Esempio n. 1
0
static uint64_t compress_latc_block(const uint8_t pixels[]) {
    // Collect unique pixels
    int nUniquePixels = 0;
    uint8_t uniquePixels[kLATCPixelsPerBlock];
    for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
        bool foundPixel = false;
        for (int j = 0; j < nUniquePixels; ++j) {
            foundPixel = foundPixel || uniquePixels[j] == pixels[i];
        }

        if (!foundPixel) {
            uniquePixels[nUniquePixels] = pixels[i];
            ++nUniquePixels;
        }
    }

    // If there's only one unique pixel, then our compression is easy.
    if (1 == nUniquePixels) {
        return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8));

    // Similarly, if there are only two unique pixels, then our compression is
    // easy again: place the pixels in the block header, and assign the indices
    // with one or zero depending on which pixel they belong to.
    } else if (2 == nUniquePixels) {
        uint64_t outBlock = 0;
        for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
            int idx = 0;
            if (pixels[i] == uniquePixels[1]) {
                idx = 1;
            }

            outBlock <<= 3;
            outBlock |= idx;
        }
        outBlock <<= 16;
        outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8));
        return SkEndian_SwapLE64(outBlock);
    }

    // Count non-maximal pixel values
    int nonExtremalPixels = 0;
    for (int i = 0; i < nUniquePixels; ++i) {
        if (!is_extremal(uniquePixels[i])) {
            ++nonExtremalPixels;
        }
    }

    // If all the pixels are nonmaximal then compute the palette using
    // the bounding box of all the pixels.
    if (nonExtremalPixels == nUniquePixels) {
        // This is really just for correctness, in all of my tests we
        // never take this step. We don't lose too much perf here because
        // most of the processing in this function is worth it for the 
        // 1 == nUniquePixels optimization.
        return compress_latc_block_bb(pixels);
    } else {
        return compress_latc_block_bb_ignore_extremal(pixels);
    }
}
Esempio n. 2
0
// Compress a block by using the bounding box of the pixels without taking into
// account the extremal values. The generated palette will contain extremal values
// and fewer points along the line segment to interpolate.
static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) {
    uint8_t minVal = 255;
    uint8_t maxVal = 0;
    for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
        if (is_extremal(pixels[i])) {
            continue;
        }

        minVal = SkTMin(pixels[i], minVal);
        maxVal = SkTMax(pixels[i], maxVal);
    }

    SkASSERT(!is_extremal(minVal));
    SkASSERT(!is_extremal(maxVal));

    uint8_t palette[kLATCPaletteSize];
    generate_latc_palette(palette, minVal, maxVal);

    uint64_t indices = 0;
    for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {

        // Find the best palette index
        uint8_t idx = 0;
        if (is_extremal(pixels[i])) {
            if (0xFF == pixels[i]) {
                idx = 7;
            } else if (0 == pixels[i]) {
                idx = 6;
            } else {
                SkFAIL("Pixel is extremal but not really?!");
            }
        } else {
            uint8_t bestError = abs_diff(pixels[i], palette[0]);
            for (int j = 1; j < kLATCPaletteSize - 2; ++j) {
                uint8_t error = abs_diff(pixels[i], palette[j]);
                if (error < bestError) {
                    bestError = error;
                    idx = j;
                }
            }
        }

        indices <<= 3;
        indices |= idx;
    }

    return
        SkEndian_SwapLE64(
            static_cast<uint64_t>(minVal) |
            (static_cast<uint64_t>(maxVal) << 8) |
            (indices << 16));
}
Esempio n. 3
0
// Compress a block by using the bounding box of the pixels. It is assumed that
// there are no extremal pixels in this block otherwise we would have used
// compressBlockBBIgnoreExtremal.
static uint64_t compress_latc_block_bb(const uint8_t pixels[]) {
    uint8_t minVal = 255;
    uint8_t maxVal = 0;
    for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
        minVal = SkTMin(pixels[i], minVal);
        maxVal = SkTMax(pixels[i], maxVal);
    }

    SkASSERT(!is_extremal(minVal));
    SkASSERT(!is_extremal(maxVal));

    uint8_t palette[kLATCPaletteSize];
    generate_latc_palette(palette, maxVal, minVal);

    uint64_t indices = 0;
    for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {

        // Find the best palette index
        uint8_t bestError = abs_diff(pixels[i], palette[0]);
        uint8_t idx = 0;
        for (int j = 1; j < kLATCPaletteSize; ++j) {
            uint8_t error = abs_diff(pixels[i], palette[j]);
            if (error < bestError) {
                bestError = error;
                idx = j;
            }
        }

        indices <<= 3;
        indices |= idx;
    }

    return
        SkEndian_SwapLE64(
            static_cast<uint64_t>(maxVal) |
            (static_cast<uint64_t>(minVal) << 8) |
            (indices << 16));
}
static uint64_t compress_latc_block(uint8_t block[16]) {
    // Just do a simple min/max but choose which of the
    // two palettes is better
    uint8_t maxVal = 0;
    uint8_t minVal = 255;
    for (int i = 0; i < 16; ++i) {
        maxVal = SkMax32(maxVal, block[i]);
        minVal = SkMin32(minVal, block[i]);
    }

    // Generate palettes
    uint8_t palettes[2][8];

    // Straight linear ramp
    palettes[0][0] = maxVal;
    palettes[0][1] = minVal;
    for (int i = 1; i < 7; ++i) {
        palettes[0][i+1] = ((7-i)*maxVal + i*minVal) / 7;
    }

    // Smaller linear ramp with min and max byte values at the end.
    palettes[1][0] = minVal;
    palettes[1][1] = maxVal;
    for (int i = 1; i < 5; ++i) {
        palettes[1][i+1] = ((5-i)*maxVal + i*minVal) / 5;
    }
    palettes[1][6] = 0;
    palettes[1][7] = 255;

    // Figure out which of the two is better:
    //  -  accumError holds the accumulated error for each pixel from
    //     the associated palette
    //  -  indices holds the best indices for each palette in the
    //     bottom 48 (16*3) bits.
    uint32_t accumError[2] = { 0, 0 };
    uint64_t indices[2] = { 0, 0 };
    for (int i = 15; i >= 0; --i) {
        // For each palette:
        // 1. Retreive the result of this pixel
        // 2. Store the error in accumError
        // 3. Store the minimum palette index in indices.
        for (int p = 0; p < 2; ++p) {
            uint32_t result = compute_error(block[i], palettes[p]);
            accumError[p] += (result >> 8);
            indices[p] <<= 3;
            indices[p] |= result & 7;
        }
    }

    SkASSERT(indices[0] < (static_cast<uint64_t>(1) << 48));
    SkASSERT(indices[1] < (static_cast<uint64_t>(1) << 48));

    uint8_t paletteIdx = (accumError[0] > accumError[1]) ? 0 : 1;

    // Assemble the compressed block.
    uint64_t result = 0;

    // Jam the first two palette entries into the bottom 16 bits of
    // a 64 bit integer. Based on the palette that we chose, one will
    // be larger than the other and it will select the proper palette.
    result |= static_cast<uint64_t>(palettes[paletteIdx][0]);
    result |= static_cast<uint64_t>(palettes[paletteIdx][1]) << 8;

    // Jam the indices into the top 48 bits.
    result |= indices[paletteIdx] << 16;

    // We assume everything is little endian, if it's not then make it so.
    return SkEndian_SwapLE64(result);
}
/**
 * Return the first 8 bytes of a bytearray, encoded as a little-endian uint64.
 */
static inline uint64_t first_8_bytes_as_uint64(const uint8_t *bytearray) {
    return SkEndian_SwapLE64(*(reinterpret_cast<const uint64_t *>(bytearray)));
}
Esempio n. 6
0
/**
 * Make sure that if we pass in a solid color bitmap that we get the appropriate results
 */
DEF_TEST(CompressLATC, reporter) {

    const SkTextureCompressor::Format kLATCFormat = SkTextureCompressor::kLATC_Format;
    static const int kLATCEncodedBlockSize = 8;

    SkBitmap bitmap;
    static const int kWidth = 8;
    static const int kHeight = 8;
    SkImageInfo info = SkImageInfo::MakeA8(kWidth, kHeight);

    bool setInfoSuccess = bitmap.setInfo(info);
    REPORTER_ASSERT(reporter, setInfoSuccess);

    bool allocPixelsSuccess = bitmap.allocPixels(info);
    REPORTER_ASSERT(reporter, allocPixelsSuccess);
    bitmap.unlockPixels();

    int latcDimX, latcDimY;
    SkTextureCompressor::GetBlockDimensions(kLATCFormat, &latcDimX, &latcDimY);

    REPORTER_ASSERT(reporter, kWidth % latcDimX == 0);
    REPORTER_ASSERT(reporter, kHeight % latcDimY == 0);
    const size_t kSizeToBe =
        SkTextureCompressor::GetCompressedDataSize(kLATCFormat, kWidth, kHeight);
    REPORTER_ASSERT(reporter, kSizeToBe == ((kWidth*kHeight*kLATCEncodedBlockSize)/16));
    REPORTER_ASSERT(reporter, (kSizeToBe % kLATCEncodedBlockSize) == 0);

    for (int lum = 0; lum < 256; ++lum) {
        bitmap.lockPixels();
        uint8_t* pixels = reinterpret_cast<uint8_t*>(bitmap.getPixels());
        REPORTER_ASSERT(reporter, NULL != pixels);
        if (NULL == pixels) {
            bitmap.unlockPixels();
            continue;
        }

        for (int i = 0; i < kWidth*kHeight; ++i) {
            pixels[i] = lum;
        }
        bitmap.unlockPixels();

        SkAutoDataUnref latcData(
            SkTextureCompressor::CompressBitmapToFormat(bitmap, kLATCFormat));
        REPORTER_ASSERT(reporter, NULL != latcData);
        if (NULL == latcData) {
            continue;
        }

        REPORTER_ASSERT(reporter, kSizeToBe == latcData->size());

        // Make sure that it all matches a given block encoding. Since we have
        // COMPRESS_LATC_FAST defined in SkTextureCompressor_LATC.cpp, we are using
        // an approximation scheme that optimizes for speed against coverage maps.
        // That means that each palette in the encoded block is exactly the same,
        // and that the three bits saved per pixel are computed from the top three
        // bits of the luminance value.
        const uint64_t kIndexEncodingMap[8] = { 1, 7, 6, 5, 4, 3, 2, 0 };
        const uint64_t kIndex = kIndexEncodingMap[lum >> 5];
        const uint64_t kConstColorEncoding =
            SkEndian_SwapLE64(
                255 |
                (kIndex << 16) | (kIndex << 19) | (kIndex << 22) | (kIndex << 25) |
                (kIndex << 28) | (kIndex << 31) | (kIndex << 34) | (kIndex << 37) |
                (kIndex << 40) | (kIndex << 43) | (kIndex << 46) | (kIndex << 49) |
                (kIndex << 52) | (kIndex << 55) | (kIndex << 58) | (kIndex << 61));

        const uint64_t* blockPtr = reinterpret_cast<const uint64_t*>(latcData->data());
        for (size_t i = 0; i < (kSizeToBe/8); ++i) {
            REPORTER_ASSERT(reporter, blockPtr[i] == kConstColorEncoding);
        }
    }
}