/* Process the remaining bytes in the buffer and put result from CTX * in first 16 bytes following RESBUF. The result is always in little * endian byte order, so that a byte-wise output yields to the wanted * ASCII representation of the message digest. * * IMPORTANT: On some systems it is required that RESBUF is correctly * aligned for a 32 bits value. */ void* FAST_FUNC md5_end(void *resbuf, md5_ctx_t *ctx) { char *buf = ctx->buffer; int i; /* Pad data to block size. */ buf[ctx->buflen++] = 0x80; memset(buf + ctx->buflen, 0, 128 - ctx->buflen); /* Put the 64-bit file length in *bits* at the end of the buffer. */ ctx->total <<= 3; if (ctx->buflen > 56) buf += 64; for (i = 0; i < 8; i++) buf[56 + i] = ctx->total >> (i*8); /* Process last bytes. */ if (buf != ctx->buffer) md5_hash_block(ctx->buffer, ctx); md5_hash_block(buf, ctx); /* Put result from CTX in first 16 bytes following RESBUF. The result is * always in little endian byte order, so that a byte-wise output yields * to the wanted ASCII representation of the message digest. * * IMPORTANT: On some systems it is required that RESBUF is correctly * aligned for a 32 bits value. */ ((uint32_t *) resbuf)[0] = SWAP_LE32(ctx->A); ((uint32_t *) resbuf)[1] = SWAP_LE32(ctx->B); ((uint32_t *) resbuf)[2] = SWAP_LE32(ctx->C); ((uint32_t *) resbuf)[3] = SWAP_LE32(ctx->D); return resbuf; }
static void gpt_list_table(int xtra UNUSED_PARAM) { int i; char numstr6[6]; smart_ulltoa5(total_number_of_sectors * sector_size, numstr6, " KMGTPEZY")[0] = '\0'; printf("Disk %s: %llu sectors, %s\n", disk_device, (unsigned long long)total_number_of_sectors, numstr6); printf("Logical sector size: %u\n", sector_size); printf("Disk identifier (GUID): "); gpt_print_guid(gpt_hdr->disk_guid); printf("\nPartition table holds up to %u entries\n", (int)SWAP_LE32(gpt_hdr->n_parts)); printf("First usable sector is %llu, last usable sector is %llu\n\n", (unsigned long long)SWAP_LE64(gpt_hdr->first_usable_lba), (unsigned long long)SWAP_LE64(gpt_hdr->last_usable_lba)); printf("Number Start (sector) End (sector) Size Code Name\n"); for (i = 0; i < n_parts; i++) { gpt_partition *p = gpt_part(i); if (p->lba_start) { smart_ulltoa5((1 + SWAP_LE64(p->lba_end) - SWAP_LE64(p->lba_start)) * sector_size, numstr6, " KMGTPEZY")[0] = '\0'; printf("%4u %15llu %15llu %11s %04x ", i + 1, (unsigned long long)SWAP_LE64(p->lba_start), (unsigned long long)SWAP_LE64(p->lba_end), numstr6, 0x0700 /* FIXME */); gpt_print_wide(p->name, 18); printf("\n"); } } }
static void update_status(struct svdir *s) { ssize_t sz; int fd; svstatus_t status; /* pid */ if (pidchanged) { fd = open_trunc_or_warn("supervise/pid.new"); if (fd < 0) return; if (s->pid) { char spid[sizeof(int)*3 + 2]; int size = sprintf(spid, "%u\n", (unsigned)s->pid); write(fd, spid, size); } close(fd); if (rename_or_warn("supervise/pid.new", s->islog ? "log/supervise/pid" : "log/supervise/pid"+4)) return; pidchanged = 0; } /* stat */ fd = open_trunc_or_warn("supervise/stat.new"); if (fd < -1) return; { char stat_buf[sizeof("finish, paused, got TERM, want down\n")]; char *p = stat_buf; switch (s->state) { case S_DOWN: p = stpcpy(p, "down"); break; case S_RUN: p = stpcpy(p, "run"); break; case S_FINISH: p = stpcpy(p, "finish"); break; } if (s->ctrl & C_PAUSE) p = stpcpy(p, ", paused"); if (s->ctrl & C_TERM) p = stpcpy(p, ", got TERM"); if (s->state != S_DOWN) switch (s->sd_want) { case W_DOWN: p = stpcpy(p, ", want down"); break; case W_EXIT: p = stpcpy(p, ", want exit"); break; } *p++ = '\n'; write(fd, stat_buf, p - stat_buf); close(fd); } rename_or_warn("supervise/stat.new", s->islog ? "log/supervise/stat" : "log/supervise/stat"+4); /* supervise compatibility */ memset(&status, 0, sizeof(status)); status.time_be64 = SWAP_BE64(s->start.tv_sec + 0x400000000000000aULL); status.time_nsec_be32 = SWAP_BE32(s->start.tv_nsec); status.pid_le32 = SWAP_LE32(s->pid); if (s->ctrl & C_PAUSE) status.paused = 1; if (s->sd_want == W_UP) status.want = 'u'; else status.want = 'd'; if (s->ctrl & C_TERM) status.got_term = 1; status.run_or_finish = s->state; fd = open_trunc_or_warn("supervise/status.new"); if (fd < 0) return; sz = write(fd, &status, sizeof(status)); close(fd); if (sz != sizeof(status)) { warn_cannot("write supervise/status.new"); unlink("supervise/status.new"); return; } rename_or_warn("supervise/status.new", s->islog ? "log/supervise/status" : "log/supervise/status"+4); }
/* Hash a single block, 64 bytes long and 4-byte aligned. */ static void md5_hash_block(const void *buffer, md5_ctx_t *ctx) { uint32_t correct_words[16]; const uint32_t *words = buffer; # if MD5_SIZE_VS_SPEED > 0 static const uint32_t C_array[] = { /* round 1 */ 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, /* round 2 */ 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8, 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, /* round 3 */ 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, /* round 4 */ 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }; static const char P_array[] ALIGN1 = { # if MD5_SIZE_VS_SPEED > 1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */ # endif /* MD5_SIZE_VS_SPEED > 1 */ 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */ 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */ 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */ }; # if MD5_SIZE_VS_SPEED > 1 static const char S_array[] ALIGN1 = { 7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21 }; # endif /* MD5_SIZE_VS_SPEED > 1 */ # endif uint32_t A = ctx->A; uint32_t B = ctx->B; uint32_t C = ctx->C; uint32_t D = ctx->D; /* Process all bytes in the buffer with 64 bytes in each round of the loop. */ uint32_t *cwp = correct_words; uint32_t A_save = A; uint32_t B_save = B; uint32_t C_save = C; uint32_t D_save = D; # if MD5_SIZE_VS_SPEED > 1 # define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) const uint32_t *pc; const char *pp; const char *ps; int i; uint32_t temp; for (i = 0; i < 16; i++) { cwp[i] = SWAP_LE32(words[i]); } words += 16; # if MD5_SIZE_VS_SPEED > 2 pc = C_array; pp = P_array; ps = S_array - 4; for (i = 0; i < 64; i++) { if ((i & 0x0f) == 0) ps += 4; temp = A; switch (i >> 4) { case 0: temp += FF(B, C, D); break; case 1: temp += FG(B, C, D); break; case 2: temp += FH(B, C, D); break; case 3: temp += FI(B, C, D); } temp += cwp[(int) (*pp++)] + *pc++; CYCLIC(temp, ps[i & 3]); temp += B; A = D; D = C; C = B; B = temp; } # else pc = C_array; pp = P_array; ps = S_array; for (i = 0; i < 16; i++) { temp = A + FF(B, C, D) + cwp[(int) (*pp++)] + *pc++; CYCLIC(temp, ps[i & 3]); temp += B; A = D; D = C; C = B; B = temp; } ps += 4; for (i = 0; i < 16; i++) { temp = A + FG(B, C, D) + cwp[(int) (*pp++)] + *pc++; CYCLIC(temp, ps[i & 3]); temp += B; A = D; D = C; C = B; B = temp; } ps += 4; for (i = 0; i < 16; i++) { temp = A + FH(B, C, D) + cwp[(int) (*pp++)] + *pc++; CYCLIC(temp, ps[i & 3]); temp += B; A = D; D = C; C = B; B = temp; } ps += 4; for (i = 0; i < 16; i++) { temp = A + FI(B, C, D) + cwp[(int) (*pp++)] + *pc++; CYCLIC(temp, ps[i & 3]); temp += B; A = D; D = C; C = B; B = temp; } # endif /* MD5_SIZE_VS_SPEED > 2 */ # else /* First round: using the given function, the context and a constant the next context is computed. Because the algorithms processing unit is a 32-bit word and it is determined to work on words in little endian byte order we perhaps have to change the byte order before the computation. To reduce the work for the next steps we store the swapped words in the array CORRECT_WORDS. */ # define OP(a, b, c, d, s, T) \ do { \ a += FF (b, c, d) + (*cwp++ = SWAP_LE32(*words)) + T; \ ++words; \ CYCLIC (a, s); \ a += b; \ } while (0) /* It is unfortunate that C does not provide an operator for cyclic rotation. Hope the C compiler is smart enough. */ /* gcc 2.95.4 seems to be --aaronl */ # define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) /* Before we start, one word to the strange constants. They are defined in RFC 1321 as T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64 */ # if MD5_SIZE_VS_SPEED == 1 const uint32_t *pc; const char *pp; int i; # endif /* MD5_SIZE_VS_SPEED */ /* Round 1. */ # if MD5_SIZE_VS_SPEED == 1 pc = C_array; for (i = 0; i < 4; i++) { OP(A, B, C, D, 7, *pc++); OP(D, A, B, C, 12, *pc++); OP(C, D, A, B, 17, *pc++); OP(B, C, D, A, 22, *pc++); } # else OP(A, B, C, D, 7, 0xd76aa478); OP(D, A, B, C, 12, 0xe8c7b756); OP(C, D, A, B, 17, 0x242070db); OP(B, C, D, A, 22, 0xc1bdceee); OP(A, B, C, D, 7, 0xf57c0faf); OP(D, A, B, C, 12, 0x4787c62a); OP(C, D, A, B, 17, 0xa8304613); OP(B, C, D, A, 22, 0xfd469501); OP(A, B, C, D, 7, 0x698098d8); OP(D, A, B, C, 12, 0x8b44f7af); OP(C, D, A, B, 17, 0xffff5bb1); OP(B, C, D, A, 22, 0x895cd7be); OP(A, B, C, D, 7, 0x6b901122); OP(D, A, B, C, 12, 0xfd987193); OP(C, D, A, B, 17, 0xa679438e); OP(B, C, D, A, 22, 0x49b40821); # endif /* MD5_SIZE_VS_SPEED == 1 */ /* For the second to fourth round we have the possibly swapped words in CORRECT_WORDS. Redefine the macro to take an additional first argument specifying the function to use. */ # undef OP # define OP(f, a, b, c, d, k, s, T) \ do { \ a += f (b, c, d) + correct_words[k] + T; \ CYCLIC (a, s); \ a += b; \ } while (0) /* Round 2. */ # if MD5_SIZE_VS_SPEED == 1 pp = P_array; for (i = 0; i < 4; i++) { OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++); OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++); OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++); OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++); } # else OP(FG, A, B, C, D, 1, 5, 0xf61e2562); OP(FG, D, A, B, C, 6, 9, 0xc040b340); OP(FG, C, D, A, B, 11, 14, 0x265e5a51); OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa); OP(FG, A, B, C, D, 5, 5, 0xd62f105d); OP(FG, D, A, B, C, 10, 9, 0x02441453); OP(FG, C, D, A, B, 15, 14, 0xd8a1e681); OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8); OP(FG, A, B, C, D, 9, 5, 0x21e1cde6); OP(FG, D, A, B, C, 14, 9, 0xc33707d6); OP(FG, C, D, A, B, 3, 14, 0xf4d50d87); OP(FG, B, C, D, A, 8, 20, 0x455a14ed); OP(FG, A, B, C, D, 13, 5, 0xa9e3e905); OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8); OP(FG, C, D, A, B, 7, 14, 0x676f02d9); OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a); # endif /* MD5_SIZE_VS_SPEED == 1 */ /* Round 3. */ # if MD5_SIZE_VS_SPEED == 1 for (i = 0; i < 4; i++) { OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++); OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++); OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++); OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++); } # else OP(FH, A, B, C, D, 5, 4, 0xfffa3942); OP(FH, D, A, B, C, 8, 11, 0x8771f681); OP(FH, C, D, A, B, 11, 16, 0x6d9d6122); OP(FH, B, C, D, A, 14, 23, 0xfde5380c); OP(FH, A, B, C, D, 1, 4, 0xa4beea44); OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9); OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60); OP(FH, B, C, D, A, 10, 23, 0xbebfbc70); OP(FH, A, B, C, D, 13, 4, 0x289b7ec6); OP(FH, D, A, B, C, 0, 11, 0xeaa127fa); OP(FH, C, D, A, B, 3, 16, 0xd4ef3085); OP(FH, B, C, D, A, 6, 23, 0x04881d05); OP(FH, A, B, C, D, 9, 4, 0xd9d4d039); OP(FH, D, A, B, C, 12, 11, 0xe6db99e5); OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8); OP(FH, B, C, D, A, 2, 23, 0xc4ac5665); # endif /* MD5_SIZE_VS_SPEED == 1 */ /* Round 4. */ # if MD5_SIZE_VS_SPEED == 1 for (i = 0; i < 4; i++) { OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++); OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++); OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++); OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++); } # else OP(FI, A, B, C, D, 0, 6, 0xf4292244); OP(FI, D, A, B, C, 7, 10, 0x432aff97); OP(FI, C, D, A, B, 14, 15, 0xab9423a7); OP(FI, B, C, D, A, 5, 21, 0xfc93a039); OP(FI, A, B, C, D, 12, 6, 0x655b59c3); OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92); OP(FI, C, D, A, B, 10, 15, 0xffeff47d); OP(FI, B, C, D, A, 1, 21, 0x85845dd1); OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f); OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0); OP(FI, C, D, A, B, 6, 15, 0xa3014314); OP(FI, B, C, D, A, 13, 21, 0x4e0811a1); OP(FI, A, B, C, D, 4, 6, 0xf7537e82); OP(FI, D, A, B, C, 11, 10, 0xbd3af235); OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb); OP(FI, B, C, D, A, 9, 21, 0xeb86d391); # endif /* MD5_SIZE_VS_SPEED == 1 */ # endif /* MD5_SIZE_VS_SPEED > 1 */ /* Add the starting values of the context. */ A += A_save; B += B_save; C += C_save; D += D_save; /* Put checksum in context given as argument. */ ctx->A = A; ctx->B = B; ctx->C = C; ctx->D = D; }
/* Hash a single block, 64 bytes long and 4-byte aligned. */ static void md5_hash_block(const void *buffer, md5_ctx_t *ctx) { uint32_t correct_words[16]; const uint32_t *words = buffer; static const uint32_t C_array[] = { /* round 1 */ 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, /* round 2 */ 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8, 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, /* round 3 */ 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, /* round 4 */ 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }; static const char P_array[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */ 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */ 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */ 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */ }; static const char S_array[] = { 7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21 }; uint32_t A = ctx->A; uint32_t B = ctx->B; uint32_t C = ctx->C; uint32_t D = ctx->D; uint32_t *cwp = correct_words; # define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) const uint32_t *pc; const char *pp; const char *ps; int i; uint32_t temp; for (i = 0; i < 16; i++) { cwp[i] = SWAP_LE32(words[i]); } words += 16; pc = C_array; pp = P_array; ps = S_array; for (i = 0; i < 16; i++) { temp = A + FF(B, C, D) + cwp[(int) (*pp++)] + *pc++; CYCLIC(temp, ps[i & 3]); temp += B; A = D; D = C; C = B; B = temp; } ps += 4; for (i = 0; i < 16; i++) { temp = A + FG(B, C, D) + cwp[(int) (*pp++)] + *pc++; CYCLIC(temp, ps[i & 3]); temp += B; A = D; D = C; C = B; B = temp; } ps += 4; for (i = 0; i < 16; i++) { temp = A + FH(B, C, D) + cwp[(int) (*pp++)] + *pc++; CYCLIC(temp, ps[i & 3]); temp += B; A = D; D = C; C = B; B = temp; } ps += 4; for (i = 0; i < 16; i++) { temp = A + FI(B, C, D) + cwp[(int) (*pp++)] + *pc++; CYCLIC(temp, ps[i & 3]); temp += B; A = D; D = C; C = B; B = temp; } ctx->A += A; ctx->B += B; ctx->C += C; ctx->D += D; }
static int check_gpt_label(void) { struct partition *first = pt_offset(MBRbuffer, 0); struct pte pe; uint32_t crc; /* LBA 0 contains the legacy MBR */ if (!valid_part_table_flag(MBRbuffer) || first->sys_ind != LEGACY_GPT_TYPE ) { current_label_type = 0; return 0; } /* LBA 1 contains the GPT header */ read_pte(&pe, 1); gpt_hdr = (void *)pe.sectorbuffer; if (gpt_hdr->magic != SWAP_LE64(GPT_MAGIC)) { current_label_type = 0; return 0; } if (!global_crc32_table) { global_crc32_table = crc32_filltable(NULL, 0); } crc = SWAP_LE32(gpt_hdr->hdr_crc32); gpt_hdr->hdr_crc32 = 0; if (gpt_crc32(gpt_hdr, SWAP_LE32(gpt_hdr->hdr_size)) != crc) { /* FIXME: read the backup table */ puts("\nwarning: GPT header CRC is invalid\n"); } n_parts = SWAP_LE32(gpt_hdr->n_parts); part_entry_len = SWAP_LE32(gpt_hdr->part_entry_len); if (n_parts > GPT_MAX_PARTS || part_entry_len > GPT_MAX_PART_ENTRY_LEN || SWAP_LE32(gpt_hdr->hdr_size) > sector_size ) { puts("\nwarning: unable to parse GPT disklabel\n"); current_label_type = 0; return 0; } part_array_len = n_parts * part_entry_len; part_array = xmalloc(part_array_len); seek_sector(SWAP_LE64(gpt_hdr->first_part_lba)); if (full_read(dev_fd, part_array, part_array_len) != part_array_len) { fdisk_fatal(unable_to_read); } if (gpt_crc32(part_array, part_array_len) != gpt_hdr->part_array_crc32) { /* FIXME: read the backup table */ puts("\nwarning: GPT array CRC is invalid\n"); } puts("Found valid GPT with protective MBR; using GPT\n"); current_label_type = LABEL_GPT; return 1; }