/*@ SVDComputeRelativeError - Computes the relative error bound associated with the i-th singular triplet. Collective on SVD Input Parameter: + svd - the singular value solver context - i - the solution index Output Parameter: . error - the relative error bound, computed as sqrt(n1^2+n2^2)/sigma where n1 = ||A*v-sigma*u||_2 , n2 = ||A^T*u-sigma*v||_2 , sigma is the singular value, u and v are the left and right singular vectors. If sigma is too small the relative error is computed as sqrt(n1^2+n2^2). Level: beginner .seealso: SVDSolve(), SVDComputeResidualNorms() @*/ PetscErrorCode SVDComputeRelativeError(SVD svd,PetscInt i,PetscReal *error) { PetscErrorCode ierr; PetscReal sigma,norm1,norm2; PetscFunctionBegin; PetscValidHeaderSpecific(svd,SVD_CLASSID,1); PetscValidLogicalCollectiveInt(svd,i,2); PetscValidPointer(error,3); ierr = SVDGetSingularTriplet(svd,i,&sigma,NULL,NULL);CHKERRQ(ierr); ierr = SVDComputeResidualNorms(svd,i,&norm1,&norm2);CHKERRQ(ierr); *error = PetscSqrtReal(norm1*norm1+norm2*norm2); if (sigma>*error) *error /= sigma; PetscFunctionReturn(0); }
/*@ SVDComputeResidualNorms - Computes the norms of the residual vectors associated with the i-th computed singular triplet. Collective on SVD Input Parameters: + svd - the singular value solver context - i - the solution index Output Parameters: + norm1 - the norm ||A*v-sigma*u||_2 where sigma is the singular value, u and v are the left and right singular vectors. - norm2 - the norm ||A^T*u-sigma*v||_2 with the same sigma, u and v Note: The index i should be a value between 0 and nconv-1 (see SVDGetConverged()). Both output parameters can be NULL on input if not needed. Level: beginner .seealso: SVDSolve(), SVDGetConverged(), SVDComputeRelativeError() @*/ PetscErrorCode SVDComputeResidualNorms(SVD svd,PetscInt i,PetscReal *norm1,PetscReal *norm2) { PetscErrorCode ierr; Vec u,v,x = NULL,y = NULL; PetscReal sigma; PetscInt M,N; PetscFunctionBegin; PetscValidHeaderSpecific(svd,SVD_CLASSID,1); PetscValidLogicalCollectiveInt(svd,i,2); if (svd->reason == SVD_CONVERGED_ITERATING) SETERRQ(PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_WRONGSTATE,"SVDSolve must be called first"); if (i<0 || i>=svd->nconv) SETERRQ(PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_OUTOFRANGE,"Argument 2 out of range"); ierr = MatGetVecs(svd->OP,&v,&u);CHKERRQ(ierr); ierr = SVDGetSingularTriplet(svd,i,&sigma,u,v);CHKERRQ(ierr); if (norm1) { ierr = VecDuplicate(u,&x);CHKERRQ(ierr); ierr = MatMult(svd->OP,v,x);CHKERRQ(ierr); ierr = VecAXPY(x,-sigma,u);CHKERRQ(ierr); ierr = VecNorm(x,NORM_2,norm1);CHKERRQ(ierr); } if (norm2) { ierr = VecDuplicate(v,&y);CHKERRQ(ierr); if (svd->A && svd->AT) { ierr = MatGetSize(svd->OP,&M,&N);CHKERRQ(ierr); if (M<N) { ierr = MatMult(svd->A,u,y);CHKERRQ(ierr); } else { ierr = MatMult(svd->AT,u,y);CHKERRQ(ierr); } } else { #if defined(PETSC_USE_COMPLEX) ierr = MatMultHermitianTranspose(svd->OP,u,y);CHKERRQ(ierr); #else ierr = MatMultTranspose(svd->OP,u,y);CHKERRQ(ierr); #endif } ierr = VecAXPY(y,-sigma,v);CHKERRQ(ierr); ierr = VecNorm(y,NORM_2,norm2);CHKERRQ(ierr); } ierr = VecDestroy(&v);CHKERRQ(ierr); ierr = VecDestroy(&u);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = VecDestroy(&y);CHKERRQ(ierr); PetscFunctionReturn(0); }
int main( int argc, char **argv ) { PetscErrorCode ierr; Mat A; /* Grcar matrix */ SVD svd; /* singular value solver context */ PetscInt N=30, Istart, Iend, i, col[5], nconv1, nconv2; PetscScalar value[] = { -1, 1, 1, 1, 1 }; PetscReal sigma_1, sigma_n; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&N,PETSC_NULL);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"\nEstimate the condition number of a Grcar matrix, n=%d\n\n",N);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Generate the matrix - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr); for( i=Istart; i<Iend; i++ ) { col[0]=i-1; col[1]=i; col[2]=i+1; col[3]=i+2; col[4]=i+3; if (i==0) { ierr = MatSetValues(A,1,&i,4,col+1,value+1,INSERT_VALUES);CHKERRQ(ierr); } else { ierr = MatSetValues(A,1,&i,PetscMin(5,N-i+1),col,value,INSERT_VALUES);CHKERRQ(ierr); } } ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create the singular value solver and set the solution method - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Create singular value context */ ierr = SVDCreate(PETSC_COMM_WORLD,&svd);CHKERRQ(ierr); /* Set operator */ ierr = SVDSetOperator(svd,A);CHKERRQ(ierr); /* Set solver parameters at runtime */ ierr = SVDSetFromOptions(svd);CHKERRQ(ierr); ierr = SVDSetDimensions(svd,1,PETSC_IGNORE,PETSC_IGNORE);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve the eigensystem - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* First request an eigenvalue from one end of the spectrum */ ierr = SVDSetWhichSingularTriplets(svd,SVD_LARGEST);CHKERRQ(ierr); ierr = SVDSolve(svd);CHKERRQ(ierr); /* Get number of converged singular values */ ierr = SVDGetConverged(svd,&nconv1);CHKERRQ(ierr); /* Get converged singular values: largest singular value is stored in sigma_1. In this example, we are not interested in the singular vectors */ if (nconv1 > 0) { ierr = SVDGetSingularTriplet(svd,0,&sigma_1,PETSC_NULL,PETSC_NULL);CHKERRQ(ierr); } else { ierr = PetscPrintf(PETSC_COMM_WORLD," Unable to compute large singular value!\n\n");CHKERRQ(ierr); } /* Request an eigenvalue from the other end of the spectrum */ ierr = SVDSetWhichSingularTriplets(svd,SVD_SMALLEST);CHKERRQ(ierr); ierr = SVDSolve(svd);CHKERRQ(ierr); /* Get number of converged eigenpairs */ ierr = SVDGetConverged(svd,&nconv2);CHKERRQ(ierr); /* Get converged singular values: smallest singular value is stored in sigma_n. As before, we are not interested in the singular vectors */ if (nconv2 > 0) { ierr = SVDGetSingularTriplet(svd,0,&sigma_n,PETSC_NULL,PETSC_NULL);CHKERRQ(ierr); } else { ierr = PetscPrintf(PETSC_COMM_WORLD," Unable to compute small singular value!\n\n");CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Display solution and clean up - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ if (nconv1 > 0 && nconv2 > 0) { ierr = PetscPrintf(PETSC_COMM_WORLD," Computed singular values: sigma_1=%6f, sigma_n=%6f\n",sigma_1,sigma_n);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD," Estimated condition number: sigma_1/sigma_n=%6f\n\n",sigma_1/sigma_n);CHKERRQ(ierr); } /* Free work space */ ierr = SVDDestroy(svd);CHKERRQ(ierr); ierr = MatDestroy(A);CHKERRQ(ierr); ierr = SlepcFinalize();CHKERRQ(ierr); return 0; }
int main(int argc,char **argv) { Mat A; /* operator matrix */ Vec u,v; /* left and right singular vectors */ SVD svd; /* singular value problem solver context */ SVDType type; PetscReal error,tol,sigma,mu=PETSC_SQRT_MACHINE_EPSILON; PetscInt n=100,i,j,Istart,Iend,nsv,maxit,its,nconv; PetscErrorCode ierr; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-n",&n,NULL);CHKERRQ(ierr); ierr = PetscOptionsGetReal(NULL,"-mu",&mu,NULL);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"\nLauchli singular value decomposition, (%D x %D) mu=%g\n\n",n+1,n,(double)mu);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Build the Lauchli matrix - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n+1,n);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr); for (i=Istart;i<Iend;i++) { if (i == 0) { for (j=0;j<n;j++) { ierr = MatSetValue(A,0,j,1.0,INSERT_VALUES);CHKERRQ(ierr); } } else { ierr = MatSetValue(A,i,i-1,mu,INSERT_VALUES);CHKERRQ(ierr); } } ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatGetVecs(A,&v,&u);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create the singular value solver and set various options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Create singular value solver context */ ierr = SVDCreate(PETSC_COMM_WORLD,&svd);CHKERRQ(ierr); /* Set operator */ ierr = SVDSetOperator(svd,A);CHKERRQ(ierr); /* Use thick-restart Lanczos as default solver */ ierr = SVDSetType(svd,SVDTRLANCZOS);CHKERRQ(ierr); /* Set solver parameters at runtime */ ierr = SVDSetFromOptions(svd);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve the singular value system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = SVDSolve(svd);CHKERRQ(ierr); ierr = SVDGetIterationNumber(svd,&its);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD," Number of iterations of the method: %D\n",its);CHKERRQ(ierr); /* Optional: Get some information from the solver and display it */ ierr = SVDGetType(svd,&type);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type);CHKERRQ(ierr); ierr = SVDGetDimensions(svd,&nsv,NULL,NULL);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD," Number of requested singular values: %D\n",nsv);CHKERRQ(ierr); ierr = SVDGetTolerances(svd,&tol,&maxit);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD," Stopping condition: tol=%.4g, maxit=%D\n",(double)tol,maxit);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Display solution and clean up - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Get number of converged singular triplets */ ierr = SVDGetConverged(svd,&nconv);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD," Number of converged approximate singular triplets: %D\n\n",nconv);CHKERRQ(ierr); if (nconv>0) { /* Display singular values and relative errors */ ierr = PetscPrintf(PETSC_COMM_WORLD, " sigma relative error\n" " --------------------- ------------------\n");CHKERRQ(ierr); for (i=0;i<nconv;i++) { /* Get converged singular triplets: i-th singular value is stored in sigma */ ierr = SVDGetSingularTriplet(svd,i,&sigma,u,v);CHKERRQ(ierr); /* Compute the error associated to each singular triplet */ ierr = SVDComputeRelativeError(svd,i,&error);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD," % 6f ",(double)sigma);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD," % 12g\n",(double)error);CHKERRQ(ierr); } ierr = PetscPrintf(PETSC_COMM_WORLD,"\n");CHKERRQ(ierr); } /* Free work space */ ierr = SVDDestroy(&svd);CHKERRQ(ierr); ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = VecDestroy(&u);CHKERRQ(ierr); ierr = VecDestroy(&v);CHKERRQ(ierr); ierr = SlepcFinalize(); return 0; }