;
    SLCR_REG(MIO_PIN_06) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS33;
    SLCR_REG(MIO_PIN_08) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS33;
    SLCR_REG(MIO_PIN_16) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL | MIO_DISABLE_RCVR;
    SLCR_REG(MIO_PIN_17) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL | MIO_DISABLE_RCVR;
    SLCR_REG(MIO_PIN_18) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL | MIO_DISABLE_RCVR;
    SLCR_REG(MIO_PIN_19) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL | MIO_DISABLE_RCVR;
    SLCR_REG(MIO_PIN_20) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL | MIO_DISABLE_RCVR;
    SLCR_REG(MIO_PIN_21) = MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL | MIO_DISABLE_RCVR;
    SLCR_REG(MIO_PIN_22) = MIO_TRI_ENABLE | MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL;
    SLCR_REG(MIO_PIN_23) = MIO_TRI_ENABLE | MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL;
    SLCR_REG(MIO_PIN_24) = MIO_TRI_ENABLE | MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL;
    SLCR_REG(MIO_PIN_25) = MIO_TRI_ENABLE | MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL;
    SLCR_REG(MIO_PIN_26) = MIO_TRI_ENABLE | MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL;
    SLCR_REG(MIO_PIN_27) = MIO_TRI_ENABLE | MIO_L0_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_HSTL;
    SLCR_REG(MIO_PIN_28) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_29) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18 | MIO_TRI_ENABLE;
    SLCR_REG(MIO_PIN_30) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_31) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18 | MIO_TRI_ENABLE;
    SLCR_REG(MIO_PIN_32) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_33) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_34) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_35) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_36) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18 | MIO_TRI_ENABLE;
    SLCR_REG(MIO_PIN_37) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_38) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_39) = MIO_L1_SEL | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_40) = MIO_L3_SEL(0x4) | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_41) = MIO_L3_SEL(0x4) | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_42) = MIO_L3_SEL(0x4) | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_43) = MIO_L3_SEL(0x4) | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_44) = MIO_L3_SEL(0x4) | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_45) = MIO_L3_SEL(0x4) | MIO_SPEED_FAST | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_47) = MIO_TRI_ENABLE | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_48) = MIO_L3_SEL(0x7) | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_49) = MIO_TRI_ENABLE | MIO_L3_SEL(0x7) | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_52) = MIO_L3_SEL(0x4) | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(MIO_PIN_53) = MIO_L3_SEL(0x4) | MIO_IO_TYPE_LVCMOS18;
    SLCR_REG(SD0_WP_CD_SEL) = SDIO0_WP_SEL(0x37) | SDIO0_CD_SEL(0x2F);

    zynq_slcr_lock();

    return 0;
}
Esempio n. 18
0
/* For each PLL we need to configure the cp / res / lock_cnt and then place the PLL in bypass
 * before doing a reset to switch to the new values. Then bypass is removed to switch back to using
 * the PLL once its locked.
 */
int zynq_pll_init(void) {
    const zynq_pll_cfg_tree_t *cfg = &zynq_pll_cfg;

    SLCR_REG(ARM_PLL_CFG)  = PLL_CFG_LOCK_CNT(cfg->arm.lock_cnt) | PLL_CFG_PLL_CP(cfg->arm.cp) |
                                PLL_CFG_PLL_RES(cfg->arm.res);
    SLCR_REG(ARM_PLL_CTRL) = PLL_FDIV(cfg->arm.fdiv) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(ARM_PLL_CTRL) &= ~PLL_RESET;

    if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_ARM_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(ARM_PLL_CTRL) &= ~PLL_BYPASS_FORCE;
    SLCR_REG(ARM_CLK_CTRL) = zynq_clk_cfg.arm_clk;

#if ZYNQ_SDRAM_INIT
    SLCR_REG(DDR_PLL_CFG)  = PLL_CFG_LOCK_CNT(cfg->ddr.lock_cnt) | PLL_CFG_PLL_CP(cfg->ddr.cp) |
                                PLL_CFG_PLL_RES(cfg->ddr.res);
    SLCR_REG(DDR_PLL_CTRL) = PLL_FDIV(cfg->ddr.fdiv) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(DDR_PLL_CTRL) &= ~PLL_RESET;

    if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_DDR_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(DDR_PLL_CTRL) &= ~PLL_BYPASS_FORCE;
    SLCR_REG(DDR_CLK_CTRL) = zynq_clk_cfg.ddr_clk;
#elif SDRAM_SIZE == 0
    /* if we're not using sdram and haven't been told to initialize sdram, stop the DDR pll */
    SLCR_REG(DDR_CLK_CTRL) = 0;
    SLCR_REG(DDR_PLL_CTRL) |= PLL_PWRDOWN;
#endif
    SLCR_REG(IO_PLL_CFG)  = PLL_CFG_LOCK_CNT(cfg->io.lock_cnt) | PLL_CFG_PLL_CP(cfg->io.cp) |
                                PLL_CFG_PLL_RES(cfg->io.res);
    SLCR_REG(IO_PLL_CTRL) = PLL_FDIV(cfg->io.fdiv) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(IO_PLL_CTRL) &= ~PLL_RESET;

    if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_IO_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(IO_PLL_CTRL) &= ~PLL_BYPASS_FORCE;
    return 0;
}
Esempio n. 19
0
int zynq_pll_init(void) {
    zynq_slcr_unlock();

    /* ARM PLL & Clock config
     * 375 cycles needed for pll
     * 26 divisor on pll
     * enable all ARM clocks
     * 2 divisor on ARM clocks
     * ARM clock source is ARM PLL
     */
    SLCR_REG(ARM_PLL_CFG)  = PLL_CFG_LOCK_CNT(375) | PLL_CFG_PLL_CP(2) | PLL_CFG_PLL_RES(12);
    SLCR_REG(ARM_PLL_CTRL) = PLL_FDIV(26) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(ARM_PLL_CTRL) &= ~PLL_RESET;

    if (pll_poll(PLL_STATUS_ARM_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(ARM_PLL_CTRL) &= ~PLL_BYPASS_FORCE;
    SLCR_REG(ARM_CLK_CTRL) = ARM_CLK_CTRL_DIVISOR(2) | ARM_CLK_CTRL_CPU_6OR4XCLKACT |
                             ARM_CLK_CTRL_CPU_3OR2XCLKACT | ARM_CLK_CTRL_CPU_2XCLKACT |
                             ARM_CLK_CTRL_CPU_1XCLKACT |ARM_CLK_CTRL_PERI_CLKACT;

    /* DDR PLL & Clock config
     * 475 cycles needed
     * 21 divisor on PLL
     * enable all DDR clocks
     * 2 divisor for 3XCLK, 3 divisor for 2XCLK
     */
    SLCR_REG(DDR_PLL_CFG)  = PLL_CFG_LOCK_CNT(475) | PLL_CFG_PLL_CP(2) | PLL_CFG_PLL_RES(12);
    SLCR_REG(DDR_PLL_CTRL) = PLL_FDIV(26) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(DDR_PLL_CTRL) &= ~PLL_RESET;

    if (pll_poll(PLL_STATUS_DDR_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(DDR_PLL_CTRL) &= ~PLL_BYPASS_FORCE;
    SLCR_REG(DDR_CLK_CTRL) = DDR_CLK_CTRL_DDR_3XCLKACT | DDR_CLK_CTRL_DDR_2XCLKACT |
                             DDR_CLK_CTRL_DDR_3XCLK_DIV(2) | DDR_CLK_CTRL_DDR_2XCLK_DIV(3);

    /* IO PLL config
     * 500 cycles needed for pll
     * 20 divisor
     */
    SLCR_REG(IO_PLL_CFG)  = PLL_CFG_LOCK_CNT(500) | PLL_CFG_PLL_CP(2) | PLL_CFG_PLL_RES(12);
    SLCR_REG(IO_PLL_CTRL) = PLL_FDIV(20) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(IO_PLL_CTRL) &= ~PLL_RESET;

    if (pll_poll(PLL_STATUS_IO_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(IO_PLL_CTRL) &= ~PLL_BYPASS_FORCE;

    zynq_slcr_lock();
    return 0;
}
Esempio n. 20
0
int zynq_mio_init(void)
{
    zynq_slcr_unlock();

    /* This DDRIOB configuration applies to both zybo and uzed, but it's possible
     * it may not work for all boards in the future. Just something to keep in mind
     * with different memory configurations.
     */
#if ZYNQ_SDRAM_INIT
    SLCR_REG(GPIOB_CTRL) = GPIOB_CTRL_VREF_EN;
    SLCR_REG(DDRIOB_ADDR0) = DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_ADDR1) = DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_DATA0) = DDRIOB_INP_TYPE(1) | DDRIOB_TERM_EN |
                                DDRIOB_DCI_TYPE(0x3) | DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_DATA1) = DDRIOB_INP_TYPE(1) | DDRIOB_TERM_EN |
                                DDRIOB_DCI_TYPE(0x3) | DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_DIFF0) = DDRIOB_INP_TYPE(2) | DDRIOB_TERM_EN |
                                DDRIOB_DCI_TYPE(0x3) | DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_DIFF1) = DDRIOB_INP_TYPE(2) | DDRIOB_TERM_EN |
                                DDRIOB_DCI_TYPE(0x3) | DDRIOB_OUTPUT_EN(0x3);
    SLCR_REG(DDRIOB_CLOCK) = DDRIOB_OUTPUT_EN(0x3);

    /* These register fields are not documented in the TRM. These
     * values represent the defaults generated via the Zynq tools
     */
    SLCR_REG(DDRIOB_DRIVE_SLEW_ADDR) = 0x0018C61CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_DATA) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_DIFF) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_CLOCK) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DDR_CTRL) = 0x00000E60U;
    SLCR_REG(DDRIOB_DCI_CTRL) = 0x00000001U;
    SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000020U;
    SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000823U;
#endif

    for (size_t pin = 0; pin < countof(zynq_mio_cfg); pin++) {
        if (zynq_mio_cfg[pin] != 0) {
            SLCR_REG(MIO_PIN_00 + (pin * sizeof(uint32_t))) = zynq_mio_cfg[pin];
        }
    }

    SLCR_REG(SD0_WP_CD_SEL) = SDIO0_WP_SEL(0x37) | SDIO0_CD_SEL(0x2F);
    zynq_slcr_lock();

    return 0;
}