void QAvertex(const Char_t *fdata, const Char_t *fmc) { style(); TFile *fdtin = TFile::Open(fdata); TList *ldtin = (TList *)fdtin->Get("clist"); TH2 *hdtin = (TH2 *)ldtin->FindObject("zv"); TH1 *hdt = (TH1 *)ldtin->FindObject("zvNoSel"); SetHistoStyle(hdt, 20, kRed+1); hdt->Scale(1. / hdt->Integral()); TH1 *hdt0010 = hdtin->ProjectionX("hdt0010", 1, 4); SetHistoStyle(hdt0010, 20, kRed+1); hdt0010->Scale(1. / hdt0010->Integral()); TH1 *hdt7080 = hdtin->ProjectionX("hdt7080", 11, 11); SetHistoStyle(hdt7080, 25, kAzure-3); hdt7080->Scale(1. / hdt7080->Integral()); TFile *fmcin = TFile::Open(fmc); TList *lmcin = (TList *)fmcin->Get("clist"); TH1 *hmc = (TH1 *)lmcin->FindObject("zvNoSel"); SetHistoStyle(hmc, 25, kAzure-3); hmc->Scale(1. / hmc->Integral()); TCanvas *c = new TCanvas("cVertex", "cVertex", 800, 800); TH1 * hfr = c->DrawFrame(-20., 0., 20., 0.1); hfr->SetTitle(";#it{z}_{vtx};"); hdt0010->Draw("same"); hdt7080->Draw("same"); TLegend *legend = new TLegend(0.20, 0.18+0.60, 0.50, 0.30+0.60); legend->SetFillColor(0); legend->SetBorderSize(0); legend->SetTextFont(42); legend->SetTextSize(0.04); legend->AddEntry(hdt0010, "0-10%", "p"); legend->AddEntry(hdt7080, "70-80%", "p"); legend->Draw("same"); c->SaveAs(canvasPrefix+"vertex.pdf"); TCanvas *c1 = new TCanvas("cVertexDataMC", "cVertexDataMC", 800, 800); hfr = c1->DrawFrame(-20., 0., 20., 0.1); hfr->SetTitle(";#it{z}_{vtx};"); hdt->Draw("same"); hmc->Draw("same"); legend = new TLegend(0.20, 0.18+0.60, 0.50, 0.30+0.60); legend->SetFillColor(0); legend->SetBorderSize(0); legend->SetTextFont(42); legend->SetTextSize(0.04); legend->AddEntry(hdt, "data", "p"); legend->AddEntry(hmc, "Monte Carlo", "p"); legend->Draw("same"); c1->SaveAs(canvasPrefix+"vertexDataMC.pdf"); //return 0; }
void QAcentrality(const Char_t *fdata) { style(); TFile *fin = TFile::Open(fdata); TList *lin = (TList *)fin->Get("clist"); lin->ls(); TH1 *hin = (TH1 *)lin->FindObject("EvCentrDist"); Float_t sum = 1.2 * hin->Integral(hin->FindBin(0.1), hin->FindBin(79.9)); hin->Scale(1. / sum); SetHistoStyle(hin, 20, kRed+1); TCanvas *c = new TCanvas("cQAcentrality", "cQAcentrality", 800, 800); TH1 * hfr = c->DrawFrame(0., 0.005, 100., 0.015); hfr->SetTitle(";centrality percentile;events"); hin->Draw("same"); c->SaveAs(canvasPrefix+"centrality.pdf"); TH2 *hinv0 = (TH2 *)lin->FindObject("V0"); TCanvas *cv0 = new TCanvas("cQAcentralityV0", "cQAcentralityV0", 800, 800); cv0->SetLogx(); cv0->SetLogz(); // TH1 * hfrv0 = cv0->DrawFrame(100., -0.5, 50000., 10.5); // DrawBinLabelsY(hfrv0, kTRUE); // hfrv0->SetTitle(";V0 signal;"); //hinv0->Draw("same,col"); hinv0->Draw("col"); cv0->SaveAs(canvasPrefix+"centralityV0.pdf"); }
int main(int argc, char** argv) { // Set style options setTDRStyle(); gStyle->SetPadTickX(1); gStyle->SetPadTickY(1); gStyle->SetOptTitle(0); gStyle->SetOptStat(1110); gStyle->SetOptFit(1); // Set fitting options TVirtualFitter::SetDefaultFitter("Fumili2"); //----------------- // Input parameters std::cout << "\n***************************************************************************************************************************" << std::endl; std::cout << "arcg: " << argc << std::endl; char* EBEE = argv[1]; int evtsPerPoint = atoi(argv[2]); int useRegression = atoi(argv[3]); std::string dayMin = ""; std::string dayMax = ""; std::string dayMinLabel = ""; std::string dayMaxLabel = ""; float absEtaMin = -1.; float absEtaMax = -1.; int IetaMin = -1; int IetaMax = -1; int IphiMin = -1; int IphiMax = -1; if(argc >= 5) { dayMin = std::string(argv[4])+" "+std::string(argv[5])+" "+std::string(argv[6]); dayMax = std::string(argv[7])+" "+std::string(argv[8])+" "+std::string(argv[9]); dayMinLabel = std::string(argv[4])+"_"+std::string(argv[5])+"_"+std::string(argv[6]); dayMaxLabel = std::string(argv[7])+"_"+std::string(argv[8])+"_"+std::string(argv[9]); t1 = dateToInt(dayMin); t2 = dateToInt(dayMax); } if(argc >= 11) { yMIN = atof(argv[10]); yMAX = atof(argv[11]); } if(argc >= 13) { absEtaMin = atof(argv[12]); absEtaMax = atof(argv[13]); } if(argc >= 15) { IetaMin = atoi(argv[14]); IetaMax = atoi(argv[15]); IphiMin = atoi(argv[16]); IphiMax = atoi(argv[17]); } std::cout << "EBEE: " << EBEE << std::endl; std::cout << "evtsPerPoint: " << evtsPerPoint << std::endl; std::cout << "useRegression: " << useRegression << std::endl; std::cout << "dayMin: " << dayMin << std::endl; std::cout << "dayMax: " << dayMax << std::endl; std::cout << "yMin: " << yMIN << std::endl; std::cout << "yMax: " << yMAX << std::endl; std::cout << "absEtaMin: " << absEtaMin << std::endl; std::cout << "absEtaMax: " << absEtaMax << std::endl; std::cout << "IetaMin: " << IetaMin << std::endl; std::cout << "IetaMax: " << IetaMax << std::endl; std::cout << "IphiMin: " << IphiMin << std::endl; std::cout << "IphiMax: " << IphiMax << std::endl; //------------------- // Define in/outfiles std::string folderName = std::string(EBEE) + "_" + dayMinLabel + "_" + dayMaxLabel; if( (absEtaMin != -1.) && (absEtaMax != -1.) ) { char absEtaBuffer[50]; sprintf(absEtaBuffer,"_%.2f-%.2f",absEtaMin,absEtaMax); folderName += std::string(absEtaBuffer); } if( (IetaMin != -1.) && (IetaMax != -1.) && (IphiMin != -1.) && (IphiMax != -1.) ) { char absEtaBuffer[50]; sprintf(absEtaBuffer,"_Ieta_%d-%d_Iphi_%d-%d",IetaMin,IetaMax,IphiMin,IphiMax); folderName += std::string(absEtaBuffer); } gSystem->mkdir(folderName.c_str()); TFile* o = new TFile((folderName+"/"+folderName+"_histos.root").c_str(),"RECREATE"); // Get trees std::cout << std::endl; TChain* ntu_DA = new TChain("simpleNtupleEoverP/SimpleNtupleEoverP"); FillChain(ntu_DA,"inputDATA.txt"); std::cout << " DATA: " << std::setw(8) << ntu_DA->GetEntries() << " entries" << std::endl; TChain* ntu_MC = new TChain("simpleNtupleEoverP/SimpleNtupleEoverP"); FillChain(ntu_MC,"inputMC.txt"); std::cout << "REFERENCE: " << std::setw(8) << ntu_MC->GetEntries() << " entries" << std::endl; if (ntu_DA->GetEntries() == 0 || ntu_MC->GetEntries() == 0 ) { std::cout << "Error: At least one file is empty" << std::endl; return -1; } // Set branch addresses int runId; int timeStampHigh; int PV_n; float scLaserCorr, seedLaserAlpha, EoP, scEta, scPhi, scE, ES, P; int seedIeta, seedIphi, seedIx, seedIy, seedZside; ntu_DA->SetBranchStatus("*",0); ntu_DA->SetBranchStatus("runId",1); ntu_DA->SetBranchStatus("timeStampHigh",1); ntu_DA->SetBranchStatus("PV_n",1); ntu_DA->SetBranchStatus("ele1_scLaserCorr",1); ntu_DA->SetBranchStatus("ele1_seedLaserAlpha",1); ntu_DA->SetBranchStatus("ele1_EOverP",1); ntu_DA->SetBranchStatus("ele1_scEta",1); ntu_DA->SetBranchStatus("ele1_scPhi",1); ntu_DA->SetBranchStatus("ele1_scE",1); ntu_DA->SetBranchStatus("ele1_scE_regression",1); ntu_DA->SetBranchStatus("ele1_scE",1); ntu_DA->SetBranchStatus("ele1_es",1); ntu_DA->SetBranchStatus("ele1_tkP",1); ntu_DA->SetBranchStatus("ele1_seedIeta",1); ntu_DA->SetBranchStatus("ele1_seedIphi",1); ntu_DA->SetBranchStatus("ele1_seedIx",1); ntu_DA->SetBranchStatus("ele1_seedIy",1); ntu_DA->SetBranchStatus("ele1_seedZside",1); ntu_DA->SetBranchAddress("runId", &runId); ntu_DA->SetBranchAddress("timeStampHigh", &timeStampHigh); ntu_DA->SetBranchAddress("PV_n", &PV_n); ntu_DA->SetBranchAddress("ele1_scLaserCorr", &scLaserCorr); ntu_DA->SetBranchAddress("ele1_seedLaserAlpha", &seedLaserAlpha); ntu_DA->SetBranchAddress("ele1_EOverP", &EoP); ntu_DA->SetBranchAddress("ele1_scEta", &scEta); ntu_DA->SetBranchAddress("ele1_scPhi", &scPhi); if( useRegression < 1 ) ntu_DA->SetBranchAddress("ele1_scE", &scE); else ntu_DA->SetBranchAddress("ele1_scE_regression", &scE); ntu_DA->SetBranchAddress("ele1_scE", &scE); ntu_DA->SetBranchAddress("ele1_es", &ES); ntu_DA->SetBranchAddress("ele1_tkP", &P); ntu_DA->SetBranchAddress("ele1_seedIeta", &seedIeta); ntu_DA->SetBranchAddress("ele1_seedIphi", &seedIphi); ntu_DA->SetBranchAddress("ele1_seedIx", &seedIx); ntu_DA->SetBranchAddress("ele1_seedIy", &seedIy); ntu_DA->SetBranchAddress("ele1_seedZside", &seedZside); ntu_MC->SetBranchStatus("*",0); ntu_MC->SetBranchStatus("runId",1); ntu_MC->SetBranchStatus("PV_n",1); ntu_MC->SetBranchStatus("ele1_scEta",1); ntu_MC->SetBranchStatus("ele1_EOverP",1); ntu_MC->SetBranchStatus("ele1_scE",1); ntu_MC->SetBranchStatus("ele1_scE_regression",1); ntu_MC->SetBranchStatus("ele1_es",1); ntu_MC->SetBranchStatus("ele1_tkP",1); ntu_MC->SetBranchStatus("ele1_seedIeta",1); ntu_MC->SetBranchStatus("ele1_seedIphi",1); ntu_MC->SetBranchStatus("ele1_seedIx",1); ntu_MC->SetBranchStatus("ele1_seedIy",1); ntu_MC->SetBranchStatus("ele1_seedZside",1); ntu_MC->SetBranchAddress("runId", &runId); ntu_MC->SetBranchAddress("PV_n", &PV_n); ntu_MC->SetBranchAddress("ele1_scEta", &scEta); ntu_MC->SetBranchAddress("ele1_EOverP", &EoP); if( useRegression < 1 ) ntu_MC->SetBranchAddress("ele1_scE", &scE); else ntu_MC->SetBranchAddress("ele1_scE_regression", &scE); ntu_MC->SetBranchAddress("ele1_es", &ES); ntu_MC->SetBranchAddress("ele1_tkP", &P); ntu_MC->SetBranchAddress("ele1_seedIeta", &seedIeta); ntu_MC->SetBranchAddress("ele1_seedIphi", &seedIphi); ntu_MC->SetBranchAddress("ele1_seedIx", &seedIx); ntu_MC->SetBranchAddress("ele1_seedIy", &seedIy); ntu_MC->SetBranchAddress("ele1_seedZside", &seedZside); //-------------------------------------------------------- // Define PU correction (to be used if useRegression == 0) // corr = p0 + p1 * PV_n float p0_EB; float p1_EB; float p0_EE; float p1_EE; if( useRegression == 0 ) { //2012 EB p0_EB = 0.9991; p1_EB = 0.0001635; //2012 EE p0_EE = 0.9968; p1_EE = 0.001046; } else { //2012 EB p0_EB = 1.001; p1_EB = -0.000143; //2012 EE p0_EE = 1.00327; p1_EE = -0.000432; } float p0 = -1.; float p1 = -1.; if( strcmp(EBEE,"EB") == 0 ) { p0 = p0_EB; p1 = p1_EB; } else { p0 = p0_EE; p1 = p1_EE; } //--------------------------------- // Build the reference distribution std::cout << std::endl; std::cout << "***** Build reference for " << EBEE << " *****" << std::endl; TH1F* h_template = new TH1F("template", "", 2000, 0., 5.); for(int ientry = 0; ientry < ntu_MC->GetEntries(); ++ientry) { if( (ientry%100000 == 0) ) std::cout << "reading MC entry " << ientry << "\r" << std::flush; ntu_MC->GetEntry(ientry); // selections if( (strcmp(EBEE,"EB") == 0) && (fabs(scEta) > 1.45) ) continue; // barrel if( (strcmp(EBEE,"EE") == 0) && (fabs(scEta) < 1.47 || fabs(scEta)>2.7) ) continue; // endcap if( (absEtaMin != -1.) && (absEtaMax != -1.) ) { if( (fabs(scEta) < absEtaMin) || (fabs(scEta) > absEtaMax) ) continue; } if( (IetaMin != -1.) && (IetaMax != -1.) && (IphiMin != -1.) && (IphiMax != -1.) ) { if( (seedIeta < IetaMin) || (seedIeta > IetaMax) ) continue; if( (seedIphi < IphiMin) || (seedIphi > IphiMax) ) continue; } // PU correction float PUCorr = (p0 + p1*PV_n); //std::cout << "p0: " << p0 << " p1: " << p1 << " PV_n: " << PV_n << std::endl; // fill the template histogram h_template -> Fill( (scE-ES)/(P-ES) / PUCorr ); } std::cout << "Reference built for " << EBEE << " - " << h_template->GetEntries() << " events" << std::endl; //--------------------- // Loop and sort events std::cout << std::endl; std::cout << "***** Sort events and define bins *****" << std::endl; int nEntries = ntu_DA -> GetEntriesFast(); int nSavePts = 0; std::vector<bool> isSavedEntries(nEntries); std::vector<Sorter> sortedEntries; std::vector<int> timeStampFirst; for(int ientry = 0; ientry < nEntries; ++ientry) { ntu_DA -> GetEntry(ientry); isSavedEntries.at(ientry) = false; // selections if( (strcmp(EBEE,"EB") == 0) && (fabs(scEta) > 1.45) ) continue; // barrel if( (strcmp(EBEE,"EE") == 0) && (fabs(scEta) < 1.47 || fabs(scEta)>2.7) ) continue; // endcap if( (absEtaMin != -1.) && (absEtaMax != -1.) ) { if( (fabs(scEta) < absEtaMin) || (fabs(scEta) > absEtaMax) ) continue; } if( (IetaMin != -1.) && (IetaMax != -1.) && (IphiMin != -1.) && (IphiMax != -1.) ) { if( (seedIeta < IetaMin) || (seedIeta > IetaMax) ) continue; if( (seedIphi < IphiMin) || (seedIphi > IphiMax) ) continue; } if( timeStampHigh < t1 ) continue; if( timeStampHigh > t2 ) continue; if( scLaserCorr <= 0. ) continue; isSavedEntries.at(ientry) = true; // fill sorter Sorter dummy; dummy.time = timeStampHigh; dummy.entry = ientry; sortedEntries.push_back(dummy); ++nSavePts; } // sort events std::sort(sortedEntries.begin(),sortedEntries.end(),Sorter()); std::cout << "Data sorted in " << EBEE << " - " << nSavePts << " events" << std::endl; std::map<int,int> antiMap; for(unsigned int iSaved = 0; iSaved < sortedEntries.size(); ++iSaved) antiMap[sortedEntries.at(iSaved).entry] = iSaved; //--------------------- // Loop and define bins // "wide" bins - find events with time separation bigger than 1 day int nWideBins = 1; std::vector<int> wideBinEntryMax; int timeStampOld = -1; wideBinEntryMax.push_back(0); for(int iSaved = 0; iSaved < nSavePts; ++iSaved) { if( iSaved%100000 == 0 ) std::cout << "reading saved entry " << iSaved << "\r" << std::flush; ntu_DA->GetEntry(sortedEntries[iSaved].entry); if( iSaved == 0 ) { timeStampOld = timeStampHigh; continue; } if( (timeStampHigh-timeStampOld)/3600. > timeLapse ) { ++nWideBins; wideBinEntryMax.push_back(iSaved-1); } timeStampOld = timeStampHigh; } std::cout << std::endl; wideBinEntryMax.push_back(nSavePts); // bins with approximatively evtsPerPoint events per bin int nBins = 0; std::vector<int> binEntryMax; binEntryMax.push_back(0); for(int wideBin = 0; wideBin < nWideBins; ++wideBin) { int nTempBins = std::max(1,int( (wideBinEntryMax.at(wideBin+1)-wideBinEntryMax.at(wideBin))/evtsPerPoint )); int nTempBinEntries = int( (wideBinEntryMax.at(wideBin+1)-wideBinEntryMax.at(wideBin))/nTempBins ); for(int tempBin = 0; tempBin < nTempBins; ++tempBin) { ++nBins; if( tempBin < nTempBins - 1 ) binEntryMax.push_back( wideBinEntryMax.at(wideBin) + (tempBin+1)*nTempBinEntries ); else binEntryMax.push_back( wideBinEntryMax.at(wideBin+1) ); } } std::cout << "nBins = " << nBins << std::endl; //for(int bin = 0; bin < nBins; ++bin) // std::cout << "bin: " << bin // << " entry min: " << setw(6) << binEntryMax.at(bin) // << " entry max: " << setw(6) << binEntryMax.at(bin+1) // << " events: " << setw(6) << binEntryMax.at(bin+1)-binEntryMax.at(bin) // << std::endl; //--------------------- // histogram definition TH1F* h_scOccupancy_eta = new TH1F("h_scOccupancy_eta","", 298, -2.6, 2.6); TH1F* h_scOccupancy_phi = new TH1F("h_scOccupancy_phi","", 363, -3.1765, 3.159); SetHistoStyle(h_scOccupancy_eta); SetHistoStyle(h_scOccupancy_phi); TH2F* h_seedOccupancy_EB = new TH2F("h_seedOccupancy_EB","", 171, -85., 86., 361, 0.,361.); TH2F* h_seedOccupancy_EEp = new TH2F("h_seedOccupancy_EEp","", 101, 0.,101., 100, 0.,101.); TH2F* h_seedOccupancy_EEm = new TH2F("h_seedOccupancy_EEm","", 101, 0.,101., 100, 0.,101.); SetHistoStyle(h_seedOccupancy_EB); SetHistoStyle(h_seedOccupancy_EEp); SetHistoStyle(h_seedOccupancy_EEm); TH1F* h_EoP_spread = new TH1F("h_EoP_spread","",100,yMIN,yMAX); TH1F* h_EoC_spread = new TH1F("h_EoC_spread","",100,yMIN,yMAX); TH1F* h_EoP_spread_run = new TH1F("h_EoP_spread_run","",100,yMIN,yMAX); TH1F* h_EoC_spread_run = new TH1F("h_EoC_spread_run","",100,yMIN,yMAX); SetHistoStyle(h_EoP_spread,"EoP"); SetHistoStyle(h_EoC_spread,"EoC"); SetHistoStyle(h_EoP_spread_run,"EoP"); SetHistoStyle(h_EoC_spread_run,"EoC"); TH1F* h_EoP_chi2 = new TH1F("h_EoP_chi2","",50,0.,5.); TH1F* h_EoC_chi2 = new TH1F("h_EoC_chi2","",50,0.,5.); SetHistoStyle(h_EoP_chi2,"EoP"); SetHistoStyle(h_EoC_chi2,"EoC"); TH1F** h_EoP = new TH1F*[nBins]; TH1F** h_EoC = new TH1F*[nBins]; TH1F** h_Las = new TH1F*[nBins]; TH1F** h_Tsp = new TH1F*[nBins]; TH1F** h_Cvl = new TH1F*[nBins]; for(int i = 0; i < nBins; ++i) { char histoName[80]; sprintf(histoName, "EoP_%d", i); h_EoP[i] = new TH1F(histoName, histoName, 2000, 0., 5.); SetHistoStyle(h_EoP[i],"EoP"); sprintf(histoName, "EoC_%d", i); h_EoC[i] = new TH1F(histoName, histoName, 2000, 0., 5.); SetHistoStyle(h_EoC[i],"EoC"); sprintf(histoName, "Las_%d", i); h_Las[i] = new TH1F(histoName, histoName, 500, 0.5, 1.5); sprintf(histoName, "Tsp_%d", i); h_Tsp[i] = new TH1F(histoName, histoName, 500, 0.5, 1.5); } // function definition TF1** f_EoP = new TF1*[nBins]; TF1** f_EoC = new TF1*[nBins]; // graphs definition TGraphAsymmErrors* g_fit = new TGraphAsymmErrors(); TGraphAsymmErrors* g_c_fit = new TGraphAsymmErrors(); TGraphAsymmErrors* g_fit_run = new TGraphAsymmErrors(); TGraphAsymmErrors* g_c_fit_run = new TGraphAsymmErrors(); TGraph* g_las = new TGraph(); TGraphErrors* g_LT = new TGraphErrors(); g_fit->GetXaxis()->SetTimeFormat("%d/%m%F1970-01-01 00:00:00"); g_fit->GetXaxis()->SetTimeDisplay(1); g_c_fit->GetXaxis()->SetTimeFormat("%d/%m%F1970-01-01 00:00:00"); g_c_fit->GetXaxis()->SetTimeDisplay(1); g_las->GetXaxis()->SetTimeFormat("%d/%m%F1970-01-01 00:00:00"); g_las->GetXaxis()->SetTimeDisplay(1); g_LT->GetXaxis()->SetTimeFormat("%d/%m%F1970-01-01 00:00:00"); g_LT->GetXaxis()->SetTimeDisplay(1); //------------------------------------ // loop on the saved and sorted events std::cout << std::endl; std::cout << "***** Fill and fit histograms *****" << std::endl; std::vector<int> Entries(nBins); std::vector<double> AveTime(nBins); std::vector<int> MinTime(nBins); std::vector<int> MaxTime(nBins); std::vector<double> AveRun(nBins); std::vector<int> MinRun(nBins); std::vector<int> MaxRun(nBins); std::vector<double> AveLT(nBins); std::vector<double> AveLT2(nBins); int iSaved = -1; for(int ientry = 0; ientry < nEntries; ++ientry) { if( (ientry%100000 == 0) ) std::cout << "reading entry " << ientry << "\r" << std::flush; if( isSavedEntries.at(ientry) == false ) continue; ++iSaved; int iSaved = antiMap[ientry]; int bin = -1; for(bin = 0; bin < nBins; ++bin) if( iSaved >= binEntryMax.at(bin) && iSaved < binEntryMax.at(bin+1) ) break; //std::cout << "bin = " << bin << " iSaved = "<< iSaved << std::endl; ntu_DA->GetEntry(ientry); Entries[bin] += 1; if( iSaved == binEntryMax.at(bin)+1 ) MinTime[bin] = timeStampHigh; if( iSaved == binEntryMax.at(bin+1)-1 ) MaxTime[bin] = timeStampHigh; AveTime[bin] += timeStampHigh; if( iSaved == binEntryMax.at(bin)+1 ) MinRun[bin] = runId; if( iSaved == binEntryMax.at(bin+1)-1 ) MaxRun[bin] = runId; AveRun[bin] += runId; float LT = (-1. / seedLaserAlpha * log(scLaserCorr)); AveLT[bin] += LT; AveLT2[bin] += LT*LT; // PU correction float PUCorr = (p0 + p1*PV_n); // fill the histograms (h_EoP[bin]) -> Fill( (scE-ES)/(P-ES) / scLaserCorr / PUCorr); (h_EoC[bin]) -> Fill( (scE-ES)/(P-ES) / PUCorr ); (h_Las[bin]) -> Fill(scLaserCorr); (h_Tsp[bin]) -> Fill(1./scLaserCorr); h_scOccupancy_eta -> Fill(scEta); h_scOccupancy_phi -> Fill(scPhi); if(seedZside == 0) h_seedOccupancy_EB -> Fill(seedIeta,seedIphi); if(seedZside > 0) h_seedOccupancy_EEp -> Fill(seedIx,seedIy); if(seedZside < 0) h_seedOccupancy_EEm -> Fill(seedIx,seedIy); } for(int bin = 0; bin < nBins; ++bin) { AveTime[bin] = 1. * AveTime[bin] / (binEntryMax.at(bin+1)-binEntryMax.at(bin)); AveRun[bin] = 1. * AveRun[bin] / (binEntryMax.at(bin+1)-binEntryMax.at(bin)); AveLT[bin] = 1. * AveLT[bin] / (binEntryMax.at(bin+1)-binEntryMax.at(bin)); AveLT2[bin] = 1. * AveLT2[bin] / (binEntryMax.at(bin+1)-binEntryMax.at(bin)); //std::cout << date << " " << AveTime[i] << " " << MinTime[i] << " " << MaxTime[i] << std::endl; } int rebin = 2; if( strcmp(EBEE,"EE") == 0 ) rebin *= 2; h_template -> Rebin(rebin); float EoP_scale = 0.; float EoP_err = 0.; int EoP_nActiveBins = 0; float EoC_scale = 0.; float EoC_err = 0.; int EoC_nActiveBins = 0; float LCInv_scale = 0; std::vector<int> validBins; for(int i = 0; i < nBins; ++i) { bool isValid = true; h_EoP[i] -> Rebin(rebin); h_EoC[i] -> Rebin(rebin); //------------------------------------ // Fill the graph for uncorrected data // define the fitting function // N.B. [0] * ( [1] * f( [1]*(x-[2]) ) ) //o -> cd(); char convolutionName[50]; sprintf(convolutionName,"h_convolution_%d",i); //h_Cvl[i] = ConvoluteTemplate(std::string(convolutionName),h_template,h_Las[i],32768,-5.,5.); h_Cvl[i] = MellinConvolution(std::string(convolutionName),h_template,h_Tsp[i]); histoFunc* templateHistoFunc = new histoFunc(h_template); histoFunc* templateConvolutedHistoFunc = new histoFunc(h_Cvl[i]); char funcName[50]; sprintf(funcName,"f_EoP_%d",i); if( strcmp(EBEE,"EB") == 0 ) f_EoP[i] = new TF1(funcName, templateConvolutedHistoFunc, 0.8*(h_Tsp[i]->GetMean()), 1.4*(h_Tsp[i]->GetMean()), 3, "histoFunc"); else f_EoP[i] = new TF1(funcName, templateConvolutedHistoFunc, 0.75*(h_Tsp[i]->GetMean()), 1.5*(h_Tsp[i]->GetMean()), 3, "histoFunc"); f_EoP[i] -> SetParName(0,"Norm"); f_EoP[i] -> SetParName(1,"Scale factor"); f_EoP[i] -> SetLineWidth(1); f_EoP[i] -> SetNpx(10000); double xNorm = h_EoP[i]->GetEntries()/h_template->GetEntries() * h_EoP[i]->GetBinWidth(1)/h_template->GetBinWidth(1); f_EoP[i] -> FixParameter(0, xNorm); f_EoP[i] -> SetParameter(1, 1.); f_EoP[i] -> FixParameter(2, 0.); f_EoP[i] -> SetLineColor(kRed+2); int fStatus = 0; int nTrials = 0; TFitResultPtr rp; rp = h_EoP[i] -> Fit(funcName, "QERLS+"); while( (fStatus != 0) && (nTrials < 10) ) { rp = h_EoP[i] -> Fit(funcName, "QERLS+"); fStatus = rp; if(fStatus == 0) break; ++nTrials; } // fill the graph double eee = f_EoP[i]->GetParError(1); //float k = f_EoP[i]->GetParameter(1); float k = f_EoP[i]->GetParameter(1) / h_Tsp[i]->GetMean(); //needed when using mellin's convolution if( (h_EoP[i]->GetEntries() > 3) && (fStatus == 0) && (eee > 0.05*h_template->GetRMS()/sqrt(evtsPerPoint)) ) { float date = (float)AveTime[i]; float dLow = (float)(AveTime[i]-MinTime[i]); float dHig = (float)(MaxTime[i]-AveTime[i]); float run = (float)AveRun[i]; float rLow = (float)(AveRun[i]-MinRun[i]); float rHig = (float)(MaxRun[i]-AveRun[i]); g_fit -> SetPoint(i, date , 1./k); g_fit -> SetPointError(i, dLow , dHig, eee/k/k, eee/k/k); g_fit_run -> SetPoint(i, run , 1./k); g_fit_run -> SetPointError(i, rLow , rHig, eee/k/k, eee/k/k); h_EoP_chi2 -> Fill(f_EoP[i]->GetChisquare()/f_EoP[i]->GetNDF()); EoP_scale += 1./k; EoP_err += eee/k/k; ++EoP_nActiveBins; } else { std::cout << "Fitting uncorrected time bin: " << i << " Fail status: " << fStatus << " sigma: " << eee << std::endl; isValid = false; } //---------------------------------- // Fill the graph for corrected data // define the fitting function // N.B. [0] * ( [1] * f( [1]*(x-[2]) ) ) sprintf(funcName,"f_EoC_%d",i); if( strcmp(EBEE,"EB") == 0 ) f_EoC[i] = new TF1(funcName, templateHistoFunc, 0.8, 1.4, 3, "histoFunc"); else f_EoC[i] = new TF1(funcName, templateHistoFunc, 0.75, 1.5, 3, "histoFunc"); f_EoC[i] -> SetParName(0,"Norm"); f_EoC[i] -> SetParName(1,"Scale factor"); f_EoC[i] -> SetLineWidth(1); f_EoC[i] -> SetNpx(10000); xNorm = h_EoC[i]->GetEntries()/h_template->GetEntries() * h_EoC[i]->GetBinWidth(1)/h_template->GetBinWidth(1); f_EoC[i] -> FixParameter(0, xNorm); f_EoC[i] -> SetParameter(1, 0.99); f_EoC[i] -> FixParameter(2, 0.); f_EoC[i] -> SetLineColor(kGreen+2); rp = h_EoC[i] -> Fit(funcName, "QERLS+"); fStatus = rp; nTrials = 0; while( (fStatus != 0) && (nTrials < 10) ) { rp = h_EoC[i] -> Fit(funcName, "QERLS+"); fStatus = rp; if(fStatus == 0) break; ++nTrials; } // fill the graph k = f_EoC[i]->GetParameter(1); eee = f_EoC[i]->GetParError(1); if( (h_EoC[i]->GetEntries() > 10) && (fStatus == 0) && (eee > 0.05*h_template->GetRMS()/sqrt(evtsPerPoint)) ) { float date = (float)AveTime[i]; float dLow = (float)(AveTime[i]-MinTime[i]); float dHig = (float)(MaxTime[i]-AveTime[i]); float run = (float)AveRun[i]; float rLow = (float)(AveRun[i]-MinRun[i]); float rHig = (float)(MaxRun[i]-AveRun[i]); g_c_fit -> SetPoint(i, date , 1./k); g_c_fit -> SetPointError(i, dLow , dHig , eee/k/k, eee/k/k); g_c_fit_run -> SetPoint(i, run , 1./k); g_c_fit_run -> SetPointError(i, rLow , rHig, eee/k/k, eee/k/k); h_EoC_chi2 -> Fill(f_EoC[i]->GetChisquare()/f_EoP[i]->GetNDF()); EoC_scale += 1./k; EoC_err += eee/k/k; ++EoC_nActiveBins; } else { std::cout << "Fitting corrected time bin: " << i << " Fail status: " << fStatus << " sigma: " << eee << std::endl; isValid = false; } if( isValid == true ) validBins.push_back(i); } EoP_scale /= EoP_nActiveBins; EoP_err /= EoP_nActiveBins; EoC_scale /= EoC_nActiveBins; EoC_err /= EoC_nActiveBins; //---------------------------------------- // Fill the graph for avg laser correction //fede for(unsigned int itr = 0; itr < validBins.size(); ++itr) { int i = validBins.at(itr); g_las -> SetPoint(itr, (float)AveTime[i], h_Tsp[i]->GetMean() ); g_LT -> SetPoint(itr, (float)AveTime[i], AveLT[i] ); g_LT -> SetPointError(itr, 0., sqrt(AveLT2[i]-AveLT[i]*AveLT[i]) / sqrt(Entries[i]) ); LCInv_scale += h_Tsp[i]->GetMean(); } LCInv_scale /= validBins.size(); //--------------- // Rescale graphs float yscale = 1.; //float yscale = 1./EoC_scale; for(unsigned int itr = 0; itr < validBins.size(); ++itr) { double x,y; g_fit -> GetPoint(itr,x,y); g_fit -> SetPoint(itr,x,y*yscale); if ( (x > t1) && (x < t2) ) h_EoP_spread -> Fill(y*yscale); g_c_fit -> GetPoint(itr,x,y); g_c_fit -> SetPoint(itr,x,y*yscale); if ( (x > t1) && (x < t2) ) h_EoC_spread -> Fill(y*yscale); g_fit_run -> GetPoint(itr,x,y); g_fit_run -> SetPoint(itr,x,y*yscale); if ( (x > t1) && (x < t2) ) h_EoP_spread_run -> Fill(y*yscale); g_c_fit_run -> GetPoint(itr,x,y); g_c_fit_run -> SetPoint(itr,x,y*yscale); if ( (x > t1) && (x < t2) ) h_EoC_spread_run -> Fill(y*yscale); g_las -> GetPoint(itr,x,y); g_las -> SetPoint(itr,x,y*yscale*EoP_scale/LCInv_scale); } TF1 EoC_pol0("EoC_pol0","pol0",t1,t2); EoC_pol0.SetLineColor(kGreen+2); EoC_pol0.SetLineWidth(2); EoC_pol0.SetLineStyle(2); g_c_fit -> Fit("EoC_pol0","QNR"); //---------------------------- // Print out global quantities std::cout << std::endl; std::cout << "***** Mean scales and errors *****" << std::endl; std::cout << std::fixed; std::cout << std::setprecision(4); std::cout << "Mean EoP scale: " << std::setw(6) << EoP_scale << " mean EoP error: " << std::setw(8) << EoP_err << std::endl; std::cout << "Mean EoC scale: " << std::setw(6) << EoC_scale << " mean EoC error: " << std::setw(8) << EoC_err << std::endl; std::cout << "Mean 1/LC scale: " << std::setw(6) << LCInv_scale << std::endl; //----------------- // Occupancy plots //----------------- TCanvas* c_scOccupancy = new TCanvas("c_scOccupancy","SC occupancy",0,0,1000,500); c_scOccupancy -> Divide(2,1); c_scOccupancy -> cd(1); h_scOccupancy_eta -> GetXaxis() -> SetTitle("sc #eta"); h_scOccupancy_eta -> GetYaxis() -> SetTitle("events"); h_scOccupancy_eta -> Draw(); c_scOccupancy -> cd(2); h_scOccupancy_phi -> GetXaxis() -> SetTitle("sc #phi"); h_scOccupancy_phi -> GetYaxis() -> SetTitle("events"); h_scOccupancy_phi -> Draw(); TCanvas* c_seedOccupancy = new TCanvas("c_seedOccupancy","seed occupancy",0,0,1500,500); c_seedOccupancy -> Divide(3,1); c_seedOccupancy -> cd(1); h_seedOccupancy_EB -> GetXaxis() -> SetTitle("seed i#eta"); h_seedOccupancy_EB -> GetYaxis() -> SetTitle("seed i#phi"); h_seedOccupancy_EB -> Draw("COLZ"); c_seedOccupancy -> cd(2); h_seedOccupancy_EEp -> GetXaxis() -> SetTitle("seed ix"); h_seedOccupancy_EEp -> GetYaxis() -> SetTitle("seed iy"); h_seedOccupancy_EEp -> Draw("COLZ"); c_seedOccupancy -> cd(3); h_seedOccupancy_EEm -> GetXaxis() -> SetTitle("seed ix"); h_seedOccupancy_EEm -> GetYaxis() -> SetTitle("seed iy"); h_seedOccupancy_EEm -> Draw("COLZ"); //----------- // Chi2 plots //----------- TCanvas* c_chi2 = new TCanvas("c_chi2","fit chi2",0,0,500,500); c_chi2 -> cd(); h_EoC_chi2 -> GetXaxis() -> SetTitle("#chi^{2}/N_{dof}"); h_EoC_chi2 -> Draw(""); gPad -> Update(); TPaveStats* s_EoC = new TPaveStats; s_EoC = (TPaveStats*)(h_EoC_chi2->GetListOfFunctions()->FindObject("stats")); s_EoC -> SetStatFormat("1.4g"); s_EoC -> SetTextColor(kGreen+2); s_EoC->SetY1NDC(0.59); s_EoC->SetY2NDC(0.79); s_EoC -> Draw("sames"); gPad -> Update(); h_EoP_chi2 -> GetXaxis() -> SetTitle("#chi^{2}/N_{dof}"); h_EoP_chi2 -> Draw("sames"); gPad -> Update(); TPaveStats* s_EoP = new TPaveStats; s_EoP = (TPaveStats*)(h_EoP_chi2->GetListOfFunctions()->FindObject("stats")); s_EoP -> SetStatFormat("1.4g"); s_EoP -> SetTextColor(kRed+2); s_EoP->SetY1NDC(0.79); s_EoP->SetY2NDC(0.99); s_EoP -> Draw("sames"); gPad -> Update(); //------------------- // Final plot vs date //------------------- TCanvas* cplot = new TCanvas("cplot", "history plot vs date",100,100,1000,500); cplot->cd(); TPad *cLeft = new TPad("pad_0","pad_0",0.00,0.00,0.75,1.00); TPad *cRight = new TPad("pad_1","pad_1",0.75,0.00,1.00,1.00); cLeft->SetLeftMargin(0.15); cLeft->SetRightMargin(0.025); cRight->SetLeftMargin(0.025); cLeft->Draw(); cRight->Draw(); float tYoffset = 1.0; float labSize = 0.05; float labSize2 = 0.06; cLeft->cd(); cLeft->SetGridx(); cLeft->SetGridy(); TH1F *hPad = (TH1F*)gPad->DrawFrame(t1,0.9,t2,1.05); hPad->GetXaxis()->SetTimeFormat("%d/%m%F1970-01-01 00:00:00"); hPad->GetXaxis()->SetTimeDisplay(1); hPad->GetXaxis() -> SetRangeUser(MinTime[0]-43200,MaxTime[nBins-1]+43200); hPad->GetXaxis()->SetTitle("date (day/month)"); if( strcmp(EBEE,"EB") == 0 ) hPad->GetYaxis()->SetTitle("Relative E/p scale"); else hPad->GetYaxis()->SetTitle("Relative E/p scale"); hPad->GetYaxis()->SetTitleOffset(tYoffset); hPad->GetXaxis()->SetLabelSize(labSize); hPad->GetXaxis()->SetTitleSize(labSize2); hPad->GetYaxis()->SetLabelSize(labSize); hPad->GetYaxis()->SetTitleSize(labSize2); hPad -> SetMinimum(yMIN); hPad -> SetMaximum(yMAX); // draw history plot g_fit -> SetMarkerStyle(24); g_fit -> SetMarkerSize(0.7); g_fit -> SetMarkerColor(kRed+2); g_fit -> SetLineColor(kRed+2); g_fit -> Draw("P"); g_c_fit -> SetMarkerStyle(20); g_c_fit -> SetMarkerColor(kGreen+2); g_c_fit -> SetLineColor(kGreen+2); g_c_fit -> SetMarkerSize(0.7); g_c_fit -> Draw("P,same"); g_las -> SetLineColor(kAzure-2); g_las -> SetLineWidth(2); g_las -> Draw("L,same"); TLegend* legend = new TLegend(0.60,0.78,0.90,0.94); legend -> SetLineColor(kWhite); legend -> SetLineWidth(0); legend -> SetFillColor(kWhite); legend -> SetFillStyle(0); legend -> SetTextFont(42); legend -> SetTextSize(0.04); legend -> AddEntry(g_c_fit,"with LM correction","PL"); legend -> AddEntry(g_fit, "without LM correction","PL"); legend -> AddEntry(g_las, "1 / LM correction","L"); legend -> Draw("same"); char latexBuffer[250]; sprintf(latexBuffer,"CMS 2012 Preliminary"); TLatex* latex = new TLatex(0.18,0.89,latexBuffer); latex -> SetNDC(); latex -> SetTextFont(62); latex -> SetTextSize(0.05); latex -> Draw("same"); //sprintf(latexBuffer,"#sqrt{s} = 8 TeV L = 3.95 fb^{-1}"); sprintf(latexBuffer,"#sqrt{s} = 8 TeV"); TLatex* latex2 = new TLatex(0.18,0.84,latexBuffer); latex2 -> SetNDC(); latex2 -> SetTextFont(42); latex2 -> SetTextSize(0.05); latex2 -> Draw("same"); if( strcmp(EBEE,"EB") == 0 ) sprintf(latexBuffer,"ECAL Barrel"); else sprintf(latexBuffer,"ECAL Endcap"); TLatex* latex3 = new TLatex(0.18,0.19,latexBuffer); latex3 -> SetNDC(); latex3 -> SetTextFont(42); latex3 -> SetTextSize(0.05); latex3 -> Draw("same"); //sprintf(latexBuffer,"%.2E events",1.*nSavePts); //TLatex* latex4 = new TLatex(0.18,0.24,latexBuffer); //latex4 -> SetNDC(); //latex4 -> SetTextFont(42); //latex4 -> SetTextSize(0.04); //latex4 -> Draw("same"); // //sprintf(latexBuffer,"%d events/bin - %d bins",evtsPerPoint,nBins); //TLatex* latex5 = new TLatex(0.18,0.19,latexBuffer); //latex5 -> SetNDC(); //latex5 -> SetTextFont(42); //latex5 -> SetTextSize(0.04); //latex5 -> Draw("same"); cRight -> cd(); TPaveStats* s_EoP_spread = new TPaveStats(); TPaveStats* s_EoC_spread = new TPaveStats(); h_EoC_spread -> SetFillStyle(3001); h_EoC_spread -> SetFillColor(kGreen+2); h_EoC_spread->GetYaxis()->SetLabelSize(0.09); h_EoC_spread->GetYaxis()->SetLabelOffset(-0.03); h_EoC_spread->GetYaxis()->SetTitleSize(0.08); h_EoC_spread->GetYaxis()->SetNdivisions(505); h_EoC_spread->GetXaxis()->SetLabelOffset(1000); h_EoC_spread -> Draw("hbar"); gPad -> Update(); s_EoC_spread = (TPaveStats*)(h_EoC_spread->GetListOfFunctions()->FindObject("stats")); s_EoC_spread -> SetStatFormat("1.4g"); s_EoC_spread->SetX1NDC(0.06); //new x start position s_EoC_spread->SetX2NDC(0.71); //new x end position s_EoC_spread->SetY1NDC(0.93); //new x start position s_EoC_spread->SetY2NDC(0.84); //new x end position s_EoC_spread -> SetOptStat(1100); s_EoC_spread ->SetTextColor(kGreen+2); s_EoC_spread ->SetTextSize(0.08); s_EoC_spread -> Draw("sames"); h_EoP_spread -> SetFillStyle(3001); h_EoP_spread -> SetFillColor(kRed+2); h_EoP_spread -> Draw("hbarsames"); gPad -> Update(); s_EoP_spread = (TPaveStats*)(h_EoP_spread->GetListOfFunctions()->FindObject("stats")); s_EoP_spread -> SetStatFormat("1.4g"); s_EoP_spread->SetX1NDC(0.06); //new x start position s_EoP_spread->SetX2NDC(0.71); //new x end position s_EoP_spread->SetY1NDC(0.83); //new x start position s_EoP_spread->SetY2NDC(0.74); //new x end position s_EoP_spread ->SetOptStat(1100); s_EoP_spread ->SetTextColor(kRed+2); s_EoP_spread ->SetTextSize(0.08); s_EoP_spread -> Draw("sames"); /* h_EoP_spread -> SetFillStyle(3001); h_EoP_spread -> SetFillColor(kRed+2); h_EoP_spread -> Draw("hbarsame"); gPad -> Update(); */ //------------------ // Final plot vs run //------------------ TCanvas* cplot_run = new TCanvas("cplot_run", "history plot vs run",100,100,1000,500); cplot_run->cd(); cLeft = new TPad("pad_0_run","pad_0_run",0.00,0.00,0.75,1.00); cRight = new TPad("pad_1_run","pad_1_run",0.75,0.00,1.00,1.00); cLeft->SetLeftMargin(0.15); cLeft->SetRightMargin(0.025); cRight->SetLeftMargin(0.025); cLeft->Draw(); cRight->Draw(); tYoffset = 1.5; labSize = 0.04; labSize2 = 0.07; cLeft->cd(); cLeft->SetGridx(); cLeft->SetGridy(); hPad = (TH1F*)gPad->DrawFrame(MinRun[0]-1000,0.9,MaxRun[nBins-1]+1000,1.05); hPad->GetXaxis()->SetTitle("run"); if( strcmp(EBEE,"EB") == 0 ) hPad->GetYaxis()->SetTitle("Relative E/p scale"); else hPad->GetYaxis()->SetTitle("Relative E/p scale"); hPad->GetYaxis()->SetTitleOffset(tYoffset); hPad->GetXaxis()->SetLabelSize(labSize); hPad->GetXaxis()->SetTitleSize(labSize); hPad->GetYaxis()->SetLabelSize(labSize); hPad->GetYaxis()->SetTitleSize(labSize); hPad -> SetMinimum(yMIN); hPad -> SetMaximum(yMAX); // draw history plot g_fit_run -> SetMarkerStyle(20); g_fit_run -> SetMarkerSize(0.7); g_fit_run -> SetMarkerColor(kRed+2); g_fit_run -> SetLineColor(kRed+2); g_fit_run -> Draw("P"); g_c_fit_run -> SetMarkerStyle(20); g_c_fit_run -> SetMarkerColor(kGreen+2); g_c_fit_run -> SetLineColor(kGreen+2); g_c_fit_run -> SetMarkerSize(0.7); g_c_fit_run -> Draw("P,same"); cRight -> cd(); s_EoP_spread = new TPaveStats(); s_EoC_spread = new TPaveStats(); h_EoC_spread_run -> SetFillStyle(3001); h_EoC_spread_run -> SetFillColor(kGreen+2); h_EoC_spread_run->GetYaxis()->SetLabelSize(labSize2); h_EoC_spread_run->GetYaxis()->SetTitleSize(labSize2); h_EoC_spread_run->GetYaxis()->SetNdivisions(505); h_EoC_spread_run->GetYaxis()->SetLabelOffset(-0.02); h_EoC_spread_run->GetXaxis()->SetLabelOffset(1000); h_EoC_spread_run -> Draw("hbar"); gPad -> Update(); s_EoC_spread = (TPaveStats*)(h_EoC_spread_run->GetListOfFunctions()->FindObject("stats")); s_EoC_spread ->SetTextColor(kGreen+2); s_EoC_spread ->SetTextSize(0.06); s_EoC_spread->SetX1NDC(0.49); //new x start position s_EoC_spread->SetX2NDC(0.99); //new x end position s_EoC_spread->SetY1NDC(0.875); //new x start position s_EoC_spread->SetY2NDC(0.990); //new x end position s_EoC_spread -> SetOptStat(1100); s_EoC_spread -> Draw("sames"); h_EoP_spread_run -> SetFillStyle(3001); h_EoP_spread_run -> SetFillColor(kRed+2); h_EoP_spread_run -> Draw("hbarsames"); gPad -> Update(); s_EoP_spread = (TPaveStats*)(h_EoP_spread_run->GetListOfFunctions()->FindObject("stats")); s_EoP_spread->SetX1NDC(0.49); //new x start position s_EoP_spread->SetX2NDC(0.99); //new x end position s_EoP_spread->SetY1NDC(0.750); //new x start position s_EoP_spread->SetY2NDC(0.875); //new x end position s_EoP_spread ->SetOptStat(1100); s_EoP_spread ->SetTextColor(kRed+2); s_EoP_spread ->SetTextSize(0.06); s_EoP_spread -> Draw("sames"); c_chi2 -> Print((folderName+"/"+folderName+"_fitChi2.png").c_str(),"png"); c_scOccupancy -> Print((folderName+"/"+folderName+"_scOccupancy.png").c_str(),"png"); c_seedOccupancy -> Print((folderName+"/"+folderName+"_seedOccupancy.png").c_str(),"png"); cplot -> Print((folderName+"/"+folderName+"_history_vsTime.png").c_str(),"png"); cplot_run -> Print((folderName+"/"+folderName+"_history_vsRun.png").c_str(),"png"); c_chi2 -> Print((folderName+"/"+folderName+"_fitChi2.pdf").c_str(),"pdf"); c_scOccupancy -> Print((folderName+"/"+folderName+"_scOccupancy.pdf").c_str(),"pdf"); c_seedOccupancy -> Print((folderName+"/"+folderName+"_seedOccupancy.pdf").c_str(),"pdf"); cplot -> Print((folderName+"/"+folderName+"_history_vsTime.pdf").c_str(),"pdf"); cplot_run -> Print((folderName+"/"+folderName+"_history_vsRun.pdf").c_str(),"pdf"); cplot -> SaveAs((folderName+"/"+folderName+"_history_vsTime.C").c_str()); cplot_run -> SaveAs((folderName+"/"+folderName+"_history_vsRun.C").c_str()); o -> cd(); h_template -> Write(); h_scOccupancy_eta -> Write(); h_scOccupancy_phi -> Write(); h_seedOccupancy_EB -> Write(); h_seedOccupancy_EEp -> Write(); h_seedOccupancy_EEm -> Write(); g_fit -> Write("g_fit"); g_c_fit -> Write("g_c_fit"); g_fit_run -> Write("g_fit_run"); g_c_fit_run -> Write("g_c_fit_run"); g_las -> Write("g_las"); g_LT -> Write("g_LT"); h_EoP_chi2 -> Write(); h_EoC_chi2 -> Write(); //for(int i = 0; i < nBins; ++i) //{ // h_EoP[i] -> GetXaxis() -> SetTitle("E/p"); // h_EoP[i] -> Write(); // // h_EoC[i] -> GetXaxis() -> SetTitle("E/p"); // h_EoC[i] -> Write(); // // h_Tsp[i] -> Write(); // // h_Cvl[i] -> Write(); //} o -> Close(); }