MRI_vectim * THD_dset_list_to_vectim( int nds, THD_3dim_dataset **ds, byte *mask ) { MRI_vectim *vout , **vim ; int kk , jj ; if( nds < 1 || ds == NULL ) return NULL ; if( nds == 1 ) return THD_dset_to_vectim( ds[0] , mask , 0 ) ; for( kk=0 ; kk < nds ; kk++ ) if( !ISVALID_DSET(ds[kk]) ) return NULL ; #pragma omp critical (MALLOC) vim = (MRI_vectim **)malloc(sizeof(MRI_vectim *)*nds) ; for( kk=0 ; kk < nds ; kk++ ){ vim[kk] = THD_dset_to_vectim( ds[kk] , mask , 0 ) ; /** DSET_unload( ds[kk] ) ; **/ if( vim[kk] == NULL ){ for( jj=0 ; jj < kk ; jj++ ) VECTIM_destroy(vim[jj]) ; free(vim) ; return NULL ; } } vout = THD_tcat_vectims( nds , vim ) ; for( jj=0 ; jj < nds ; jj++ ) VECTIM_destroy(vim[jj]) ; free(vim) ; return vout ; }
MRI_vectim * THD_dset_to_vectim_byslice( THD_3dim_dataset *dset, byte *mask , int ignore , int kzbot , int kztop ) { byte *mmm ; MRI_vectim *mrv=NULL ; int kk,iv , nvals , nvox , nmask , nxy , nz ; ENTRY("THD_dset_to_vectim_byslice") ; if( !ISVALID_DSET(dset) ) RETURN(NULL) ; DSET_load(dset) ; if( !DSET_LOADED(dset) ) RETURN(NULL) ; nvals = DSET_NVALS(dset) ; if( nvals <= 0 ) RETURN(NULL) ; nvox = DSET_NVOX(dset) ; nxy = DSET_NX(dset) * DSET_NY(dset) ; nz = DSET_NZ(dset) ; if( kzbot < 0 ) kzbot = 0 ; if( kztop >= nz ) kztop = nz-1 ; if( kztop < kzbot ) RETURN(NULL) ; if( kzbot == 0 && kztop == nz-1 ){ mrv = THD_dset_to_vectim( dset , mask, ignore ) ; RETURN(mrv) ; } /* make a mask that includes cutting out un-desirable slices */ { int ibot , itop , ii ; #pragma omp critical (MALLOC) mmm = (byte *)malloc(sizeof(byte)*nvox) ; if( mask == NULL ) AAmemset( mmm , 1 , sizeof(byte)*nvox ) ; else AAmemcpy( mmm , mask , sizeof(byte)*nvox ) ; if( kzbot > 0 ) AAmemset( mmm , 0 , sizeof(byte)*kzbot *nxy ) ; if( kztop < nz-1 ) AAmemset( mmm+(kztop+1)*nxy , 0 , sizeof(byte)*(nz-1-kztop)*nxy ) ; } /* and make the vectim using the standard function */ mrv = THD_dset_to_vectim( dset , mmm , ignore ) ; free(mmm) ; RETURN(mrv) ; }
THD_3dim_dataset * THD_despike9_dataset( THD_3dim_dataset *inset , byte *mask ) { THD_3dim_dataset *outset ; MRI_vectim *mrv ; int ii ; ENTRY("THD_despike9_dataset") ; if( !ISVALID_DSET(inset) || DSET_NVALS(inset) < 9 ) RETURN(NULL) ; mrv = THD_dset_to_vectim(inset,mask,0) ; DSET_unload(inset) ; if( mrv == NULL ) RETURN(NULL) ; (void)THD_vectim_despike9(mrv) ; outset = EDIT_empty_copy(inset) ; for( ii=0 ; ii < DSET_NVALS(outset) ; ii++ ) EDIT_substitute_brick(outset,ii,MRI_float,NULL) ; THD_vectim_to_dset(mrv,outset) ; VECTIM_destroy(mrv) ; RETURN(outset) ; }
int main( int argc , char * argv[] ) { int do_norm=0 , qdet=2 , have_freq=0 , do_automask=0 ; float dt=0.0f , fbot=0.0f,ftop=999999.9f , blur=0.0f ; MRI_IMARR *ortar=NULL ; MRI_IMAGE *ortim=NULL ; THD_3dim_dataset **ortset=NULL ; int nortset=0 ; THD_3dim_dataset *inset=NULL , *outset=NULL; char *prefix="RSFC" ; byte *mask=NULL ; int mask_nx=0,mask_ny=0,mask_nz=0,nmask , verb=1 , nx,ny,nz,nvox , nfft=0 , kk ; float **vec , **ort=NULL ; int nort=0 , vv , nopt , ntime ; MRI_vectim *mrv ; float pvrad=0.0f ; int nosat=0 ; int do_despike=0 ; // @@ non-BP variables float fbotALL=0.0f, ftopALL=999999.9f; // do full range version int NumDen = 0; // switch for doing numerator or denom THD_3dim_dataset *outsetALL=NULL ; int m, mm; float delf; // harmonics int ind_low,ind_high,N_ny, ctr; float sqnt,nt_fac; gsl_fft_real_wavetable *real1, *real2; // GSL stuff gsl_fft_real_workspace *work; double *series1, *series2; double *xx1,*xx2; float numer,denom,val; float *alff=NULL,*malff=NULL,*falff=NULL, *rsfa=NULL,*mrsfa=NULL,*frsfa=NULL; // values float meanALFF=0.0f,meanRSFA=0.0f; // will be for mean in brain region THD_3dim_dataset *outsetALFF=NULL; THD_3dim_dataset *outsetmALFF=NULL; THD_3dim_dataset *outsetfALFF=NULL; THD_3dim_dataset *outsetRSFA=NULL; THD_3dim_dataset *outsetmRSFA=NULL; THD_3dim_dataset *outsetfRSFA=NULL; char out_lff[300]; char out_alff[300]; char out_malff[300]; char out_falff[300]; char out_rsfa[300]; char out_mrsfa[300]; char out_frsfa[300]; char out_unBP[300]; int SERIES_OUT = 1; int UNBP_OUT = 0; int DO_RSFA = 1; int BP_LAST = 0; // option for only doing filter to LFFs at very end of proc float de_rsfa=0.0f,nu_rsfa=0.0f; double pow1=0.0,pow2=0.0; /*-- help? --*/ if( argc < 2 || strcmp(argv[1],"-help") == 0 ){ printf( "\n Program to calculate common resting state functional connectivity (RSFC)\n" " parameters (ALFF, mALFF, fALFF, RSFA, etc.) for resting state time\n" " series. This program is **heavily** based on the existing\n" " 3dBandPass by RW Cox, with the amendments to calculate RSFC\n" " parameters written by PA Taylor (July, 2012).\n" " This program is part of FATCAT (Taylor & Saad, 2013) in AFNI. Importantly,\n" " its functionality can be included in the `afni_proc.py' processing-script \n" " generator; see that program's help file for an example including RSFC\n" " and spectral parameter calculation via the `-regress_RSFC' option.\n" "\n" "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n" "\n" " All options of 3dBandPass may be used here (with a couple other\n" " parameter options, as well): essentially, the motivation of this\n" " program is to produce ALFF, etc. values of the actual RSFC time\n" " series that you calculate. Therefore, all the 3dBandPass processing\n" " you normally do en route to making your final `resting state time\n" " series' is done here to generate your LFFs, from which the\n" " amplitudes in the LFF band are calculated at the end. In order to\n" " calculate fALFF, the same initial time series are put through the\n" " same processing steps which you have chosen but *without* the\n" " bandpass part; the spectrum of this second time series is used to\n" " calculate the fALFF denominator.\n" " \n" " For more information about each RSFC parameter, see, e.g.: \n" " ALFF/mALFF -- Zang et al. (2007),\n" " fALFF -- Zou et al. (2008),\n" " RSFA -- Kannurpatti & Biswal (2008).\n" "\n" "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n" "\n" " + USAGE: 3dRSFC [options] fbot ftop dataset\n" "\n" "* One function of this program is to prepare datasets for input\n" " to 3dSetupGroupInCorr. Other uses are left to your imagination.\n" "\n" "* 'dataset' is a 3D+time sequence of volumes\n" " ++ This must be a single imaging run -- that is, no discontinuities\n" " in time from 3dTcat-ing multiple datasets together.\n" "\n" "* fbot = lowest frequency in the passband, in Hz\n" " ++ fbot can be 0 if you want to do a lowpass filter only;\n" " HOWEVER, the mean and Nyquist freq are always removed.\n" "\n" "* ftop = highest frequency in the passband (must be > fbot)\n" " ++ if ftop > Nyquist freq, then it's a highpass filter only.\n" "\n" "* Set fbot=0 and ftop=99999 to do an 'allpass' filter.\n" " ++ Except for removal of the 0 and Nyquist frequencies, that is.\n" "\n" "* You cannot construct a 'notch' filter with this program!\n" " ++ You could use 3dRSFC followed by 3dcalc to get the same effect.\n" " ++ If you are understand what you are doing, that is.\n" " ++ Of course, that is the AFNI way -- if you don't want to\n" " understand what you are doing, use Some other PrograM, and\n" " you can still get Fine StatisticaL maps.\n" "\n" "* 3dRSFC will fail if fbot and ftop are too close for comfort.\n" " ++ Which means closer than one frequency grid step df,\n" " where df = 1 / (nfft * dt) [of course]\n" "\n" "* The actual FFT length used will be printed, and may be larger\n" " than the input time series length for the sake of efficiency.\n" " ++ The program will use a power-of-2, possibly multiplied by\n" " a power of 3 and/or 5 (up to and including the 3rd power of\n" " each of these: 3, 9, 27, and 5, 25, 125).\n" "\n" "* Note that the results of combining 3dDetrend and 3dRSFC will\n" " depend on the order in which you run these programs. That's why\n" " 3dRSFC has the '-ort' and '-dsort' options, so that the\n" " time series filtering can be done properly, in one place.\n" "\n" "* The output dataset is stored in float format.\n" "\n" "* The order of processing steps is the following (most are optional), and\n" " for the LFFs, the bandpass is done between the specified fbot and ftop,\n" " while for the `whole spectrum' (i.e., fALFF denominator) the bandpass is:\n" " done only to exclude the time series mean and the Nyquist frequency:\n" " (0) Check time series for initial transients [does not alter data]\n" " (1) Despiking of each time series\n" " (2) Removal of a constant+linear+quadratic trend in each time series\n" " (3) Bandpass of data time series\n" " (4) Bandpass of -ort time series, then detrending of data\n" " with respect to the -ort time series\n" " (5) Bandpass and de-orting of the -dsort dataset,\n" " then detrending of the data with respect to -dsort\n" " (6) Blurring inside the mask [might be slow]\n" " (7) Local PV calculation [WILL be slow!]\n" " (8) L2 normalization [will be fast.]\n" " (9) Calculate spectrum and amplitudes, for RSFC parameters.\n" "\n" "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n" "--------\n" "OPTIONS:\n" "--------\n" " -despike = Despike each time series before other processing.\n" " ++ Hopefully, you don't actually need to do this,\n" " which is why it is optional.\n" " -ort f.1D = Also orthogonalize input to columns in f.1D\n" " ++ Multiple '-ort' options are allowed.\n" " -dsort fset = Orthogonalize each voxel to the corresponding\n" " voxel time series in dataset 'fset', which must\n" " have the same spatial and temporal grid structure\n" " as the main input dataset.\n" " ++ At present, only one '-dsort' option is allowed.\n" " -nodetrend = Skip the quadratic detrending of the input that\n" " occurs before the FFT-based bandpassing.\n" " ++ You would only want to do this if the dataset\n" " had been detrended already in some other program.\n" " -dt dd = set time step to 'dd' sec [default=from dataset header]\n" " -nfft N = set the FFT length to 'N' [must be a legal value]\n" " -norm = Make all output time series have L2 norm = 1\n" " ++ i.e., sum of squares = 1\n" " -mask mset = Mask dataset\n" " -automask = Create a mask from the input dataset\n" " -blur fff = Blur (inside the mask only) with a filter\n" " width (FWHM) of 'fff' millimeters.\n" " -localPV rrr = Replace each vector by the local Principal Vector\n" " (AKA first singular vector) from a neighborhood\n" " of radius 'rrr' millimiters.\n" " ++ Note that the PV time series is L2 normalized.\n" " ++ This option is mostly for Bob Cox to have fun with.\n" "\n" " -input dataset = Alternative way to specify input dataset.\n" " -band fbot ftop = Alternative way to specify passband frequencies.\n" "\n" " -prefix ppp = Set prefix name of output dataset. Name of filtered time\n" " series would be, e.g., ppp_LFF+orig.*, and the parameter\n" " outputs are named with obvious suffices.\n" " -quiet = Turn off the fun and informative messages. (Why?)\n" " -no_rs_out = Don't output processed time series-- just output\n" " parameters (not recommended, since the point of\n" " calculating RSFC params here is to have them be quite\n" " related to the time series themselves which are used for\n" " further analysis)." " -un_bp_out = Output the un-bandpassed series as well (default is not \n" " to). Name would be, e.g., ppp_unBP+orig.* .\n" " with suffix `_unBP'.\n" " -no_rsfa = If you don't want RSFA output (default is to do so).\n" " -bp_at_end = A (probably unnecessary) switch to have bandpassing be \n" " the very last processing step that is done in the\n" " sequence of steps listed above; at Step 3 above, only \n" " the time series mean and nyquist are BP'ed out, and then\n" " the LFF series is created only after Step 9. NB: this \n" " probably makes only very small changes for most\n" " processing sequences (but maybe not, depending usage).\n" "\n" " -notrans = Don't check for initial positive transients in the data:\n" " *OR* ++ The test is a little slow, so skipping it is OK,\n" " -nosat if you KNOW the data time series are transient-free.\n" " ++ Or set AFNI_SKIP_SATCHECK to YES.\n" " ++ Initial transients won't be handled well by the\n" " bandpassing algorithm, and in addition may seriously\n" " contaminate any further processing, such as inter-\n" " voxel correlations via InstaCorr.\n" " ++ No other tests are made [yet] for non-stationary \n" " behavior in the time series data.\n" "\n" "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n" "\n" " If you use this program, please reference the introductory/description\n" " paper for the FATCAT toolbox:\n" " Taylor PA, Saad ZS (2013). FATCAT: (An Efficient) Functional\n" " And Tractographic Connectivity Analysis Toolbox. Brain \n" " Connectivity 3(5):523-535.\n" "____________________________________________________________________________\n" ); PRINT_AFNI_OMP_USAGE( " 3dRSFC" , " * At present, the only part of 3dRSFC that is parallelized is the\n" " '-blur' option, which processes each sub-brick independently.\n" ) ; PRINT_COMPILE_DATE ; exit(0) ; } /*-- startup --*/ mainENTRY("3dRSFC"); machdep(); AFNI_logger("3dRSFC",argc,argv); PRINT_VERSION("3dRSFC (from 3dBandpass by RW Cox): version THETA"); AUTHOR("PA Taylor"); nosat = AFNI_yesenv("AFNI_SKIP_SATCHECK") ; nopt = 1 ; while( nopt < argc && argv[nopt][0] == '-' ){ if( strcmp(argv[nopt],"-despike") == 0 ){ /* 08 Oct 2010 */ do_despike++ ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-nfft") == 0 ){ int nnup ; if( ++nopt >= argc ) ERROR_exit("need an argument after -nfft!") ; nfft = (int)strtod(argv[nopt],NULL) ; nnup = csfft_nextup_even(nfft) ; if( nfft < 16 || nfft != nnup ) ERROR_exit("value %d after -nfft is illegal! Next legal value = %d",nfft,nnup) ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-blur") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -blur!") ; blur = strtod(argv[nopt],NULL) ; if( blur <= 0.0f ) WARNING_message("non-positive blur?!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-localPV") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -localpv!") ; pvrad = strtod(argv[nopt],NULL) ; if( pvrad <= 0.0f ) WARNING_message("non-positive -localpv?!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-prefix") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -prefix!") ; prefix = strdup(argv[nopt]) ; if( !THD_filename_ok(prefix) ) ERROR_exit("bad -prefix option!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-automask") == 0 ){ if( mask != NULL ) ERROR_exit("Can't use -mask AND -automask!") ; do_automask = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-mask") == 0 ){ THD_3dim_dataset *mset ; if( ++nopt >= argc ) ERROR_exit("Need argument after '-mask'") ; if( mask != NULL || do_automask ) ERROR_exit("Can't have two mask inputs") ; mset = THD_open_dataset( argv[nopt] ) ; CHECK_OPEN_ERROR(mset,argv[nopt]) ; DSET_load(mset) ; CHECK_LOAD_ERROR(mset) ; mask_nx = DSET_NX(mset); mask_ny = DSET_NY(mset); mask_nz = DSET_NZ(mset); mask = THD_makemask( mset , 0 , 0.5f, 0.0f ) ; DSET_delete(mset) ; if( mask == NULL ) ERROR_exit("Can't make mask from dataset '%s'",argv[nopt]) ; nmask = THD_countmask( mask_nx*mask_ny*mask_nz , mask ) ; if( verb ) INFO_message("Number of voxels in mask = %d",nmask) ; if( nmask < 1 ) ERROR_exit("Mask is too small to process") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-norm") == 0 ){ do_norm = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-quiet") == 0 ){ verb = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-no_rs_out") == 0 ){ // @@ SERIES_OUT = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-un_bp_out") == 0 ){ // @@ UNBP_OUT = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-no_rsfa") == 0 ){ // @@ DO_RSFA = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-bp_at_end") == 0 ){ // @@ BP_LAST = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-notrans") == 0 || strcmp(argv[nopt],"-nosat") == 0 ){ nosat = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-ort") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -ort!") ; if( ortar == NULL ) INIT_IMARR(ortar) ; ortim = mri_read_1D( argv[nopt] ) ; if( ortim == NULL ) ERROR_exit("can't read from -ort '%s'",argv[nopt]) ; mri_add_name(argv[nopt],ortim) ; ADDTO_IMARR(ortar,ortim) ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-dsort") == 0 ){ THD_3dim_dataset *qset ; if( ++nopt >= argc ) ERROR_exit("need an argument after -dsort!") ; if( nortset > 0 ) ERROR_exit("only 1 -dsort option is allowed!") ; qset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(qset,argv[nopt]) ; ortset = (THD_3dim_dataset **)realloc(ortset, sizeof(THD_3dim_dataset *)*(nortset+1)) ; ortset[nortset++] = qset ; nopt++ ; continue ; } if( strncmp(argv[nopt],"-nodetrend",6) == 0 ){ qdet = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-dt") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -dt!") ; dt = (float)strtod(argv[nopt],NULL) ; if( dt <= 0.0f ) WARNING_message("value after -dt illegal!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-input") == 0 ){ if( inset != NULL ) ERROR_exit("Can't have 2 -input options!") ; if( ++nopt >= argc ) ERROR_exit("need an argument after -input!") ; inset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(inset,argv[nopt]) ; nopt++ ; continue ; } if( strncmp(argv[nopt],"-band",5) == 0 ){ if( ++nopt >= argc-1 ) ERROR_exit("need 2 arguments after -band!") ; if( have_freq ) WARNING_message("second -band option replaces first one!") ; fbot = strtod(argv[nopt++],NULL) ; ftop = strtod(argv[nopt++],NULL) ; have_freq = 1 ; continue ; } ERROR_exit("Unknown option: '%s'",argv[nopt]) ; } /** check inputs for reasonablositiness **/ if( !have_freq ){ if( nopt+1 >= argc ) ERROR_exit("Need frequencies on command line after options!") ; fbot = (float)strtod(argv[nopt++],NULL) ; ftop = (float)strtod(argv[nopt++],NULL) ; } if( inset == NULL ){ if( nopt >= argc ) ERROR_exit("Need input dataset name on command line after options!") ; inset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(inset,argv[nopt]) ; nopt++ ; } DSET_UNMSEC(inset) ; if( fbot < 0.0f ) ERROR_exit("fbot value can't be negative!") ; if( ftop <= fbot ) ERROR_exit("ftop value %g must be greater than fbot value %g!",ftop,fbot) ; ntime = DSET_NVALS(inset) ; if( ntime < 9 ) ERROR_exit("Input dataset is too short!") ; if( nfft <= 0 ){ nfft = csfft_nextup_even(ntime) ; if( verb ) INFO_message("Data length = %d FFT length = %d",ntime,nfft) ; (void)THD_bandpass_set_nfft(nfft) ; } else if( nfft < ntime ){ ERROR_exit("-nfft %d is less than data length = %d",nfft,ntime) ; } else { kk = THD_bandpass_set_nfft(nfft) ; if( kk != nfft && verb ) INFO_message("Data length = %d FFT length = %d",ntime,kk) ; } if( dt <= 0.0f ){ dt = DSET_TR(inset) ; if( dt <= 0.0f ){ WARNING_message("Setting dt=1.0 since input dataset lacks a time axis!") ; dt = 1.0f ; } } ftopALL = 1./dt ;// Aug,2016: should solve problem of a too-large // value for THD_bandpass_vectors(), while still // being >f_{Nyquist} if( !THD_bandpass_OK(ntime,dt,fbot,ftop,1) ) ERROR_exit("Can't continue!") ; nx = DSET_NX(inset); ny = DSET_NY(inset); nz = DSET_NZ(inset); nvox = nx*ny*nz; /* check mask, or create it */ if( verb ) INFO_message("Loading input dataset time series" ) ; DSET_load(inset) ; if( mask != NULL ){ if( mask_nx != nx || mask_ny != ny || mask_nz != nz ) ERROR_exit("-mask dataset grid doesn't match input dataset") ; } else if( do_automask ){ mask = THD_automask( inset ) ; if( mask == NULL ) ERROR_message("Can't create -automask from input dataset?") ; nmask = THD_countmask( DSET_NVOX(inset) , mask ) ; if( verb ) INFO_message("Number of voxels in automask = %d",nmask); if( nmask < 1 ) ERROR_exit("Automask is too small to process") ; } else { mask = (byte *)malloc(sizeof(byte)*nvox) ; nmask = nvox ; memset(mask,1,sizeof(byte)*nvox) ; // if( verb ) // @@ alert if aaaalllllll vox are going to be analyzed! INFO_message("No mask ==> processing all %d voxels",nvox); } /* A simple check of dataset quality [08 Feb 2010] */ if( !nosat ){ float val ; INFO_message( "Checking dataset for initial transients [use '-notrans' to skip this test]") ; val = THD_saturation_check(inset,mask,0,0) ; kk = (int)(val+0.54321f) ; if( kk > 0 ) ININFO_message( "Looks like there %s %d non-steady-state initial time point%s :-(" , ((kk==1) ? "is" : "are") , kk , ((kk==1) ? " " : "s") ) ; else if( val > 0.3210f ) /* don't ask where this threshold comes from! */ ININFO_message( "MAYBE there's an initial positive transient of 1 point, but it's hard to tell\n") ; else ININFO_message("No widespread initial positive transient detected :-)") ; } /* check -dsort inputs for match to inset */ for( kk=0 ; kk < nortset ; kk++ ){ if( DSET_NX(ortset[kk]) != nx || DSET_NY(ortset[kk]) != ny || DSET_NZ(ortset[kk]) != nz || DSET_NVALS(ortset[kk]) != ntime ) ERROR_exit("-dsort %s doesn't match input dataset grid" , DSET_BRIKNAME(ortset[kk]) ) ; } /* convert input dataset to a vectim, which is more fun */ // @@ convert BP'ing ftop/bot into indices for the DFT (below) delf = 1.0/(ntime*dt); ind_low = (int) rint(fbot/delf); ind_high = (int) rint(ftop/delf); if( ntime % 2 ) // nyquist number N_ny = (ntime-1)/2; else N_ny = ntime/2; sqnt = sqrt(ntime); nt_fac = sqrt(ntime*(ntime-1)); // @@ if BP_LAST==0: // now we go through twice, doing LFF bandpass for NumDen==0 and // `full spectrum' processing for NumDen==1. // if BP_LAST==1: // now we go through once, doing only `full spectrum' processing for( NumDen=0 ; NumDen<2 ; NumDen++) { //if( NumDen==1 ){ // full spectrum // fbot = fbotALL; // ftop = ftopALL; //} // essentially, just doesn't BP here, and the perfect filtering at end // is used for both still; this makes the final output spectrum // contain only frequencies in range of 0.01-0.08 if( BP_LAST==1 ) INFO_message("Only doing filtering to LFFs at end!"); mrv = THD_dset_to_vectim( inset , mask , 0 ) ; if( mrv == NULL ) ERROR_exit("Can't load time series data!?") ; if( NumDen==1 ) DSET_unload(inset) ; // @@ only unload on 2nd pass /* similarly for the ort vectors */ if( ortar != NULL ){ for( kk=0 ; kk < IMARR_COUNT(ortar) ; kk++ ){ ortim = IMARR_SUBIM(ortar,kk) ; if( ortim->nx < ntime ) ERROR_exit("-ort file %s is shorter than input dataset time series", ortim->name ) ; ort = (float **)realloc( ort , sizeof(float *)*(nort+ortim->ny) ) ; for( vv=0 ; vv < ortim->ny ; vv++ ) ort[nort++] = MRI_FLOAT_PTR(ortim) + ortim->nx * vv ; } } /* all the real work now */ if( do_despike ){ int_pair nsp ; if( verb ) INFO_message("Testing data time series for spikes") ; nsp = THD_vectim_despike9( mrv ) ; if( verb ) ININFO_message(" -- Squashed %d spikes from %d voxels",nsp.j,nsp.i) ; } if( verb ) INFO_message("Bandpassing data time series") ; if( (BP_LAST==0) && (NumDen==0) ) (void)THD_bandpass_vectim( mrv , dt,fbot,ftop , qdet , nort,ort ) ; else (void)THD_bandpass_vectim( mrv , dt,fbotALL,ftopALL, qdet,nort,ort ) ; /* OK, maybe a little more work */ if( nortset == 1 ){ MRI_vectim *orv ; orv = THD_dset_to_vectim( ortset[0] , mask , 0 ) ; if( orv == NULL ){ ERROR_message("Can't load -dsort %s",DSET_BRIKNAME(ortset[0])) ; } else { float *dp , *mvv , *ovv , ff ; if( verb ) INFO_message("Orthogonalizing to bandpassed -dsort") ; //(void)THD_bandpass_vectim( orv , dt,fbot,ftop , qdet , nort,ort ) ; //@@ if( (BP_LAST==0) && (NumDen==0) ) (void)THD_bandpass_vectim(orv,dt,fbot,ftop,qdet,nort,ort); else (void)THD_bandpass_vectim(orv,dt,fbotALL,ftopALL,qdet,nort,ort); THD_vectim_normalize( orv ) ; dp = malloc(sizeof(float)*mrv->nvec) ; THD_vectim_vectim_dot( mrv , orv , dp ) ; for( vv=0 ; vv < mrv->nvec ; vv++ ){ ff = dp[vv] ; if( ff != 0.0f ){ mvv = VECTIM_PTR(mrv,vv) ; ovv = VECTIM_PTR(orv,vv) ; for( kk=0 ; kk < ntime ; kk++ ) mvv[kk] -= ff*ovv[kk] ; } } VECTIM_destroy(orv) ; free(dp) ; } } if( blur > 0.0f ){ if( verb ) INFO_message("Blurring time series data spatially; FWHM=%.2f",blur) ; mri_blur3D_vectim( mrv , blur ) ; } if( pvrad > 0.0f ){ if( verb ) INFO_message("Local PV-ing time series data spatially; radius=%.2f",pvrad) ; THD_vectim_normalize( mrv ) ; THD_vectim_localpv( mrv , pvrad ) ; } if( do_norm && pvrad <= 0.0f ){ if( verb ) INFO_message("L2 normalizing time series data") ; THD_vectim_normalize( mrv ) ; } /* create output dataset, populate it, write it, then quit */ if( (NumDen==0) ) { // @@ BP'ed version; will do filt if BP_LAST if(BP_LAST) // do bandpass here for BP_LAST (void)THD_bandpass_vectim(mrv,dt,fbot,ftop,qdet,0,NULL); if( verb ) INFO_message("Creating output dataset in memory, then writing it") ; outset = EDIT_empty_copy(inset) ; if(SERIES_OUT){ sprintf(out_lff,"%s_LFF",prefix); EDIT_dset_items( outset , ADN_prefix,out_lff , ADN_none ) ; tross_Copy_History( inset , outset ) ; tross_Make_History( "3dBandpass" , argc,argv , outset ) ; } for( vv=0 ; vv < ntime ; vv++ ) EDIT_substitute_brick( outset , vv , MRI_float , NULL ) ; #if 1 THD_vectim_to_dset( mrv , outset ) ; #else AFNI_OMP_START ; #pragma omp parallel { float *far , *var ; int *ivec=mrv->ivec ; int vv,kk ; #pragma omp for for( vv=0 ; vv < ntime ; vv++ ){ far = DSET_BRICK_ARRAY(outset,vv) ; var = mrv->fvec + vv ; for( kk=0 ; kk < nmask ; kk++ ) far[ivec[kk]] = var[kk*ntime] ; } } AFNI_OMP_END ; #endif VECTIM_destroy(mrv) ; if(SERIES_OUT){ // @@ DSET_write(outset) ; if( verb ) WROTE_DSET(outset) ; } } else{ // @@ non-BP'ed version if( verb ) INFO_message("Creating output dataset 2 in memory") ; // do this here because LFF version was also BP'ed at end. if(BP_LAST) // do bandpass here for BP_LAST (void)THD_bandpass_vectim(mrv,dt,fbotALL,ftopALL,qdet,0,NULL); outsetALL = EDIT_empty_copy(inset) ; if(UNBP_OUT){ sprintf(out_unBP,"%s_unBP",prefix); EDIT_dset_items( outsetALL, ADN_prefix, out_unBP, ADN_none ); tross_Copy_History( inset , outsetALL ) ; tross_Make_History( "3dRSFC" , argc,argv , outsetALL ) ; } for( vv=0 ; vv < ntime ; vv++ ) EDIT_substitute_brick( outsetALL , vv , MRI_float , NULL ) ; #if 1 THD_vectim_to_dset( mrv , outsetALL ) ; #else AFNI_OMP_START ; #pragma omp parallel { float *far , *var ; int *ivec=mrv->ivec ; int vv,kk ; #pragma omp for for( vv=0 ; vv < ntime ; vv++ ){ far = DSET_BRICK_ARRAY(outsetALL,vv) ; var = mrv->fvec + vv ; for( kk=0 ; kk < nmask ; kk++ ) far[ivec[kk]] = var[kk*ntime] ; } } AFNI_OMP_END ; #endif VECTIM_destroy(mrv) ; if(UNBP_OUT){ DSET_write(outsetALL) ; if( verb ) WROTE_DSET(outsetALL) ; } } }// end of NumDen loop // @@ INFO_message("Starting the (f)ALaFFel calcs") ; // allocations series1 = (double *)calloc(ntime,sizeof(double)); series2 = (double *)calloc(ntime,sizeof(double)); xx1 = (double *)calloc(2*ntime,sizeof(double)); xx2 = (double *)calloc(2*ntime,sizeof(double)); alff = (float *)calloc(nvox,sizeof(float)); malff = (float *)calloc(nvox,sizeof(float)); falff = (float *)calloc(nvox,sizeof(float)); if( (series1 == NULL) || (series2 == NULL) || (xx1 == NULL) || (xx2 == NULL) || (alff == NULL) || (malff == NULL) || (falff == NULL)) { fprintf(stderr, "\n\n MemAlloc failure.\n\n"); exit(122); } if(DO_RSFA) { rsfa = (float *)calloc(nvox,sizeof(float)); mrsfa = (float *)calloc(nvox,sizeof(float)); frsfa = (float *)calloc(nvox,sizeof(float)); if( (rsfa == NULL) || (mrsfa == NULL) || (frsfa == NULL)) { fprintf(stderr, "\n\n MemAlloc failure.\n\n"); exit(123); } } work = gsl_fft_real_workspace_alloc (ntime); real1 = gsl_fft_real_wavetable_alloc (ntime); real2 = gsl_fft_real_wavetable_alloc (ntime); gsl_complex_packed_array compl_freqs1 = xx1; gsl_complex_packed_array compl_freqs2 = xx2; // ********************************************************************* // ********************************************************************* // ************** Falafelling = ALFF/fALFF calcs ***************** // ********************************************************************* // ********************************************************************* // Be now have the BP'ed data set (outset) and the non-BP'ed one // (outsetALL). now we'll FFT both, get amplitudes in appropriate // ranges, and calculate: ALFF, mALFF, fALFF, ctr = 0; for( kk=0; kk<nvox ; kk++) { if(mask[kk]) { // BP one, and unBP one, either for BP_LAST or !BP_LAST for( m=0 ; m<ntime ; m++ ) { series1[m] = THD_get_voxel(outset,kk,m); series2[m] = THD_get_voxel(outsetALL,kk,m); } mm = gsl_fft_real_transform(series1, 1, ntime, real1, work); mm = gsl_fft_halfcomplex_unpack(series1, compl_freqs1, 1, ntime); mm = gsl_fft_real_transform(series2, 1, ntime, real2, work); mm = gsl_fft_halfcomplex_unpack(series2, compl_freqs2, 1, ntime); numer = 0.0f; denom = 0.0f; de_rsfa = 0.0f; nu_rsfa = 0.0f; for( m=1 ; m<N_ny ; m++ ) { mm = 2*m; pow2 = compl_freqs2[mm]*compl_freqs2[mm] + compl_freqs2[mm+1]*compl_freqs2[mm+1]; // power //pow2*=2;// factor of 2 since ampls are even funcs denom+= (float) sqrt(pow2); // amplitude de_rsfa+= (float) pow2; if( ( m>=ind_low ) && ( m<=ind_high ) ){ pow1 = compl_freqs1[mm]*compl_freqs1[mm]+ compl_freqs1[mm+1]*compl_freqs1[mm+1]; //pow1*=2; numer+= (float) sqrt(pow1); nu_rsfa+= (float) pow1; } } if( denom>0.000001 ) falff[kk] = numer/denom; else falff[kk] = 0.; alff[kk] = 2*numer/sqnt;// factor of 2 since ampl is even funct meanALFF+= alff[kk]; if(DO_RSFA){ nu_rsfa = sqrt(2*nu_rsfa); // factor of 2 since ampls de_rsfa = sqrt(2*de_rsfa); // are even funcs if( de_rsfa>0.000001 ) frsfa[kk] = nu_rsfa/de_rsfa; else frsfa[kk]=0.; rsfa[kk] = nu_rsfa/nt_fac; meanRSFA+= rsfa[kk]; } ctr+=1; } } meanALFF/= ctr; meanRSFA/= ctr; gsl_fft_real_wavetable_free(real1); gsl_fft_real_wavetable_free(real2); gsl_fft_real_workspace_free(work); // ALFFs divided by mean of brain value for( kk=0 ; kk<nvox ; kk++ ) if(mask[kk]){ malff[kk] = alff[kk]/meanALFF; if(DO_RSFA) mrsfa[kk] = rsfa[kk]/meanRSFA; } // ************************************************************** // ************************************************************** // Store and output // ************************************************************** // ************************************************************** outsetALFF = EDIT_empty_copy( inset ) ; sprintf(out_alff,"%s_ALFF",prefix); EDIT_dset_items( outsetALFF, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_alff, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetALFF)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetALFF)); EDIT_substitute_brick(outsetALFF, 0, MRI_float, alff); alff=NULL; THD_load_statistics(outsetALFF); tross_Make_History("3dRSFC", argc, argv, outsetALFF); THD_write_3dim_dataset(NULL, NULL, outsetALFF, True); outsetfALFF = EDIT_empty_copy( inset ) ; sprintf(out_falff,"%s_fALFF",prefix); EDIT_dset_items( outsetfALFF, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_falff, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetfALFF)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetfALFF)); EDIT_substitute_brick(outsetfALFF, 0, MRI_float, falff); falff=NULL; THD_load_statistics(outsetfALFF); tross_Make_History("3dRSFC", argc, argv, outsetfALFF); THD_write_3dim_dataset(NULL, NULL, outsetfALFF, True); outsetmALFF = EDIT_empty_copy( inset ) ; sprintf(out_malff,"%s_mALFF",prefix); EDIT_dset_items( outsetmALFF, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_malff, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetmALFF)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetmALFF)); EDIT_substitute_brick(outsetmALFF, 0, MRI_float, malff); malff=NULL; THD_load_statistics(outsetmALFF); tross_Make_History("3dRSFC", argc, argv, outsetmALFF); THD_write_3dim_dataset(NULL, NULL, outsetmALFF, True); if(DO_RSFA){ outsetRSFA = EDIT_empty_copy( inset ) ; sprintf(out_rsfa,"%s_RSFA",prefix); EDIT_dset_items( outsetRSFA, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_rsfa, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetRSFA)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetRSFA)); EDIT_substitute_brick(outsetRSFA, 0, MRI_float, rsfa); rsfa=NULL; THD_load_statistics(outsetRSFA); tross_Make_History("3dRSFC", argc, argv, outsetRSFA); THD_write_3dim_dataset(NULL, NULL, outsetRSFA, True); outsetfRSFA = EDIT_empty_copy( inset ) ; sprintf(out_frsfa,"%s_fRSFA",prefix); EDIT_dset_items( outsetfRSFA, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_frsfa, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetfRSFA)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetfRSFA)); EDIT_substitute_brick(outsetfRSFA, 0, MRI_float, frsfa); frsfa=NULL; THD_load_statistics(outsetfRSFA); tross_Make_History("3dRSFC", argc, argv, outsetfRSFA); THD_write_3dim_dataset(NULL, NULL, outsetfRSFA, True); outsetmRSFA = EDIT_empty_copy( inset ) ; sprintf(out_mrsfa,"%s_mRSFA",prefix); EDIT_dset_items( outsetmRSFA, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_mrsfa, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetmRSFA)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetmRSFA)); EDIT_substitute_brick(outsetmRSFA, 0, MRI_float, mrsfa); mrsfa=NULL; THD_load_statistics(outsetmRSFA); tross_Make_History("3dRSFC", argc, argv, outsetmRSFA); THD_write_3dim_dataset(NULL, NULL, outsetmRSFA, True); } // ************************************************************ // ************************************************************ // Freeing // ************************************************************ // ************************************************************ DSET_delete(inset); DSET_delete(outsetALL); DSET_delete(outset); DSET_delete(outsetALFF); DSET_delete(outsetmALFF); DSET_delete(outsetfALFF); DSET_delete(outsetRSFA); DSET_delete(outsetmRSFA); DSET_delete(outsetfRSFA); free(inset); free(outsetALL); free(outset); free(outsetALFF); free(outsetmALFF); free(outsetfALFF); free(outsetRSFA); free(outsetmRSFA); free(outsetfRSFA); free(rsfa); free(mrsfa); free(frsfa); free(alff); free(malff); free(falff); free(mask); free(series1); free(series2); free(xx1); free(xx2); exit(0) ; }
int main( int argc , char *argv[] ) { THD_3dim_dataset *xset , *cset, *mset=NULL ; int nopt=1 , method=PEARSON , do_autoclip=0 ; int nvox , nvals , ii, jj, kout, kin, polort=1 ; int ix1,jy1,kz1, ix2, jy2, kz2 ; char *prefix = "degree_centrality" ; byte *mask=NULL; int nmask , abuc=1 ; int all_source=0; /* output all source voxels 25 Jun 2010 [rickr] */ char str[32] , *cpt ; int *imap = NULL ; MRI_vectim *xvectim ; float (*corfun)(int,float *,float*) = NULL ; /* djc - add 1d file output for similarity matrix */ FILE *fout1D=NULL; /* CC - we will have two subbricks: binary and weighted centrality */ int nsubbriks = 2; int subbrik = 0; float * bodset; float * wodset; int nb_ctr = 0; /* CC - added flags for thresholding correlations */ double thresh = 0.0; double othresh = 0.0; int dothresh = 0; double sparsity = 0.0; int dosparsity = 0; /* variables for calculating degree centrality */ long * binaryDC = NULL; double * weightedDC = NULL; /* variables for histogram */ hist_node_head* histogram=NULL; hist_node* hptr=NULL; hist_node* pptr=NULL; int bottom_node_idx = 0; int totNumCor = 0; long totPosCor = 0; int ngoal = 0; int nretain = 0; float binwidth = 0.0; int nhistnodes = 50; /*----*/ AFNI_SETUP_OMP(0) ; /* 24 Jun 2013 */ if( argc < 2 || strcmp(argv[1],"-help") == 0 ){ printf( "Usage: 3dDegreeCentrality [options] dset\n" " Computes voxelwise weighted and binary degree centrality and\n" " stores the result in a new 3D bucket dataset as floats to\n" " preserve their values. Degree centrality reflects the strength and\n" " extent of the correlation of a voxel with every other voxel in\n" " the brain.\n\n" " Conceptually the process involves: \n" " 1. Calculating the correlation between voxel time series for\n" " every pair of voxels in the brain (as determined by masking)\n" " 2. Applying a threshold to the resulting correlations to exclude\n" " those that might have arisen by chance, or to sparsify the\n" " connectivity graph.\n" " 3. At each voxel, summarizing its correlation with other voxels\n" " in the brain, by either counting the number of voxels correlated\n" " with the seed voxel (binary) or by summing the correlation \n" " coefficients (weighted).\n" " Practically the algorithm is ordered differently to optimize for\n" " computational time and memory usage.\n\n" " The threshold can be supplied as a correlation coefficient, \n" " or a sparsity threshold. The sparsity threshold reflects the fraction\n" " of connections that should be retained after the threshold has been\n" " applied. To minimize resource consumption, using a sparsity threshold\n" " involves a two-step procedure. In the first step, a correlation\n" " coefficient threshold is applied to substantially reduce the number\n" " of correlations. Next, the remaining correlations are sorted and a\n" " threshold is calculated so that only the specified fraction of \n" " possible correlations are above threshold. Due to ties between\n" " correlations, the fraction of correlations that pass the sparsity\n" " threshold might be slightly more than the number specified.\n\n" " Regardless of the thresholding procedure employed, negative \n" " correlations are excluded from the calculations.\n" "\n" "Options:\n" " -pearson = Correlation is the normal Pearson (product moment)\n" " correlation coefficient [default].\n" #if 0 " -spearman = Correlation is the Spearman (rank) correlation\n" " coefficient.\n" " -quadrant = Correlation is the quadrant correlation coefficient.\n" #else " -spearman AND -quadrant are disabled at this time :-(\n" #endif "\n" " -thresh r = exclude correlations <= r from calculations\n" " -sparsity s = only use top s percent of correlations in calculations\n" " s should be an integer between 0 and 100. Uses an\n" " an adaptive thresholding procedure to reduce memory.\n" " The speed of determining the adaptive threshold can\n" " be improved by specifying an initial threshold with\n" " the -thresh flag.\n" "\n" " -polort m = Remove polynomical trend of order 'm', for m=-1..3.\n" " [default is m=1; removal is by least squares].\n" " Using m=-1 means no detrending; this is only useful\n" " for data/information that has been pre-processed.\n" "\n" " -autoclip = Clip off low-intensity regions in the dataset,\n" " -automask = so that the correlation is only computed between\n" " high-intensity (presumably brain) voxels. The\n" " mask is determined the same way that 3dAutomask works.\n" "\n" " -mask mmm = Mask to define 'in-brain' voxels. Reducing the number\n" " the number of voxels included in the calculation will\n" " significantly speedup the calculation. Consider using\n" " a mask to constrain the calculations to the grey matter\n" " rather than the whole brain. This is also preferrable\n" " to using -autoclip or -automask.\n" "\n" " -prefix p = Save output into dataset with prefix 'p', this file will\n" " contain bricks for both 'weighted' or 'degree' centrality\n" " [default prefix is 'deg_centrality'].\n" "\n" " -out1D f = Save information about the above threshold correlations to\n" " 1D file 'f'. Each row of this file will contain:\n" " Voxel1 Voxel2 i1 j1 k1 i2 j2 k2 Corr\n" " Where voxel1 and voxel2 are the 1D indices of the pair of\n" " voxels, i j k correspond to their 3D coordinates, and Corr\n" " is the value of the correlation between the voxel time courses.\n" "\n" "Notes:\n" " * The output dataset is a bucket type of floats.\n" " * The program prints out an estimate of its memory used\n" " when it ends. It also prints out a progress 'meter'\n" " to keep you pacified.\n" "\n" "-- RWCox - 31 Jan 2002 and 16 Jul 2010\n" "-- Cameron Craddock - 26 Sept 2015 \n" ) ; PRINT_AFNI_OMP_USAGE("3dDegreeCentrality",NULL) ; PRINT_COMPILE_DATE ; exit(0) ; } mainENTRY("3dDegreeCentrality main"); machdep(); PRINT_VERSION("3dDegreeCentrality"); AFNI_logger("3dDegreeCentrality",argc,argv); /*-- option processing --*/ while( nopt < argc && argv[nopt][0] == '-' ){ if( strcmp(argv[nopt],"-time") == 0 ){ abuc = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-autoclip") == 0 || strcmp(argv[nopt],"-automask") == 0 ){ do_autoclip = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-mask") == 0 ){ mset = THD_open_dataset(argv[++nopt]); CHECK_OPEN_ERROR(mset,argv[nopt]); nopt++ ; continue ; } if( strcmp(argv[nopt],"-pearson") == 0 ){ method = PEARSON ; nopt++ ; continue ; } #if 0 if( strcmp(argv[nopt],"-spearman") == 0 ){ method = SPEARMAN ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-quadrant") == 0 ){ method = QUADRANT ; nopt++ ; continue ; } #endif if( strcmp(argv[nopt],"-eta2") == 0 ){ method = ETA2 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-prefix") == 0 ){ prefix = strdup(argv[++nopt]) ; if( !THD_filename_ok(prefix) ){ ERROR_exit("Illegal value after -prefix!") ; } nopt++ ; continue ; } if( strcmp(argv[nopt],"-thresh") == 0 ){ double val = (double)strtod(argv[++nopt],&cpt) ; if( *cpt != '\0' || val >= 1.0 || val < 0.0 ){ ERROR_exit("Illegal value (%f) after -thresh!", val) ; } dothresh = 1; thresh = val ; othresh = val ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-sparsity") == 0 ){ double val = (double)strtod(argv[++nopt],&cpt) ; if( *cpt != '\0' || val > 100 || val <= 0 ){ ERROR_exit("Illegal value (%f) after -sparsity!", val) ; } if( val > 5.0 ) { WARNING_message("Sparsity %3.2f%% is large and will require alot of memory and time, consider using a smaller value. ", val); } dosparsity = 1 ; sparsity = val ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-polort") == 0 ){ int val = (int)strtod(argv[++nopt],&cpt) ; if( *cpt != '\0' || val < -1 || val > 3 ){ ERROR_exit("Illegal value after -polort!") ; } polort = val ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-mem_stat") == 0 ){ MEM_STAT = 1 ; nopt++ ; continue ; } if( strncmp(argv[nopt],"-mem_profile",8) == 0 ){ MEM_PROF = 1 ; nopt++ ; continue ; } /* check for 1d argument */ if ( strcmp(argv[nopt],"-out1D") == 0 ){ if (!(fout1D = fopen(argv[++nopt], "w"))) { ERROR_message("Failed to open %s for writing", argv[nopt]); exit(1); } nopt++ ; continue ; } ERROR_exit("Illegal option: %s",argv[nopt]) ; } /*-- open dataset, check for legality --*/ if( nopt >= argc ) ERROR_exit("Need a dataset on command line!?") ; xset = THD_open_dataset(argv[nopt]); CHECK_OPEN_ERROR(xset,argv[nopt]); if( DSET_NVALS(xset) < 3 ) ERROR_exit("Input dataset %s does not have 3 or more sub-bricks!",argv[nopt]) ; DSET_load(xset) ; CHECK_LOAD_ERROR(xset) ; /*-- compute mask array, if desired --*/ nvox = DSET_NVOX(xset) ; nvals = DSET_NVALS(xset) ; INC_MEM_STATS((nvox * nvals * sizeof(double)), "input dset"); PRINT_MEM_STATS("inset"); /* if a mask was specified make sure it is appropriate */ if( mset ){ if( DSET_NVOX(mset) != nvox ) ERROR_exit("Input and mask dataset differ in number of voxels!") ; mask = THD_makemask(mset, 0, 1.0, 0.0) ; /* update running memory statistics to reflect loading the image */ INC_MEM_STATS( mset->dblk->total_bytes, "mask dset" ); PRINT_MEM_STATS( "mset load" ); nmask = THD_countmask( nvox , mask ) ; INC_MEM_STATS( nmask * sizeof(byte), "mask array" ); PRINT_MEM_STATS( "mask" ); INFO_message("%d voxels in -mask dataset",nmask) ; if( nmask < 2 ) ERROR_exit("Only %d voxels in -mask, exiting...",nmask); /* update running memory statistics to reflect loading the image */ DEC_MEM_STATS( mset->dblk->total_bytes, "mask dset" ); DSET_unload(mset) ; PRINT_MEM_STATS( "mset unload" ); } /* if automasking is requested, handle that now */ else if( do_autoclip ){ mask = THD_automask( xset ) ; nmask = THD_countmask( nvox , mask ) ; INFO_message("%d voxels survive -autoclip",nmask) ; if( nmask < 2 ) ERROR_exit("Only %d voxels in -automask!",nmask); } /* otherwise we use all of the voxels in the image */ else { nmask = nvox ; INFO_message("computing for all %d voxels",nmask) ; } if( method == ETA2 && polort >= 0 ) WARNING_message("Polort for -eta2 should probably be -1..."); /* djc - 1d file out init */ if (fout1D != NULL) { /* define affine matrix */ mat44 affine_mat = xset->daxes->ijk_to_dicom; /* print command line statement */ fprintf(fout1D,"#Similarity matrix from command:\n#"); for(ii=0; ii<argc; ++ii) fprintf(fout1D,"%s ", argv[ii]); /* Print affine matrix */ fprintf(fout1D,"\n"); fprintf(fout1D,"#[ "); int mi, mj; for(mi = 0; mi < 4; mi++) { for(mj = 0; mj < 4; mj++) { fprintf(fout1D, "%.6f ", affine_mat.m[mi][mj]); } } fprintf(fout1D, "]\n"); /* Print image extents*/ THD_dataxes *xset_daxes = xset->daxes; fprintf(fout1D, "#Image dimensions:\n"); fprintf(fout1D, "#[%d, %d, %d]\n", xset_daxes->nxx, xset_daxes->nyy, xset_daxes->nzz); /* Similarity matrix headers */ fprintf(fout1D,"#Voxel1 Voxel2 i1 j1 k1 i2 j2 k2 Corr\n"); } /* CC calculate the total number of possible correlations, will be usefule down the road */ totPosCor = (.5*((float)nmask))*((float)(nmask-1)); /** For the case of Pearson correlation, we make sure the **/ /** data time series have their mean removed (polort >= 0) **/ /** and are normalized, so that correlation = dot product, **/ /** and we can use function zm_THD_pearson_corr for speed. **/ switch( method ){ default: case PEARSON: corfun = zm_THD_pearson_corr ; break ; case ETA2: corfun = my_THD_eta_squared ; break ; } /*-- create vectim from input dataset --*/ INFO_message("vectim-izing input dataset") ; /*-- CC added in mask to reduce the size of xvectim -- */ xvectim = THD_dset_to_vectim( xset , mask , 0 ) ; if( xvectim == NULL ) ERROR_exit("Can't create vectim?!") ; /*-- CC update our memory stats to reflect vectim -- */ INC_MEM_STATS((xvectim->nvec*sizeof(int)) + ((xvectim->nvec)*(xvectim->nvals))*sizeof(float) + sizeof(MRI_vectim), "vectim"); PRINT_MEM_STATS( "vectim" ); /*--- CC the vectim contains a mapping between voxel index and mask index, tap into that here to avoid duplicating memory usage ---*/ if( mask != NULL ) { imap = xvectim->ivec; /* --- CC free the mask */ DEC_MEM_STATS( nmask*sizeof(byte), "mask array" ); free(mask); mask=NULL; PRINT_MEM_STATS( "mask unload" ); } /* -- CC unloading the dataset to reduce memory usage ?? -- */ DEC_MEM_STATS((DSET_NVOX(xset) * DSET_NVALS(xset) * sizeof(double)), "input dset"); DSET_unload(xset) ; PRINT_MEM_STATS("inset unload"); /* -- CC configure detrending --*/ if( polort < 0 && method == PEARSON ){ polort = 0; WARNING_message("Pearson correlation always uses polort >= 0"); } if( polort >= 0 ){ for( ii=0 ; ii < xvectim->nvec ; ii++ ){ /* remove polynomial trend */ DETREND_polort(polort,nvals,VECTIM_PTR(xvectim,ii)) ; } } /* -- this procedure does not change time series that have zero variance -- */ if( method == PEARSON ) THD_vectim_normalize(xvectim) ; /* L2 norm = 1 */ /* -- CC create arrays to hold degree and weighted centrality while they are being calculated -- */ if( dosparsity == 0 ) { if( ( binaryDC = (long*)calloc( nmask, sizeof(long) )) == NULL ) { ERROR_message( "Could not allocate %d byte array for binary DC calculation\n", nmask*sizeof(long)); } /* -- update running memory estimate to reflect memory allocation */ INC_MEM_STATS( nmask*sizeof(long), "binary DC array" ); PRINT_MEM_STATS( "binaryDC" ); if( ( weightedDC = (double*)calloc( nmask, sizeof(double) )) == NULL ) { if (binaryDC){ free(binaryDC); binaryDC = NULL; } ERROR_message( "Could not allocate %d byte array for weighted DC calculation\n", nmask*sizeof(double)); } /* -- update running memory estimate to reflect memory allocation */ INC_MEM_STATS( nmask*sizeof(double), "weighted DC array" ); PRINT_MEM_STATS( "weightedDC" ); } /* -- CC if we are using a sparsity threshold, build a histogram to calculate the threshold */ if (dosparsity == 1) { /* make sure that there is a bin for correlation values that == 1.0 */ binwidth = (1.005-thresh)/nhistnodes; /* calculate the number of correlations we wish to retain */ ngoal = nretain = (int)(((double)totPosCor)*((double)sparsity) / 100.0); /* allocate memory for the histogram bins */ if(( histogram = (hist_node_head*)malloc(nhistnodes*sizeof(hist_node_head))) == NULL ) { /* if the allocation fails, free all memory and exit */ if (binaryDC){ free(binaryDC); binaryDC = NULL; } if (weightedDC){ free(weightedDC); weightedDC = NULL; } ERROR_message( "Could not allocate %d byte array for histogram\n", nhistnodes*sizeof(hist_node_head)); } else { /* -- update running memory estimate to reflect memory allocation */ INC_MEM_STATS( nhistnodes*sizeof(hist_node_head), "hist bins" ); PRINT_MEM_STATS( "hist1" ); } /* initialize history bins */ for( kout = 0; kout < nhistnodes; kout++ ) { histogram[ kout ].bin_low = thresh+kout*binwidth; histogram[ kout ].bin_high = histogram[ kout ].bin_low+binwidth; histogram[ kout ].nbin = 0; histogram[ kout ].nodes = NULL; /*INFO_message("Hist bin %d [%3.3f, %3.3f) [%d, %p]\n", kout, histogram[ kout ].bin_low, histogram[ kout ].bin_high, histogram[ kout ].nbin, histogram[ kout ].nodes );*/ } } /*-- tell the user what we are about to do --*/ if (dosparsity == 0 ) { INFO_message( "Calculating degree centrality with threshold = %f.\n", thresh); } else { INFO_message( "Calculating degree centrality with threshold = %f and sparsity = %3.2f%% (%d)\n", thresh, sparsity, nretain); } /*---------- loop over mask voxels, correlate ----------*/ AFNI_OMP_START ; #pragma omp parallel if( nmask > 999 ) { int lii,ljj,lin,lout,ithr,nthr,vstep,vii ; float *xsar , *ysar ; hist_node* new_node = NULL ; hist_node* tptr = NULL ; hist_node* rptr = NULL ; int new_node_idx = 0; double car = 0.0 ; /*-- get information about who we are --*/ #ifdef USE_OMP ithr = omp_get_thread_num() ; nthr = omp_get_num_threads() ; if( ithr == 0 ) INFO_message("%d OpenMP threads started",nthr) ; #else ithr = 0 ; nthr = 1 ; #endif /*-- For the progress tracker, we want to print out 50 numbers, figure out a number of loop iterations that will make this easy */ vstep = (int)( nmask / (nthr*50.0f) + 0.901f ) ; vii = 0 ; if((MEM_STAT==0) && (ithr == 0 )) fprintf(stderr,"Looping:") ; #pragma omp for schedule(static, 1) for( lout=0 ; lout < xvectim->nvec ; lout++ ){ /*----- outer voxel loop -----*/ if( ithr == 0 && vstep > 2 ) /* allow small dsets 16 Jun 2011 [rickr] */ { vii++ ; if( vii%vstep == vstep/2 && MEM_STAT == 0 ) vstep_print(); } /* get ref time series from this voxel */ xsar = VECTIM_PTR(xvectim,lout) ; /* try to make calculation more efficient by only calculating the unique correlations */ for( lin=(lout+1) ; lin < xvectim->nvec ; lin++ ){ /*----- inner loop over voxels -----*/ /* extract the voxel time series */ ysar = VECTIM_PTR(xvectim,lin) ; /* now correlate the time series */ car = (double)(corfun(nvals,xsar,ysar)) ; if ( car <= thresh ) { continue ; } /* update degree centrality values, hopefully the pragma will handle mutual exclusion */ #pragma omp critical(dataupdate) { /* if the correlation is less than threshold, ignore it */ if ( car > thresh ) { totNumCor += 1; if ( dosparsity == 0 ) { binaryDC[lout] += 1; binaryDC[lin] += 1; weightedDC[lout] += car; weightedDC[lin] += car; /* print correlation out to the 1D file */ if ( fout1D != NULL ) { /* determine the i,j,k coords */ ix1 = DSET_index_to_ix(xset,lii) ; jy1 = DSET_index_to_jy(xset,lii) ; kz1 = DSET_index_to_kz(xset,lii) ; ix2 = DSET_index_to_ix(xset,ljj) ; jy2 = DSET_index_to_jy(xset,ljj) ; kz2 = DSET_index_to_kz(xset,ljj) ; /* add source, dest, correlation to 1D file */ fprintf(fout1D, "%d %d %d %d %d %d %d %d %.6f\n", lii, ljj, ix1, jy1, kz1, ix2, jy2, kz2, car); } } else { /* determine the index in the histogram to add the node */ new_node_idx = (int)floor((double)(car-othresh)/(double)binwidth); if ((new_node_idx > nhistnodes) || (new_node_idx < bottom_node_idx)) { /* this error should indicate a programming error and should not happen */ WARNING_message("Node index %d is out of range [%d,%d)!",new_node_idx, bottom_node_idx, nhistnodes); } else { /* create a node to add to the histogram */ new_node = (hist_node*)calloc(1,sizeof(hist_node)); if( new_node == NULL ) { /* allocate memory for this node, rather than fiddling with error handling here, lets just move on */ WARNING_message("Could not allocate a new node!"); } else { /* populate histogram node */ new_node->i = lout; new_node->j = lin; new_node->corr = car; new_node->next = NULL; /* -- update running memory estimate to reflect memory allocation */ INC_MEM_STATS( sizeof(hist_node), "hist nodes" ); if ((totNumCor % (1024*1024)) == 0) PRINT_MEM_STATS( "hist nodes" ); /* populate histogram */ new_node->next = histogram[new_node_idx].nodes; histogram[new_node_idx].nodes = new_node; histogram[new_node_idx].nbin++; /* see if there are enough correlations in the histogram for the sparsity */ if ((totNumCor - histogram[bottom_node_idx].nbin) > nretain) { /* delete the list of nodes */ rptr = histogram[bottom_node_idx].nodes; while(rptr != NULL) { tptr = rptr; rptr = rptr->next; /* check that the ptr is not null before freeing it*/ if(tptr!= NULL) { DEC_MEM_STATS( sizeof(hist_node), "hist nodes" ); free(tptr); } } PRINT_MEM_STATS( "unloaded hist nodes - thresh increase" ); histogram[bottom_node_idx].nodes = NULL; totNumCor -= histogram[bottom_node_idx].nbin; histogram[bottom_node_idx].nbin=0; /* get the new threshold */ thresh = (double)histogram[++bottom_node_idx].bin_low; if(MEM_STAT == 1) INFO_message("Increasing threshold to %3.2f (%d)\n", thresh,bottom_node_idx); } } /* else, newptr != NULL */ } /* else, new_node_idx in range */ } /* else, do_sparsity == 1 */ } /* car > thresh */ } /* this is the end of the critical section */ } /* end of inner loop over voxels */ } /* end of outer loop over ref voxels */ if( ithr == 0 ) fprintf(stderr,".\n") ; } /* end OpenMP */ AFNI_OMP_END ; /* update the user so that they know what we are up to */ INFO_message ("AFNI_OMP finished\n"); INFO_message ("Found %d (%3.2f%%) correlations above threshold (%f)\n", totNumCor, 100.0*((float)totNumCor)/((float)totPosCor), thresh); /*---------- Finish up ---------*/ /*if( dosparsity == 1 ) { for( kout = 0; kout < nhistnodes; kout++ ) { INFO_message("Hist bin %d [%3.3f, %3.3f) [%d, %p]\n", kout, histogram[ kout ].bin_low, histogram[ kout ].bin_high, histogram[ kout ].nbin, histogram[ kout ].nodes ); } }*/ /*-- create output dataset --*/ cset = EDIT_empty_copy( xset ) ; /*-- configure the output dataset */ if( abuc ){ EDIT_dset_items( cset , ADN_prefix , prefix , ADN_nvals , nsubbriks , /* 2 subbricks, degree and weighted centrality */ ADN_ntt , 0 , /* no time axis */ ADN_type , HEAD_ANAT_TYPE , ADN_func_type , ANAT_BUCK_TYPE , ADN_datum_all , MRI_float , ADN_none ) ; } else { EDIT_dset_items( cset , ADN_prefix , prefix , ADN_nvals , nsubbriks , /* 2 subbricks, degree and weighted centrality */ ADN_ntt , nsubbriks , /* num times */ ADN_ttdel , 1.0 , /* fake TR */ ADN_nsl , 0 , /* no slice offsets */ ADN_type , HEAD_ANAT_TYPE , ADN_func_type , ANAT_EPI_TYPE , ADN_datum_all , MRI_float , ADN_none ) ; } /* add history information to the hearder */ tross_Make_History( "3dDegreeCentrality" , argc,argv , cset ) ; ININFO_message("creating output dataset in memory") ; /* -- Configure the subbriks: Binary Degree Centrality */ subbrik = 0; EDIT_BRICK_TO_NOSTAT(cset,subbrik) ; /* stat params */ /* CC this sets the subbrik scaling factor, which we will probably want to do again after we calculate the voxel values */ EDIT_BRICK_FACTOR(cset,subbrik,1.0) ; /* scale factor */ sprintf(str,"Binary Degree Centrality") ; EDIT_BRICK_LABEL(cset,subbrik,str) ; EDIT_substitute_brick(cset,subbrik,MRI_float,NULL) ; /* make array */ /* copy measure data into the subbrik */ bodset = DSET_ARRAY(cset,subbrik); /* -- Configure the subbriks: Weighted Degree Centrality */ subbrik = 1; EDIT_BRICK_TO_NOSTAT(cset,subbrik) ; /* stat params */ /* CC this sets the subbrik scaling factor, which we will probably want to do again after we calculate the voxel values */ EDIT_BRICK_FACTOR(cset,subbrik,1.0) ; /* scale factor */ sprintf(str,"Weighted Degree Centrality") ; EDIT_BRICK_LABEL(cset,subbrik,str) ; EDIT_substitute_brick(cset,subbrik,MRI_float,NULL) ; /* make array */ /* copy measure data into the subbrik */ wodset = DSET_ARRAY(cset,subbrik); /* increment memory stats */ INC_MEM_STATS( (DSET_NVOX(cset)*DSET_NVALS(cset)*sizeof(float)), "output dset"); PRINT_MEM_STATS( "outset" ); /* pull the values out of the histogram */ if( dosparsity == 0 ) { for( kout = 0; kout < nmask; kout++ ) { if ( imap != NULL ) { ii = imap[kout] ; /* ii= source voxel (we know that ii is in the mask) */ } else { ii = kout ; } if( ii >= DSET_NVOX(cset) ) { WARNING_message("Avoiding bodset, wodset overflow %d > %d (%s,%d)\n", ii,DSET_NVOX(cset),__FILE__,__LINE__ ); } else { bodset[ ii ] = (float)(binaryDC[kout]); wodset[ ii ] = (float)(weightedDC[kout]); } } /* we are done with this memory, and can kill it now*/ if(binaryDC) { free(binaryDC); binaryDC=NULL; /* -- update running memory estimate to reflect memory allocation */ DEC_MEM_STATS( nmask*sizeof(long), "binary DC array" ); PRINT_MEM_STATS( "binaryDC" ); } if(weightedDC) { free(weightedDC); weightedDC=NULL; /* -- update running memory estimate to reflect memory allocation */ DEC_MEM_STATS( nmask*sizeof(double), "weighted DC array" ); PRINT_MEM_STATS( "weightedDC" ); } } else { /* add in the values from the histogram, this is a two stage procedure: at first we add in values a whole bin at the time until we get to a point where we need to add in a partial bin, then we create a new histogram to sort the values in the bin and then add those bins at a time */ kout = nhistnodes - 1; while (( histogram[kout].nbin < nretain ) && ( kout >= 0 )) { hptr = pptr = histogram[kout].nodes; while( hptr != NULL ) { /* determine the indices corresponding to this node */ if ( imap != NULL ) { ii = imap[hptr->i] ; /* ii= source voxel (we know that ii is in the mask) */ } else { ii = hptr->i ; } if ( imap != NULL ) { jj = imap[hptr->j] ; /* ii= source voxel (we know that ii is in the mask) */ } else { jj = hptr->j ; } /* add in the values */ if(( ii >= DSET_NVOX(cset) ) || ( jj >= DSET_NVOX(cset))) { if( ii >= DSET_NVOX(cset)) { WARNING_message("Avoiding bodset, wodset overflow (ii) %d > %d\n (%s,%d)\n", ii,DSET_NVOX(cset),__FILE__,__LINE__ ); } if( jj >= DSET_NVOX(cset)) { WARNING_message("Avoiding bodset, wodset overflow (jj) %d > %d\n (%s,%d)\n", jj,DSET_NVOX(cset),__FILE__,__LINE__ ); } } else { bodset[ ii ] += 1.0 ; wodset[ ii ] += (float)(hptr->corr); bodset[ jj ] += 1.0 ; wodset[ jj ] += (float)(hptr->corr); } if( fout1D != NULL ) { /* add source, dest, correlation to 1D file */ ix1 = DSET_index_to_ix(cset,ii) ; jy1 = DSET_index_to_jy(cset,ii) ; kz1 = DSET_index_to_kz(cset,ii) ; ix2 = DSET_index_to_ix(cset,jj) ; jy2 = DSET_index_to_jy(cset,jj) ; kz2 = DSET_index_to_kz(cset,jj) ; fprintf(fout1D, "%d %d %d %d %d %d %d %d %.6f\n", ii, jj, ix1, jy1, kz1, ix2, jy2, kz2, (float)(hptr->corr)); } /* increment node pointers */ pptr = hptr; hptr = hptr->next; /* delete the node */ if(pptr) { /* -- update running memory estimate to reflect memory allocation */ DEC_MEM_STATS(sizeof( hist_node ), "hist nodes" ); /* free the mem */ free(pptr); pptr=NULL; } } /* decrement the number of correlations we wish to retain */ nretain -= histogram[kout].nbin; histogram[kout].nodes = NULL; /* go on to the next bin */ kout--; } PRINT_MEM_STATS( "hist1 bins free - inc into output" ); /* if we haven't used all of the correlations that are available, go through and add a subset of the voxels from the remaining bin */ if(( nretain > 0 ) && (kout >= 0)) { hist_node_head* histogram2 = NULL; hist_node_head* histogram2_save = NULL; int h2nbins = 100; float h2binwidth = 0.0; int h2ndx=0; h2binwidth = (((1.0+binwidth/((float)h2nbins))*histogram[kout].bin_high) - histogram[kout].bin_low) / ((float)h2nbins); /* allocate the bins */ if(( histogram2 = (hist_node_head*)malloc(h2nbins*sizeof(hist_node_head))) == NULL ) { if (binaryDC){ free(binaryDC); binaryDC = NULL; } if (weightedDC){ free(weightedDC); weightedDC = NULL; } if (histogram){ histogram = free_histogram(histogram, nhistnodes); } ERROR_message( "Could not allocate %d byte array for histogram2\n", h2nbins*sizeof(hist_node_head)); } else { /* -- update running memory estimate to reflect memory allocation */ histogram2_save = histogram2; INC_MEM_STATS(( h2nbins*sizeof(hist_node_head )), "hist bins"); PRINT_MEM_STATS( "hist2" ); } /* initiatize the bins */ for( kin = 0; kin < h2nbins; kin++ ) { histogram2[ kin ].bin_low = histogram[kout].bin_low + kin*h2binwidth; histogram2[ kin ].bin_high = histogram2[ kin ].bin_low + h2binwidth; histogram2[ kin ].nbin = 0; histogram2[ kin ].nodes = NULL; /*INFO_message("Hist2 bin %d [%3.3f, %3.3f) [%d, %p]\n", kin, histogram2[ kin ].bin_low, histogram2[ kin ].bin_high, histogram2[ kin ].nbin, histogram2[ kin ].nodes );*/ } /* move correlations from histogram to histgram2 */ INFO_message ("Adding %d nodes from histogram to histogram2",histogram[kout].nbin); while ( histogram[kout].nodes != NULL ) { hptr = histogram[kout].nodes; h2ndx = (int)floor((double)(hptr->corr - histogram[kout].bin_low)/(double)h2binwidth); if(( h2ndx < h2nbins ) && ( h2ndx >= 0 )) { histogram[kout].nodes = hptr->next; hptr->next = histogram2[h2ndx].nodes; histogram2[h2ndx].nodes = hptr; histogram2[h2ndx].nbin++; histogram[kout].nbin--; } else { WARNING_message("h2ndx %d is not in range [0,%d) :: %.10f,%.10f\n",h2ndx,h2nbins,hptr->corr, histogram[kout].bin_low); } } /* free the remainder of histogram */ { int nbins_rem = 0; for(ii = 0; ii < nhistnodes; ii++) nbins_rem+=histogram[ii].nbin; histogram = free_histogram(histogram, nhistnodes); PRINT_MEM_STATS( "free remainder of histogram1" ); } kin = h2nbins - 1; while (( nretain > 0 ) && ( kin >= 0 )) { hptr = pptr = histogram2[kin].nodes; while( hptr != NULL ) { /* determine the indices corresponding to this node */ if ( imap != NULL ) { ii = imap[hptr->i] ; } else { ii = hptr->i ; } if ( imap != NULL ) { jj = imap[hptr->j] ; } else { jj = hptr->j ; } /* add in the values */ if(( ii >= DSET_NVOX(cset) ) || ( jj >= DSET_NVOX(cset))) { if( ii >= DSET_NVOX(cset)) { WARNING_message("Avoiding bodset, wodset overflow (ii) %d > %d\n (%s,%d)\n", ii,DSET_NVOX(cset),__FILE__,__LINE__ ); } if( jj >= DSET_NVOX(cset)) { WARNING_message("Avoiding bodset, wodset overflow (jj) %d > %d\n (%s,%d)\n", jj,DSET_NVOX(cset),__FILE__,__LINE__ ); } } else { bodset[ ii ] += 1.0 ; wodset[ ii ] += (float)(hptr->corr); bodset[ jj ] += 1.0 ; wodset[ jj ] += (float)(hptr->corr); } if( fout1D != NULL ) { /* add source, dest, correlation to 1D file */ ix1 = DSET_index_to_ix(cset,ii) ; jy1 = DSET_index_to_jy(cset,ii) ; kz1 = DSET_index_to_kz(cset,ii) ; ix2 = DSET_index_to_ix(cset,jj) ; jy2 = DSET_index_to_jy(cset,jj) ; kz2 = DSET_index_to_kz(cset,jj) ; fprintf(fout1D, "%d %d %d %d %d %d %d %d %.6f\n", ii, jj, ix1, jy1, kz1, ix2, jy2, kz2, (float)(hptr->corr)); } /* increment node pointers */ pptr = hptr; hptr = hptr->next; /* delete the node */ if(pptr) { free(pptr); DEC_MEM_STATS(( sizeof(hist_node) ), "hist nodes"); pptr=NULL; } } /* decrement the number of correlations we wish to retain */ nretain -= histogram2[kin].nbin; histogram2[kin].nodes = NULL; /* go on to the next bin */ kin--; } PRINT_MEM_STATS("hist2 nodes free - incorporated into output"); /* we are finished with histogram2 */ { histogram2 = free_histogram(histogram2, h2nbins); /* -- update running memory estimate to reflect memory allocation */ PRINT_MEM_STATS( "free hist2" ); } if (nretain < 0 ) { WARNING_message( "Went over sparsity goal %d by %d, with a resolution of %f", ngoal, -1*nretain, h2binwidth); } } if (nretain > 0 ) { WARNING_message( "Was not able to meet goal of %d (%3.2f%%) correlations, %d (%3.2f%%) correlations passed the threshold of %3.2f, maybe you need to change the threshold or the desired sparsity?", ngoal, 100.0*((float)ngoal)/((float)totPosCor), totNumCor, 100.0*((float)totNumCor)/((float)totPosCor), thresh); } } INFO_message("Done..\n") ; /* update running memory statistics to reflect freeing the vectim */ DEC_MEM_STATS(((xvectim->nvec*sizeof(int)) + ((xvectim->nvec)*(xvectim->nvals))*sizeof(float) + sizeof(MRI_vectim)), "vectim"); /* toss some trash */ VECTIM_destroy(xvectim) ; DSET_delete(xset) ; if(fout1D!=NULL)fclose(fout1D); PRINT_MEM_STATS( "vectim unload" ); if (weightedDC) free(weightedDC) ; weightedDC = NULL; if (binaryDC) free(binaryDC) ; binaryDC = NULL; /* finito */ INFO_message("Writing output dataset to disk [%s bytes]", commaized_integer_string(cset->dblk->total_bytes)) ; /* write the dataset */ DSET_write(cset) ; WROTE_DSET(cset) ; /* increment our memory stats, since we are relying on the header for this information, we update the stats before actually freeing the memory */ DEC_MEM_STATS( (DSET_NVOX(cset)*DSET_NVALS(cset)*sizeof(float)), "output dset"); /* free up the output dataset memory */ DSET_unload(cset) ; DSET_delete(cset) ; /* force a print */ MEM_STAT = 1; PRINT_MEM_STATS( "Fin" ); exit(0) ; }
int main( int argc , char *argv[] ) { char *prefix = "Deghost" ; int iarg ; int fe=1 , pe=2 , se=3 , nvals ; THD_3dim_dataset *inset=NULL , *outset , *filset=NULL ; if( argc < 2 || strcmp(argv[1],"-help") == 0 ) { printf( "Usage: 3dDeghost [options] dataset\n" "\n" "* This program tries do remove N/2 (AKA Nyquist) ghosts from an EPI\n" " magnitude time series dataset.\n" "* If you apply it to some other kind of dataset (e.g., spiral), weird\n" " things will probably transpire.\n" "* The input EPI dataset should NOT be filtered, masked, cropped,\n" " registered, or pre-processed in any way!\n" "* This program will not work well if the input EPI dataset is heavily\n" " 'shaded' -- that is, its intensity varies dramatically inside the brain.\n" "* The output dataset is always stored in float format.\n" "* Only the Amitabha Buddha knows if this program is actually useful.\n" "\n" "========\n" "OPTIONS:\n" "========\n" " -input dataset = Another way to specify the input dataset\n" " -prefix pp = Use 'pp' for prefix of output dataset\n" " -FPS abc = Define the Frequency, Phase, and Slice\n" " directions in the dataset based on the\n" " axis orientations inside the dataset header\n" " (e.g., see the output of 3dinfo). The 'abc'\n" " code is a permutaton of the digits '123'.\n" " * The first digit 'a' specifies which dataset\n" " axis/index is the Frequency encoding direction.\n" " * The second digit 'b' specifies which dataset\n" " direction is the Phase encoding direction.\n" " * The third digit 'c' specifies which dataset\n" " direction is the Slice encoding direction.\n" " -->>** The default value for 'abc' is '123'; that is,\n" " the dataset is ordered so that the first index\n" " (x-axis) is frequency, the second index is phase,\n" " and the third index is slice. In most cases,\n" " this is how the reconstruction software will\n" " store the images. Only in unusual cases should\n" " you need the '-FPS' option!\n" " -filt N = Length of time series filter to apply when\n" " estimating ghosting parameters. Set N to 0 or 1\n" " to turn this feature off; otherwise, N should be an\n" " odd positive integer from 3 to 19 [default N=%d].\n" " * Longer filter lengths ARE allowed, but will be slow\n" " (cases with N <= 19 are hand coded for speed).\n" " * Datasets with fewer than 4 time points will not\n" " be filtered. For longer datasets, if the filter\n" " length is too big, it will be shortened ruthlessly.\n" "=======\n" "METHOD:\n" "=======\n" "Would you believe me if I said magic? Would you accept secret algorithms\n" "known only to the Olmecs? How about something so ad hoc that it cannot\n" "be described without embarrasment and shame?\n" "\n" "-- Feb 2014 - Zhark the Phantasmal\n" , orfilt_len ) ; PRINT_COMPILE_DATE ; exit(0) ; } mainENTRY("3dDeghost main"); machdep(); AFNI_logger("3dDeghost",argc,argv); PRINT_VERSION("3dDeghost") ; /*-- scan command line --*/ iarg = 1 ; while( iarg < argc && argv[iarg][0] == '-' ) { /*---*/ if( strcasecmp(argv[iarg],"-quiet") == 0 ) { verb = 0 ; iarg++ ; continue ; } if( strcasecmp(argv[iarg],"-verb") == 0 ) { verb++ ; iarg++ ; continue ; } /*---*/ if( strcasecmp(argv[iarg],"-filt") == 0 ) { if( ++iarg >= argc ) ERROR_exit("Need argument after option '%s'",argv[iarg-1]) ; orfilt_len = (int)strtod(argv[iarg],NULL) ; if( orfilt_len > 1 && orfilt_len%2 == 0 ) { orfilt_len++ ; INFO_message("-filt %d has been adjusted to %d (must be odd)" , orfilt_len-1 , orfilt_len) ; } if( orfilt_len > 19 ) WARNING_message("-filt %d is over the recommended limit of 19",orfilt_len) ; iarg++ ; continue ; } /*---*/ if( strcasecmp(argv[iarg],"-prefix") == 0 ) { if( ++iarg >= argc ) ERROR_exit("Need argument after option '%s'",argv[iarg-1]) ; prefix = argv[iarg] ; if( !THD_filename_ok(prefix) ) ERROR_exit("Illegal value after -prefix!\n"); iarg++ ; continue ; } /*---*/ if( strcasecmp(argv[iarg],"-input") == 0 || strcasecmp(argv[iarg],"-inset") == 0 ) { if( ++iarg >= argc ) ERROR_exit("Need argument after option '%s'",argv[iarg-1]) ; if( inset != NULL ) ERROR_exit("You can't give the input dataset twice!") ; inset = THD_open_dataset( argv[iarg] ) ; CHECK_OPEN_ERROR(inset,argv[iarg]) ; DSET_load(inset) ; CHECK_LOAD_ERROR(inset) ; iarg++ ; continue ; } /*---*/ if( strcasecmp(argv[iarg],"-FPS") == 0 ) { /* stolen from 3dAllineate.c */ char *fps ; if( ++iarg >= argc ) ERROR_exit("Need argument after option '%s'",argv[iarg-1]) ; fps = argv[iarg] ; if( strlen(fps) < 3 ) ERROR_exit("Code '%s' after '%s' is too short", fps , argv[iarg-1] ) ; switch( fps[0] ) { default: ERROR_exit("Illegal '%s' F code '%c' :-(" , argv[iarg-1],fps[0] ); case 'i': case 'I': case 'x': case 'X': case '1': fe = 1; break; case 'j': case 'J': case 'y': case 'Y': case '2': fe = 2; break; case 'k': case 'K': case 'z': case 'Z': case '3': fe = 3; break; } switch( fps[1] ) { default: ERROR_exit("Illegal '%s' P code '%c' :-(" , argv[iarg-1],fps[1] ); case 'i': case 'I': case 'x': case 'X': case '1': pe = 1; break; case 'j': case 'J': case 'y': case 'Y': case '2': pe = 2; break; case 'k': case 'K': case 'z': case 'Z': case '3': pe = 3; break; } switch( fps[2] ) { default: ERROR_exit("Illegal '%s' S code '%c' :-(" , argv[iarg-1],fps[2] ); case 'i': case 'I': case 'x': case 'X': case '1': se = 1; break; case 'j': case 'J': case 'y': case 'Y': case '2': se = 2; break; case 'k': case 'K': case 'z': case 'Z': case '3': se = 3; break; } if( fe+pe+se != 6 ) ERROR_exit("Code '%s' after '%s' is nonsensical", fps , argv[iarg-1] ) ; iarg++ ; continue ; } /*---*/ ERROR_exit("Unknown option: %s\n",argv[iarg]); } if( inset == NULL && iarg >= argc ) ERROR_exit("No dataset name on command line?\n"); /*-- read input if needed --*/ if( inset == NULL ) { inset = THD_open_dataset( argv[iarg] ) ; CHECK_OPEN_ERROR(inset,argv[iarg]) ; DSET_load( inset ) ; CHECK_LOAD_ERROR(inset) ; } /*-- filter input? --*/ nvals = DSET_NVALS(inset) ; if( orfilt_len > nvals/2 ) { orfilt_len = nvals/2 ; if( orfilt_len%2 == 0 ) orfilt_len++ ; } if( orfilt_len > 1 && nvals > 1 ) { MRI_vectim *invect ; int ii ; if( verb ) INFO_message("Filtering input dataset: filter length=%d",orfilt_len) ; invect = THD_dset_to_vectim(inset,NULL,0) ; THD_vectim_applyfunc( invect , orfilt_vector ) ; filset = EDIT_empty_copy( inset ) ; for( ii=0 ; ii < nvals ; ii++ ) EDIT_substitute_brick( filset , ii , MRI_float , NULL ) ; THD_vectim_to_dset( invect , filset ) ; VECTIM_destroy(invect) ; } else { if( verb ) INFO_message("Time series filtering is turned off") ; } /***** outsource the work *****/ outset = THD_deghoster( inset , (filset!=NULL)?filset:inset , pe,fe,se ) ; if( outset == NULL ) ERROR_exit("THD_deghoster fails :-(((") ; if( filset != NULL ) DSET_delete(filset) ; EDIT_dset_items( outset , ADN_prefix,prefix , ADN_none ) ; tross_Copy_History( inset , outset ) ; tross_Make_History( "3dDeghost" , argc,argv , outset ) ; DSET_write(outset) ; WROTE_DSET(outset) ; exit(0) ; }
int main( int argc , char * argv[] ) { int do_norm=0 , qdet=2 , have_freq=0 , do_automask=0 ; float dt=0.0f , fbot=0.0f,ftop=999999.9f , blur=0.0f ; MRI_IMARR *ortar=NULL ; MRI_IMAGE *ortim=NULL ; THD_3dim_dataset **ortset=NULL ; int nortset=0 ; THD_3dim_dataset *inset=NULL , *outset ; char *prefix="bandpass" ; byte *mask=NULL ; int mask_nx=0,mask_ny=0,mask_nz=0,nmask , verb=1 , nx,ny,nz,nvox , nfft=0 , kk ; float **vec , **ort=NULL ; int nort=0 , vv , nopt , ntime ; MRI_vectim *mrv ; float pvrad=0.0f ; int nosat=0 ; int do_despike=0 ; /*-- help? --*/ AFNI_SETUP_OMP(0) ; /* 24 Jun 2013 */ if( argc < 2 || strcmp(argv[1],"-help") == 0 ){ printf( "\n" "** NOTA BENE: For the purpose of preparing resting-state FMRI datasets **\n" "** for analysis (e.g., with 3dGroupInCorr), this program is now mostly **\n" "** superseded by the afni_proc.py script. See the 'afni_proc.py -help' **\n" "** section 'Resting state analysis (modern)' to get our current rs-FMRI **\n" "** pre-processing recommended sequence of steps. -- RW Cox, et alii. **\n" "\n" "Usage: 3dBandpass [options] fbot ftop dataset\n" "\n" "* One function of this program is to prepare datasets for input\n" " to 3dSetupGroupInCorr. Other uses are left to your imagination.\n" "\n" "* 'dataset' is a 3D+time sequence of volumes\n" " ++ This must be a single imaging run -- that is, no discontinuities\n" " in time from 3dTcat-ing multiple datasets together.\n" "\n" "* fbot = lowest frequency in the passband, in Hz\n" " ++ fbot can be 0 if you want to do a lowpass filter only;\n" " HOWEVER, the mean and Nyquist freq are always removed.\n" "\n" "* ftop = highest frequency in the passband (must be > fbot)\n" " ++ if ftop > Nyquist freq, then it's a highpass filter only.\n" "\n" "* Set fbot=0 and ftop=99999 to do an 'allpass' filter.\n" " ++ Except for removal of the 0 and Nyquist frequencies, that is.\n" "\n" "* You cannot construct a 'notch' filter with this program!\n" " ++ You could use 3dBandpass followed by 3dcalc to get the same effect.\n" " ++ If you are understand what you are doing, that is.\n" " ++ Of course, that is the AFNI way -- if you don't want to\n" " understand what you are doing, use Some other PrograM, and\n" " you can still get Fine StatisticaL maps.\n" "\n" "* 3dBandpass will fail if fbot and ftop are too close for comfort.\n" " ++ Which means closer than one frequency grid step df,\n" " where df = 1 / (nfft * dt) [of course]\n" "\n" "* The actual FFT length used will be printed, and may be larger\n" " than the input time series length for the sake of efficiency.\n" " ++ The program will use a power-of-2, possibly multiplied by\n" " a power of 3 and/or 5 (up to and including the 3rd power of\n" " each of these: 3, 9, 27, and 5, 25, 125).\n" "\n" "* Note that the results of combining 3dDetrend and 3dBandpass will\n" " depend on the order in which you run these programs. That's why\n" " 3dBandpass has the '-ort' and '-dsort' options, so that the\n" " time series filtering can be done properly, in one place.\n" "\n" "* The output dataset is stored in float format.\n" "\n" "* The order of processing steps is the following (most are optional):\n" " (0) Check time series for initial transients [does not alter data]\n" " (1) Despiking of each time series\n" " (2) Removal of a constant+linear+quadratic trend in each time series\n" " (3) Bandpass of data time series\n" " (4) Bandpass of -ort time series, then detrending of data\n" " with respect to the -ort time series\n" " (5) Bandpass and de-orting of the -dsort dataset,\n" " then detrending of the data with respect to -dsort\n" " (6) Blurring inside the mask [might be slow]\n" " (7) Local PV calculation [WILL be slow!]\n" " (8) L2 normalization [will be fast.]\n" "\n" "--------\n" "OPTIONS:\n" "--------\n" " -despike = Despike each time series before other processing.\n" " ++ Hopefully, you don't actually need to do this,\n" " which is why it is optional.\n" " -ort f.1D = Also orthogonalize input to columns in f.1D\n" " ++ Multiple '-ort' options are allowed.\n" " -dsort fset = Orthogonalize each voxel to the corresponding\n" " voxel time series in dataset 'fset', which must\n" " have the same spatial and temporal grid structure\n" " as the main input dataset.\n" " ++ At present, only one '-dsort' option is allowed.\n" " -nodetrend = Skip the quadratic detrending of the input that\n" " occurs before the FFT-based bandpassing.\n" " ++ You would only want to do this if the dataset\n" " had been detrended already in some other program.\n" " -dt dd = set time step to 'dd' sec [default=from dataset header]\n" " -nfft N = set the FFT length to 'N' [must be a legal value]\n" " -norm = Make all output time series have L2 norm = 1\n" " ++ i.e., sum of squares = 1\n" " -mask mset = Mask dataset\n" " -automask = Create a mask from the input dataset\n" " -blur fff = Blur (inside the mask only) with a filter\n" " width (FWHM) of 'fff' millimeters.\n" " -localPV rrr = Replace each vector by the local Principal Vector\n" " (AKA first singular vector) from a neighborhood\n" " of radius 'rrr' millimiters.\n" " ++ Note that the PV time series is L2 normalized.\n" " ++ This option is mostly for Bob Cox to have fun with.\n" "\n" " -input dataset = Alternative way to specify input dataset.\n" " -band fbot ftop = Alternative way to specify passband frequencies.\n" "\n" " -prefix ppp = Set prefix name of output dataset.\n" " -quiet = Turn off the fun and informative messages. (Why?)\n" "\n" " -notrans = Don't check for initial positive transients in the data:\n" " *OR* ++ The test is a little slow, so skipping it is OK,\n" " -nosat if you KNOW the data time series are transient-free.\n" " ++ Or set AFNI_SKIP_SATCHECK to YES.\n" " ++ Initial transients won't be handled well by the\n" " bandpassing algorithm, and in addition may seriously\n" " contaminate any further processing, such as inter-voxel\n" " correlations via InstaCorr.\n" " ++ No other tests are made [yet] for non-stationary behavior\n" " in the time series data.\n" ) ; PRINT_AFNI_OMP_USAGE( "3dBandpass" , "* At present, the only part of 3dBandpass that is parallelized is the\n" " '-blur' option, which processes each sub-brick independently.\n" ) ; PRINT_COMPILE_DATE ; exit(0) ; } /*-- startup --*/ mainENTRY("3dBandpass"); machdep(); AFNI_logger("3dBandpass",argc,argv); PRINT_VERSION("3dBandpass"); AUTHOR("RW Cox"); nosat = AFNI_yesenv("AFNI_SKIP_SATCHECK") ; nopt = 1 ; while( nopt < argc && argv[nopt][0] == '-' ){ if( strcmp(argv[nopt],"-despike") == 0 ){ /* 08 Oct 2010 */ do_despike++ ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-nfft") == 0 ){ int nnup ; if( ++nopt >= argc ) ERROR_exit("need an argument after -nfft!") ; nfft = (int)strtod(argv[nopt],NULL) ; nnup = csfft_nextup_even(nfft) ; if( nfft < 16 || nfft != nnup ) ERROR_exit("value %d after -nfft is illegal! Next legal value = %d",nfft,nnup) ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-blur") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -blur!") ; blur = strtod(argv[nopt],NULL) ; if( blur <= 0.0f ) WARNING_message("non-positive blur?!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-localPV") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -localpv!") ; pvrad = strtod(argv[nopt],NULL) ; if( pvrad <= 0.0f ) WARNING_message("non-positive -localpv?!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-prefix") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -prefix!") ; prefix = strdup(argv[nopt]) ; if( !THD_filename_ok(prefix) ) ERROR_exit("bad -prefix option!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-automask") == 0 ){ if( mask != NULL ) ERROR_exit("Can't use -mask AND -automask!") ; do_automask = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-mask") == 0 ){ THD_3dim_dataset *mset ; if( ++nopt >= argc ) ERROR_exit("Need argument after '-mask'") ; if( mask != NULL || do_automask ) ERROR_exit("Can't have two mask inputs") ; mset = THD_open_dataset( argv[nopt] ) ; CHECK_OPEN_ERROR(mset,argv[nopt]) ; DSET_load(mset) ; CHECK_LOAD_ERROR(mset) ; mask_nx = DSET_NX(mset); mask_ny = DSET_NY(mset); mask_nz = DSET_NZ(mset); mask = THD_makemask( mset , 0 , 0.5f, 0.0f ) ; DSET_delete(mset) ; if( mask == NULL ) ERROR_exit("Can't make mask from dataset '%s'",argv[nopt]) ; nmask = THD_countmask( mask_nx*mask_ny*mask_nz , mask ) ; if( verb ) INFO_message("Number of voxels in mask = %d",nmask) ; if( nmask < 1 ) ERROR_exit("Mask is too small to process") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-norm") == 0 ){ do_norm = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-quiet") == 0 ){ verb = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-notrans") == 0 || strcmp(argv[nopt],"-nosat") == 0 ){ nosat = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-ort") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -ort!") ; if( ortar == NULL ) INIT_IMARR(ortar) ; ortim = mri_read_1D( argv[nopt] ) ; if( ortim == NULL ) ERROR_exit("can't read from -ort '%s'",argv[nopt]) ; mri_add_name(argv[nopt],ortim) ; ADDTO_IMARR(ortar,ortim) ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-dsort") == 0 ){ THD_3dim_dataset *qset ; if( ++nopt >= argc ) ERROR_exit("need an argument after -dsort!") ; if( nortset > 0 ) ERROR_exit("only 1 -dsort option is allowed!") ; qset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(qset,argv[nopt]) ; ortset = (THD_3dim_dataset **)realloc(ortset, sizeof(THD_3dim_dataset *)*(nortset+1)) ; ortset[nortset++] = qset ; nopt++ ; continue ; } if( strncmp(argv[nopt],"-nodetrend",6) == 0 ){ qdet = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-dt") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -dt!") ; dt = (float)strtod(argv[nopt],NULL) ; if( dt <= 0.0f ) WARNING_message("value after -dt illegal!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-input") == 0 ){ if( inset != NULL ) ERROR_exit("Can't have 2 -input options!") ; if( ++nopt >= argc ) ERROR_exit("need an argument after -input!") ; inset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(inset,argv[nopt]) ; nopt++ ; continue ; } if( strncmp(argv[nopt],"-band",5) == 0 ){ if( ++nopt >= argc-1 ) ERROR_exit("need 2 arguments after -band!") ; if( have_freq ) WARNING_message("second -band option replaces first one!") ; fbot = strtod(argv[nopt++],NULL) ; ftop = strtod(argv[nopt++],NULL) ; have_freq = 1 ; continue ; } ERROR_exit("Unknown option: '%s'",argv[nopt]) ; } /** check inputs for reasonablositiness **/ if( !have_freq ){ if( nopt+1 >= argc ) ERROR_exit("Need frequencies on command line after options!") ; fbot = (float)strtod(argv[nopt++],NULL) ; ftop = (float)strtod(argv[nopt++],NULL) ; } if( inset == NULL ){ if( nopt >= argc ) ERROR_exit("Need input dataset name on command line after options!") ; inset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(inset,argv[nopt]) ; nopt++ ; } DSET_UNMSEC(inset) ; if( fbot < 0.0f ) ERROR_exit("fbot value can't be negative!") ; if( ftop <= fbot ) ERROR_exit("ftop value %g must be greater than fbot value %g!",ftop,fbot) ; ntime = DSET_NVALS(inset) ; if( ntime < 9 ) ERROR_exit("Input dataset is too short!") ; if( nfft <= 0 ){ nfft = csfft_nextup_even(ntime) ; if( verb ) INFO_message("Data length = %d FFT length = %d",ntime,nfft) ; (void)THD_bandpass_set_nfft(nfft) ; } else if( nfft < ntime ){ ERROR_exit("-nfft %d is less than data length = %d",nfft,ntime) ; } else { kk = THD_bandpass_set_nfft(nfft) ; if( kk != nfft && verb ) INFO_message("Data length = %d FFT length = %d",ntime,kk) ; } if( dt <= 0.0f ){ dt = DSET_TR(inset) ; if( dt <= 0.0f ){ WARNING_message("Setting dt=1.0 since input dataset lacks a time axis!") ; dt = 1.0f ; } } if( !THD_bandpass_OK(ntime,dt,fbot,ftop,1) ) ERROR_exit("Can't continue!") ; nx = DSET_NX(inset); ny = DSET_NY(inset); nz = DSET_NZ(inset); nvox = nx*ny*nz; /* check mask, or create it */ if( verb ) INFO_message("Loading input dataset time series" ) ; DSET_load(inset) ; if( mask != NULL ){ if( mask_nx != nx || mask_ny != ny || mask_nz != nz ) ERROR_exit("-mask dataset grid doesn't match input dataset") ; } else if( do_automask ){ mask = THD_automask( inset ) ; if( mask == NULL ) ERROR_message("Can't create -automask from input dataset?") ; nmask = THD_countmask( DSET_NVOX(inset) , mask ) ; if( verb ) INFO_message("Number of voxels in automask = %d",nmask); if( nmask < 1 ) ERROR_exit("Automask is too small to process") ; } else { mask = (byte *)malloc(sizeof(byte)*nvox) ; nmask = nvox ; memset(mask,1,sizeof(byte)*nvox) ; if( verb ) INFO_message("No mask ==> processing all %d voxels",nvox); } /* A simple check of dataset quality [08 Feb 2010] */ if( !nosat ){ float val ; INFO_message( "Checking dataset for initial transients [use '-notrans' to skip this test]") ; val = THD_saturation_check(inset,mask,0,0) ; kk = (int)(val+0.54321f) ; if( kk > 0 ) ININFO_message( "Looks like there %s %d non-steady-state initial time point%s :-(" , ((kk==1) ? "is" : "are") , kk , ((kk==1) ? " " : "s") ) ; else if( val > 0.3210f ) /* don't ask where this threshold comes from! */ ININFO_message( "MAYBE there's an initial positive transient of 1 point, but it's hard to tell\n") ; else ININFO_message("No widespread initial positive transient detected :-)") ; } /* check -dsort inputs for match to inset */ for( kk=0 ; kk < nortset ; kk++ ){ if( DSET_NX(ortset[kk]) != nx || DSET_NY(ortset[kk]) != ny || DSET_NZ(ortset[kk]) != nz || DSET_NVALS(ortset[kk]) != ntime ) ERROR_exit("-dsort %s doesn't match input dataset grid" , DSET_BRIKNAME(ortset[kk]) ) ; } /* convert input dataset to a vectim, which is more fun */ mrv = THD_dset_to_vectim( inset , mask , 0 ) ; if( mrv == NULL ) ERROR_exit("Can't load time series data!?") ; DSET_unload(inset) ; /* similarly for the ort vectors */ if( ortar != NULL ){ for( kk=0 ; kk < IMARR_COUNT(ortar) ; kk++ ){ ortim = IMARR_SUBIM(ortar,kk) ; if( ortim->nx < ntime ) ERROR_exit("-ort file %s is shorter than input dataset time series", ortim->name ) ; ort = (float **)realloc( ort , sizeof(float *)*(nort+ortim->ny) ) ; for( vv=0 ; vv < ortim->ny ; vv++ ) ort[nort++] = MRI_FLOAT_PTR(ortim) + ortim->nx * vv ; } } /* check whether processing leaves any DoF remaining 18 Mar 2015 [rickr] */ { int nbprem = THD_bandpass_remain_dim(ntime, dt, fbot, ftop, 1); int bpused, nremain; int wlimit; /* warning limit */ bpused = ntime - nbprem; /* #dim lost in bandpass step */ nremain = nbprem - nort; /* #dim left in output */ if( nortset == 1 ) nremain--; nremain -= (qdet+1); if( verb ) INFO_message("%d dimensional data reduced to %d by:\n" " %d (bandpass), %d (-ort), %d (-dsort), %d (detrend)", ntime, nremain, bpused, nort, nortset?1:0, qdet+1); /* possibly warn (if 95% lost) user or fail */ wlimit = ntime/20; if( wlimit < 3 ) wlimit = 3; if( nremain < wlimit && nremain > 0 ) WARNING_message("dimensionality reduced from %d to %d, be careful!", ntime, nremain); if( nremain <= 0 ) /* FAILURE */ ERROR_exit("dimensionality reduced from %d to %d, failing!", ntime, nremain); } /* all the real work now */ if( do_despike ){ int_pair nsp ; if( verb ) INFO_message("Testing data time series for spikes") ; nsp = THD_vectim_despike9( mrv ) ; if( verb ) ININFO_message(" -- Squashed %d spikes from %d voxels",nsp.j,nsp.i) ; } if( verb ) INFO_message("Bandpassing data time series") ; (void)THD_bandpass_vectim( mrv , dt,fbot,ftop , qdet , nort,ort ) ; /* OK, maybe a little more work */ if( nortset == 1 ){ MRI_vectim *orv ; orv = THD_dset_to_vectim( ortset[0] , mask , 0 ) ; if( orv == NULL ){ ERROR_message("Can't load -dsort %s",DSET_BRIKNAME(ortset[0])) ; } else { float *dp , *mvv , *ovv , ff ; if( verb ) INFO_message("Orthogonalizing to bandpassed -dsort") ; (void)THD_bandpass_vectim( orv , dt,fbot,ftop , qdet , nort,ort ) ; THD_vectim_normalize( orv ) ; dp = malloc(sizeof(float)*mrv->nvec) ; THD_vectim_vectim_dot( mrv , orv , dp ) ; for( vv=0 ; vv < mrv->nvec ; vv++ ){ ff = dp[vv] ; if( ff != 0.0f ){ mvv = VECTIM_PTR(mrv,vv) ; ovv = VECTIM_PTR(orv,vv) ; for( kk=0 ; kk < ntime ; kk++ ) mvv[kk] -= ff*ovv[kk] ; } } VECTIM_destroy(orv) ; free(dp) ; } } if( blur > 0.0f ){ if( verb ) INFO_message("Blurring time series data spatially; FWHM=%.2f",blur) ; mri_blur3D_vectim( mrv , blur ) ; } if( pvrad > 0.0f ){ if( verb ) INFO_message("Local PV-ing time series data spatially; radius=%.2f",pvrad) ; THD_vectim_normalize( mrv ) ; THD_vectim_localpv( mrv , pvrad ) ; } if( do_norm && pvrad <= 0.0f ){ if( verb ) INFO_message("L2 normalizing time series data") ; THD_vectim_normalize( mrv ) ; } /* create output dataset, populate it, write it, then quit */ if( verb ) INFO_message("Creating output dataset in memory, then writing it") ; outset = EDIT_empty_copy(inset) ; /* do not copy scalars 11 Sep 2015 [rickr] */ EDIT_dset_items( outset , ADN_prefix,prefix , ADN_brick_fac,NULL , ADN_none ) ; tross_Copy_History( inset , outset ) ; tross_Make_History( "3dBandpass" , argc,argv , outset ) ; for( vv=0 ; vv < ntime ; vv++ ) EDIT_substitute_brick( outset , vv , MRI_float , NULL ) ; #if 1 THD_vectim_to_dset( mrv , outset ) ; #else AFNI_OMP_START ; #pragma omp parallel { float *far , *var ; int *ivec=mrv->ivec ; int vv,kk ; #pragma omp for for( vv=0 ; vv < ntime ; vv++ ){ far = DSET_BRICK_ARRAY(outset,vv) ; var = mrv->fvec + vv ; for( kk=0 ; kk < nmask ; kk++ ) far[ivec[kk]] = var[kk*ntime] ; } } AFNI_OMP_END ; #endif VECTIM_destroy(mrv) ; DSET_write(outset) ; if( verb ) WROTE_DSET(outset) ; exit(0) ; }
int main( int argc , char *argv[] ) { int iarg , nerr=0 , nvals,nvox , nx,ny,nz , ii,jj,kk ; char *prefix="LSSout" , *save1D=NULL , nbuf[256] ; THD_3dim_dataset *inset=NULL , *outset ; MRI_vectim *inset_mrv=NULL ; byte *mask=NULL ; int mask_nx=0,mask_ny=0,mask_nz=0, automask=0, nmask=0 ; NI_element *nelmat=NULL ; char *matname=NULL ; char *cgl ; int Ngoodlist,*goodlist=NULL , nfull , ncmat,ntime ; NI_int_array *giar ; NI_str_array *gsar ; NI_float_array *gfar ; MRI_IMAGE *imX, *imA, *imC, *imS ; float *Xar, *Sar ; MRI_IMARR *imar ; int nS ; float *ss , *oo , *fv , sum ; int nvec , iv ; int nbstim , nst=0 , jst_bot,jst_top ; char *stlab="LSS" ; int nodata=1 ; /*--- help me if you can ---*/ if( argc < 2 || strcasecmp(argv[1],"-HELP") == 0 ) LSS_help() ; /*--- bureaucratic startup ---*/ PRINT_VERSION("3dLSS"); mainENTRY("3dLSS main"); machdep(); AFNI_logger("3dLSS",argc,argv); AUTHOR("RWCox"); (void)COX_clock_time() ; /**------- scan command line --------**/ iarg = 1 ; while( iarg < argc ){ if( strcmp(argv[iarg],"-verb") == 0 ){ verb++ ; iarg++ ; continue ; } if( strcmp(argv[iarg],"-VERB") == 0 ){ verb+=2 ; iarg++ ; continue ; } /**========== -mask ==========**/ if( strcasecmp(argv[iarg],"-mask") == 0 ){ THD_3dim_dataset *mset ; if( ++iarg >= argc ) ERROR_exit("Need argument after '-mask'") ; if( mask != NULL || automask ) ERROR_exit("Can't have two mask inputs") ; mset = THD_open_dataset( argv[iarg] ) ; CHECK_OPEN_ERROR(mset,argv[iarg]) ; DSET_load(mset) ; CHECK_LOAD_ERROR(mset) ; mask_nx = DSET_NX(mset); mask_ny = DSET_NY(mset); mask_nz = DSET_NZ(mset); mask = THD_makemask( mset , 0 , 0.5f, 0.0f ) ; DSET_delete(mset) ; if( mask == NULL ) ERROR_exit("Can't make mask from dataset '%.33s'",argv[iarg]) ; nmask = THD_countmask( mask_nx*mask_ny*mask_nz , mask ) ; if( verb || nmask < 1 ) INFO_message("Number of voxels in mask = %d",nmask) ; if( nmask < 1 ) ERROR_exit("Mask is too small to process") ; iarg++ ; continue ; } if( strcasecmp(argv[iarg],"-automask") == 0 ){ if( mask != NULL ) ERROR_exit("Can't have -automask and -mask") ; automask = 1 ; iarg++ ; continue ; } /**========== -matrix ==========**/ if( strcasecmp(argv[iarg],"-matrix") == 0 ){ if( ++iarg >= argc ) ERROR_exit("Need argument after '%s'",argv[iarg-1]) ; if( nelmat != NULL ) ERROR_exit("More than 1 -matrix option!?"); nelmat = NI_read_element_fromfile( argv[iarg] ) ; /* read NIML file */ matname = argv[iarg]; if( nelmat == NULL || nelmat->type != NI_ELEMENT_TYPE ) ERROR_exit("Can't process -matrix file '%s'!?",matname) ; iarg++ ; continue ; } /**========== -nodata ===========**/ if( strcasecmp(argv[iarg],"-nodata") == 0 ){ nodata = 1 ; iarg++ ; continue ; } /**========== -input ==========**/ if( strcasecmp(argv[iarg],"-input") == 0 ){ if( inset != NULL ) ERROR_exit("Can't have two -input options!?") ; if( ++iarg >= argc ) ERROR_exit("Need argument after '%s'",argv[iarg-1]) ; inset = THD_open_dataset( argv[iarg] ) ; CHECK_OPEN_ERROR(inset,argv[iarg]) ; nodata = 0 ; iarg++ ; continue ; } /**========== -prefix =========**/ if( strcasecmp(argv[iarg],"-prefix") == 0 ){ if( ++iarg >= argc ) ERROR_exit("Need argument after '%s'",argv[iarg-1]) ; prefix = strdup(argv[iarg]) ; if( !THD_filename_ok(prefix) ) ERROR_exit("Illegal string after %s",argv[iarg-1]) ; if( verb && strcmp(prefix,"NULL") == 0 ) INFO_message("-prefix NULL ==> no dataset will be written") ; iarg++ ; continue ; } /**========== -save1D =========**/ if( strcasecmp(argv[iarg],"-save1D") == 0 ){ if( ++iarg >= argc ) ERROR_exit("Need argument after '%s'",argv[iarg-1]) ; save1D = strdup(argv[iarg]) ; if( !THD_filename_ok(save1D) ) ERROR_exit("Illegal string after %s",argv[iarg-1]) ; iarg++ ; continue ; } /***** Loser User *****/ ERROR_message("Unknown option: %s",argv[iarg]) ; suggest_best_prog_option(argv[0], argv[iarg]); exit(1); } /* end of loop over options */ /*----- check for errors -----*/ if( nelmat == NULL ){ ERROR_message("No -matrix option!?") ; nerr++ ; } if( nerr > 0 ) ERROR_exit("Can't continue without these inputs!") ; if( inset != NULL ){ nvals = DSET_NVALS(inset) ; nvox = DSET_NVOX(inset) ; nx = DSET_NX(inset) ; ny = DSET_NY(inset) ; nz = DSET_NZ(inset) ; } else { automask = nvals = 0 ; nvox = nx = ny = nz = nodata = 1 ; /* nodata */ mask = NULL ; } /*----- masque -----*/ if( mask != NULL ){ /* check -mask option for compatibility */ if( mask_nx != nx || mask_ny != ny || mask_nz != nz ) ERROR_exit("-mask dataset grid doesn't match input dataset :-(") ; } else if( automask ){ /* create a mask from input dataset */ mask = THD_automask( inset ) ; if( mask == NULL ) ERROR_message("Can't create -automask from input dataset :-(") ; nmask = THD_countmask( nvox , mask ) ; if( verb || nmask < 1 ) INFO_message("Number of voxels in automask = %d (out of %d = %.1f%%)", nmask, nvox, (100.0f*nmask)/nvox ) ; if( nmask < 1 ) ERROR_exit("Automask is too small to process") ; } else if( !nodata ) { /* create a 'mask' for all voxels */ if( verb ) INFO_message("No mask ==> computing for all %d voxels",nvox) ; mask = (byte *)malloc(sizeof(byte)*nvox) ; nmask = nvox ; memset( mask , 1 , sizeof(byte)*nvox ) ; } /*----- get matrix info from the NIML element -----*/ if( verb ) INFO_message("extracting matrix info") ; ncmat = nelmat->vec_num ; /* number of columns */ ntime = nelmat->vec_len ; /* number of rows */ if( ntime < ncmat+2 ) ERROR_exit("Matrix has too many columns (%d) for number of rows (%d)",ncmat,ntime) ; /*--- number of rows in the full matrix (without censoring) ---*/ cgl = NI_get_attribute( nelmat , "NRowFull" ) ; if( cgl == NULL ) ERROR_exit("Matrix is missing 'NRowFull' attribute!") ; nfull = (int)strtod(cgl,NULL) ; if( nodata ){ nvals = nfull ; } else if( nvals != nfull ){ ERROR_exit("-input dataset has %d time points, but matrix indicates %d", nvals , nfull ) ; } /*--- the goodlist = mapping from matrix row index to time index (which allows for possible time point censoring) ---*/ cgl = NI_get_attribute( nelmat , "GoodList" ) ; if( cgl == NULL ) ERROR_exit("Matrix is missing 'GoodList' attribute!") ; giar = NI_decode_int_list( cgl , ";," ) ; if( giar == NULL || giar->num < ntime ) ERROR_exit("Matrix 'GoodList' badly formatted?!") ; Ngoodlist = giar->num ; goodlist = giar->ar ; if( Ngoodlist != ntime ) ERROR_exit("Matrix 'GoodList' incorrect length?!") ; else if( verb > 1 && Ngoodlist < nfull ) ININFO_message("censoring reduces time series length from %d to %d",nfull,Ngoodlist) ; /*--- extract the matrix from the NIML element ---*/ imX = mri_new( ntime , ncmat , MRI_float ) ; Xar = MRI_FLOAT_PTR(imX) ; if( nelmat->vec_typ[0] == NI_FLOAT ){ /* from 3dDeconvolve_f */ float *cd ; for( jj=0 ; jj < ncmat ; jj++ ){ cd = (float *)nelmat->vec[jj] ; for( ii=0 ; ii < ntime ; ii++ ) Xar[ii+jj*ntime] = cd[ii] ; } } else if( nelmat->vec_typ[0] == NI_DOUBLE ){ /* from 3dDeconvolve */ double *cd ; for( jj=0 ; jj < ncmat ; jj++ ){ cd = (double *)nelmat->vec[jj] ; for( ii=0 ; ii < ntime ; ii++ ) Xar[ii+jj*ntime] = cd[ii] ; } } else { ERROR_exit("Matrix file stored with illegal data type!?") ; } /*--- find the stim_times_IM option ---*/ cgl = NI_get_attribute( nelmat , "BasisNstim") ; if( cgl == NULL ) ERROR_exit("Matrix doesn't have 'BasisNstim' attribute!") ; nbstim = (int)strtod(cgl,NULL) ; if( nbstim <= 0 ) ERROR_exit("Matrix 'BasisNstim' attribute is %d",nbstim) ; for( jj=1 ; jj <= nbstim ; jj++ ){ sprintf(nbuf,"BasisOption_%06d",jj) ; cgl = NI_get_attribute( nelmat , nbuf ) ; if( cgl == NULL || strcmp(cgl,"-stim_times_IM") != 0 ) continue ; if( nst > 0 ) ERROR_exit("More than one -stim_times_IM option was found in the matrix") ; nst = jj ; sprintf(nbuf,"BasisColumns_%06d",jj) ; cgl = NI_get_attribute( nelmat , nbuf ) ; if( cgl == NULL ) ERROR_exit("Matrix doesn't have %s attribute!",nbuf) ; jst_bot = jst_top = -1 ; sscanf(cgl,"%d:%d",&jst_bot,&jst_top) ; if( jst_bot < 0 || jst_top < 0 ) ERROR_exit("Can't decode matrix attribute %s",nbuf) ; if( jst_bot == jst_top ) ERROR_exit("Matrix attribute %s shows only 1 column for -stim_time_IM:\n" " -->> 3dLSS is meant to be used when more than one stimulus\n" " time was given, and then it computes the response beta\n" " for each stim time separately. If you have only one\n" " stim time with -stim_times_IM, you can use the output\n" " dataset from 3dDeconvolve (or 3dREMLfit) to get that\n" " single beta directly.\n" , nbuf ) ; if( jst_bot >= jst_top || jst_top >= ncmat ) ERROR_exit("Matrix attribute %s has illegal value: %d:%d (ncmat=%d)",nbuf,jst_bot,jst_top,ncmat) ; sprintf(nbuf,"BasisName_%06d",jj) ; cgl = NI_get_attribute( nelmat , nbuf ) ; if( cgl != NULL ) stlab = strdup(cgl) ; if( verb > 1 ) ININFO_message("-stim_times_IM at stim #%d; cols %d..%d",jj,jst_bot,jst_top) ; } if( nst == 0 ) ERROR_exit("Matrix doesn't have any -stim_times_IM options inside :-(") ; /*--- mangle matrix to segregate IM regressors from the rest ---*/ if( verb ) INFO_message("setting up LSS vectors") ; imar = LSS_mangle_matrix( imX , jst_bot , jst_top ) ; if( imar == NULL ) ERROR_exit("Can't compute LSS 'mangled' matrix :-(") ; /*--- setup for LSS computations ---*/ imA = IMARR_SUBIM(imar,0) ; imC = IMARR_SUBIM(imar,1) ; imS = LSS_setup( imA , imC ) ; DESTROY_IMARR(imar) ; if( imS == NULL ) ERROR_exit("Can't complete LSS setup :-((") ; nS = imS->ny ; Sar = MRI_FLOAT_PTR(imS) ; if( save1D != NULL ){ mri_write_1D( save1D , imS ) ; if( verb ) ININFO_message("saved LSS vectors into file %s",save1D) ; } else if( nodata ){ WARNING_message("-nodata used but -save1D not used ==> you get no output!") ; } if( nodata || strcmp(prefix,"NULL") == 0 ){ INFO_message("3dLSS ends since prefix is 'NULL' or -nodata was used") ; exit(0) ; } /*----- create output dataset -----*/ if( verb ) INFO_message("creating output datset in memory") ; outset = EDIT_empty_copy(inset) ; EDIT_dset_items( outset , ADN_prefix , prefix , ADN_datum_all , MRI_float , ADN_brick_fac , NULL , ADN_nvals , nS , ADN_ntt , nS , ADN_none ) ; tross_Copy_History( inset , outset ) ; tross_Make_History( "3dLSS" , argc,argv , outset ) ; for( kk=0 ; kk < nS ; kk++ ){ EDIT_substitute_brick( outset , kk , MRI_float , NULL ) ; sprintf(nbuf,"%s#%03d",stlab,kk) ; EDIT_BRICK_LABEL( outset , kk , nbuf ) ; } /*----- convert input dataset to vectim -----*/ if( verb ) INFO_message("loading input dataset into memory") ; DSET_load(inset) ; CHECK_LOAD_ERROR(inset) ; inset_mrv = THD_dset_to_vectim( inset , mask , 0 ) ; DSET_unload(inset) ; /*----- compute dot products, store results -----*/ if( verb ) INFO_message("computing away, me buckos!") ; nvec = inset_mrv->nvec ; for( kk=0 ; kk < nS ; kk++ ){ ss = Sar + kk*ntime ; oo = DSET_ARRAY(outset,kk) ; for( iv=0 ; iv < nvec ; iv++ ){ fv = VECTIM_PTR(inset_mrv,iv) ; for( sum=0.0f,ii=0 ; ii < ntime ; ii++ ) sum += ss[ii] * fv[goodlist[ii]] ; oo[inset_mrv->ivec[iv]] = sum ; } } DSET_write(outset) ; WROTE_DSET(outset) ; /*-------- Hasta la vista, baby --------*/ if( verb ) INFO_message("3dLSS finished: total CPU=%.2f Elapsed=%.2f", COX_cpu_time() , COX_clock_time() ) ; exit(0) ; }
MRI_vectim * THD_dset_censored_to_vectim( THD_3dim_dataset *dset, byte *mask , int nkeep , int *keep ) { byte *mmm=mask ; MRI_vectim *mrv=NULL ; int kk,iv,jj , nvals , nvox , nmask ; ENTRY("THD_dset_censored_to_vectim") ; if( !ISVALID_DSET(dset) ) RETURN(NULL) ; if( nkeep <= 0 || keep == NULL ){ mrv = THD_dset_to_vectim( dset , mask , 0 ) ; RETURN(mrv) ; } if( ! THD_subset_loaded(dset,nkeep,keep) ){ DSET_load(dset) ; if( !DSET_LOADED(dset) ) RETURN(NULL) ; } nvals = nkeep ; nvox = DSET_NVOX(dset) ; if( mmm != NULL ){ nmask = THD_countmask( nvox , mmm ) ; /* number to keep */ if( nmask <= 0 ) RETURN(NULL) ; } else { nmask = nvox ; /* keep them all */ #pragma omp critical (MALLOC) mmm = (byte *)malloc(sizeof(byte)*nmask) ; if( mmm == NULL ){ ERROR_message("THD_dset_to_vectim: out of memory") ; RETURN(NULL) ; } memset( mmm , 1 , sizeof(byte)*nmask ) ; } #pragma omp critical (MALLOC) mrv = (MRI_vectim *)malloc(sizeof(MRI_vectim)) ; mrv->nvec = nmask ; mrv->nvals = nvals ; mrv->ignore = 0 ; #pragma omp critical (MALLOC) mrv->ivec = (int *)malloc(sizeof(int)*nmask) ; if( mrv->ivec == NULL ){ ERROR_message("THD_dset_to_vectim: out of memory") ; free(mrv) ; if( mmm != mask ) free(mmm) ; RETURN(NULL) ; } #pragma omp critical (MALLOC) mrv->fvec = (float *)malloc(sizeof(float)*(size_t)nmask*(size_t)nvals) ; if( mrv->fvec == NULL ){ ERROR_message("THD_dset_to_vectim: out of memory") ; free(mrv->ivec) ; free(mrv) ; if( mmm != mask ) free(mmm) ; RETURN(NULL) ; } /* store desired voxel time series */ for( kk=iv=0 ; iv < nvox ; iv++ ){ if( mmm[iv] ) mrv->ivec[kk++] = iv ; /* build index list */ } #pragma omp critical (MALLOC) { float *var = (float *)malloc(sizeof(float)*DSET_NVALS(dset)) ; float *vpt ; for( kk=iv=0 ; iv < nvox ; iv++ ){ if( mmm[iv] == 0 ) continue ; vpt = VECTIM_PTR(mrv,kk) ; kk++ ; if( nkeep > 1 ){ (void)THD_extract_array( iv , dset , 0 , var ) ; for( jj=0 ; jj < nkeep ; jj++ ) vpt[jj] = var[keep[jj]] ; } else { vpt[0] = THD_get_float_value(iv,keep[0],dset) ; } } free(var) ; } mrv->nx = DSET_NX(dset) ; mrv->dx = fabs(DSET_DX(dset)) ; mrv->ny = DSET_NY(dset) ; mrv->dy = fabs(DSET_DY(dset)) ; mrv->nz = DSET_NZ(dset) ; mrv->dz = fabs(DSET_DZ(dset)) ; DSET_UNMSEC(dset) ; mrv->dt = DSET_TR(dset) ; if( mrv->dt <= 0.0f ) mrv->dt = 1.0f ; if( mmm != mask ) free(mmm) ; VECTIM_scan(mrv) ; /* 09 Nov 2010 */ RETURN(mrv) ; }