Esempio n. 1
0
int LEVMAR_BC_DER(
  void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
  void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the jacobian \part x / \part p */ 
  LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
  LM_REAL *x,         /* I: measurement vector */
  int m,              /* I: parameter vector dimension (i.e. #unknowns) */
  int n,              /* I: measurement vector dimension */
  LM_REAL *lb,        /* I: vector of lower bounds. If NULL, no lower bounds apply */
  LM_REAL *ub,        /* I: vector of upper bounds. If NULL, no upper bounds apply */
  int itmax,          /* I: maximum number of iterations */
  LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
                       * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used.
                       * Note that ||J^T e||_inf is computed on free (not equal to lb[i] or ub[i]) variables only.
                       */
  LM_REAL info[LM_INFO_SZ],
					           /* O: information regarding the minimization. Set to NULL if don't care
                      * info[0]= ||e||_2 at initial p.
                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
                      * info[5]= # iterations,
                      * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
                      *                                 2 - stopped by small Dp
                      *                                 3 - stopped by itmax
                      *                                 4 - singular matrix. Restart from current p with increased mu 
                      *                                 5 - no further error reduction is possible. Restart with increased mu
                      *                                 6 - stopped by small ||e||_2
                      * info[7]= # function evaluations
                      * info[8]= # jacobian evaluations
                      */
  LM_REAL *work,     /* working memory, allocate if NULL */
  LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
  void *adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf.
                      * Set to NULL if not needed
                      */
{
register int i, j, k, l;
int worksz, freework=0, issolved;
/* temp work arrays */
LM_REAL *e,          /* nx1 */
       *hx,         /* \hat{x}_i, nx1 */
       *jacTe,      /* J^T e_i mx1 */
       *jac,        /* nxm */
       *jacTjac,    /* mxm */
       *Dp,         /* mx1 */
   *diag_jacTjac,   /* diagonal of J^T J, mx1 */
       *pDp;        /* p + Dp, mx1 */

register LM_REAL mu,  /* damping constant */
                tmp; /* mainly used in matrix & vector multiplications */
LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
LM_REAL tau, eps1, eps2, eps2_sq, eps3;
LM_REAL init_p_eL2;
int nu=2, nu2, stop, nfev, njev=0;
const int nm=n*m;

/* variables for constrained LM */
struct FUNC_STATE fstate;
LM_REAL alpha=CNST(1e-4), beta=CNST(0.9), gamma=CNST(0.99995), gamma_sq=gamma*gamma, rho=CNST(1e-8);
LM_REAL t, t0;
LM_REAL steptl=CNST(1e3)*(LM_REAL)sqrt(LM_REAL_EPSILON), jacTeDp;
LM_REAL tmin=CNST(1e-12), tming=CNST(1e-18); /* minimum step length for LS and PG steps */
const LM_REAL tini=CNST(1.0); /* initial step length for LS and PG steps */
int nLMsteps=0, nLSsteps=0, nPGsteps=0, gprevtaken=0;
int numactive;

  mu=jacTe_inf=t=0.0;  tmin=tmin; /* -Wall */

  if(n<m){
    fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
    exit(1);
  }

  if(!jacf){
    fprintf(stderr, RCAT("No function specified for computing the jacobian in ", LEVMAR_BC_DER)
        RCAT("().\nIf no such function is available, use ", LEVMAR_BC_DIF) RCAT("() rather than ", LEVMAR_BC_DER) "()\n");
    exit(1);
  }

  if(!BOXCHECK(lb, ub, m)){
    fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): at least one lower bound exceeds the upper one\n"));
    exit(1);
  }

  if(opts){
	  tau=opts[0];
	  eps1=opts[1];
	  eps2=opts[2];
	  eps2_sq=opts[2]*opts[2];
	  eps3=opts[3];
  }
  else{ // use default values
	  tau=CNST(LM_INIT_MU);
	  eps1=CNST(LM_STOP_THRESH);
	  eps2=CNST(LM_STOP_THRESH);
	  eps2_sq=CNST(LM_STOP_THRESH)*CNST(LM_STOP_THRESH);
	  eps3=CNST(LM_STOP_THRESH);
  }

  if(!work){
    worksz=LM_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m;
    work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
    if(!work){
      fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): memory allocation request failed\n"));
      exit(1);
    }
    freework=1;
  }

  /* set up work arrays */
  e=work;
  hx=e + n;
  jacTe=hx + n;
  jac=jacTe + m;
  jacTjac=jac + nm;
  Dp=jacTjac + m*m;
  diag_jacTjac=Dp + m;
  pDp=diag_jacTjac + m;

  fstate.n=n;
  fstate.hx=hx;
  fstate.x=x;
  fstate.adata=adata;
  fstate.nfev=&nfev;
  
  /* see if starting point is within the feasile set */
  for(i=0; i<m; ++i)
    pDp[i]=p[i];
  BOXPROJECT(p, lb, ub, m); /* project to feasible set */
  for(i=0; i<m; ++i)
    if(pDp[i]!=p[i])
      fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_BC_DER) "()! [%g projected to %g]\n",
                      i, p[i], pDp[i]);

  /* compute e=x - f(p) and its L2 norm */
  (*func)(p, hx, m, n, adata); nfev=1;
  for(i=0, p_eL2=0.0; i<n; ++i){
    e[i]=tmp=x[i]-hx[i];
    p_eL2+=tmp*tmp;
  }
  init_p_eL2=p_eL2;

  for(k=stop=0; k<itmax && !stop; ++k){
 //printf("%d  %.15g\n", k, 0.5*p_eL2);
    /* Note that p and e have been updated at a previous iteration */

    if(p_eL2<=eps3){ /* error is small */
      stop=6;
      break;
    }

    /* Compute the jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.
     * Since J^T J is symmetric, its computation can be speeded up by computing
     * only its upper triangular part and copying it to the lower part
     */

    (*jacf)(p, jac, m, n, adata); ++njev;

    /* J^T J, J^T e */
    if(nm<__BLOCKSZ__SQ){ // this is a small problem
      /* This is the straightforward way to compute J^T J, J^T e. However, due to
       * its noncontinuous memory access pattern, it incures many cache misses when
       * applied to large minimization problems (i.e. problems involving a large
       * number of free variables and measurements), in which J is too large to
       * fit in the L1 cache. For such problems, a cache-efficient blocking scheme
       * is preferable.
       *
       * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
       * performance problem.
       *
       * On the other hand, the straightforward algorithm is faster on small
       * problems since in this case it avoids the overheads of blocking. 
       */

      for(i=0; i<m; ++i){
        for(j=i; j<m; ++j){
          int lm;

          for(l=0, tmp=0.0; l<n; ++l){
            lm=l*m;
            tmp+=jac[lm+i]*jac[lm+j];
          }

		      /* store tmp in the corresponding upper and lower part elements */
          jacTjac[i*m+j]=jacTjac[j*m+i]=tmp;
        }

        /* J^T e */
        for(l=0, tmp=0.0; l<n; ++l)
          tmp+=jac[l*m+i]*e[l];
        jacTe[i]=tmp;
      }
    }
    else{ // this is a large problem
      /* Cache efficient computation of J^T J based on blocking
       */
      TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);

      /* cache efficient computation of J^T e */
      for(i=0; i<m; ++i)
        jacTe[i]=0.0;

      for(i=0; i<n; ++i){
        register LM_REAL *jacrow;

        for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
          jacTe[l]+=jacrow[l]*tmp;
      }
    }

	  /* Compute ||J^T e||_inf and ||p||^2. Note that ||J^T e||_inf
     * is computed for free (i.e. inactive) variables only. 
     * At a local minimum, if p[i]==ub[i] then g[i]>0;
     * if p[i]==lb[i] g[i]<0; otherwise g[i]=0 
     */
    for(i=j=numactive=0, p_L2=jacTe_inf=0.0; i<m; ++i){
      if(ub && p[i]==ub[i]){ ++numactive; if(jacTe[i]>0.0) ++j; }
      else if(lb && p[i]==lb[i]){ ++numactive; if(jacTe[i]<0.0) ++j; }
      else if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;

      diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
      p_L2+=p[i]*p[i];
    }
    //p_L2=sqrt(p_L2);

#if 0
if(!(k%100)){
  printf("Current estimate: ");
  for(i=0; i<m; ++i)
    printf("%.9g ", p[i]);
  printf("-- errors %.9g %0.9g, #active %d [%d]\n", jacTe_inf, p_eL2, numactive, j);
}
#endif

    /* check for convergence */
    if(j==numactive && (jacTe_inf <= eps1)){
      Dp_L2=0.0; /* no increment for p in this case */
      stop=1;
      break;
    }

   /* compute initial damping factor */
    if(k==0){
      if(!lb && !ub){ /* no bounds */
        for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
          if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
        mu=tau*tmp;
      }
      else 
        mu=CNST(0.5)*tau*p_eL2; /* use Kanzow's starting mu */
    }

    /* determine increment using a combination of adaptive damping, line search and projected gradient search */
    while(1){
      /* augment normal equations */
      for(i=0; i<m; ++i)
        jacTjac[i*m+i]+=mu;

      /* solve augmented equations */
      /* 5 alternatives are available: LU, Cholesky, 2 variants of QR decomposition and SVD.
       * Cholesky is the fastest but might be inaccurate; QR is slower but more accurate;
       * SVD is the slowest but most accurate; LU offers a tradeoff between accuracy and speed
       */

      issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m);
      //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m);
      //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m);
      //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m);
      //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m);

      if(issolved){
        for(i=0; i<m; ++i)
          pDp[i]=p[i] + Dp[i];

        /* compute p's new estimate and ||Dp||^2 */
        BOXPROJECT(pDp, lb, ub, m); /* project to feasible set */
        for(i=0, Dp_L2=0.0; i<m; ++i){
          Dp[i]=tmp=pDp[i]-p[i];
          Dp_L2+=tmp*tmp;
        }
        //Dp_L2=sqrt(Dp_L2);

        if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
          stop=2;
          break;
        }

       if(Dp_L2>=(p_L2+eps2)/(CNST(EPSILON)*CNST(EPSILON))){ /* almost singular */
         stop=4;
         break;
       }

        (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */
        for(i=0, pDp_eL2=0.0; i<n; ++i){ /* compute ||e(pDp)||_2 */
          hx[i]=tmp=x[i]-hx[i];
          pDp_eL2+=tmp*tmp;
        }

        if(pDp_eL2<=gamma_sq*p_eL2){
          for(i=0, dL=0.0; i<m; ++i)
            dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);

#if 1
          if(dL>0.0){
            dF=p_eL2-pDp_eL2;
            tmp=(CNST(2.0)*dF/dL-CNST(1.0));
            tmp=CNST(1.0)-tmp*tmp*tmp;
            mu=mu*( (tmp>=CNST(ONE_THIRD))? tmp : CNST(ONE_THIRD) );
          }
          else
            mu=(mu>=pDp_eL2)? pDp_eL2 : mu; /* pDp_eL2 is the new pDp_eL2 */
#else

          mu=(mu>=pDp_eL2)? pDp_eL2 : mu; /* pDp_eL2 is the new pDp_eL2 */
#endif

          nu=2;

          for(i=0 ; i<m; ++i) /* update p's estimate */
            p[i]=pDp[i];

          for(i=0; i<n; ++i) /* update e and ||e||_2 */
            e[i]=hx[i];
          p_eL2=pDp_eL2;
          ++nLMsteps;
          gprevtaken=0;
          break;
        }
      }
      else{

      /* the augmented linear system could not be solved, increase mu */

        mu*=nu;
        nu2=nu<<1; // 2*nu;
        if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
          stop=5;
          break;
        }
        nu=nu2;

        for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
          jacTjac[i*m+i]=diag_jacTjac[i];

        continue; /* solve again with increased nu */
      }

      /* if this point is reached, the LM step did not reduce the error;
       * see if it is a descent direction
       */

      /* negate jacTe (i.e. g) & compute g^T * Dp */
      for(i=0, jacTeDp=0.0; i<m; ++i){
        jacTe[i]=-jacTe[i];
        jacTeDp+=jacTe[i]*Dp[i];
      }

      if(jacTeDp<=-rho*pow(Dp_L2, _POW_/CNST(2.0))){
        /* Dp is a descent direction; do a line search along it */
        int mxtake, iretcd;
        LM_REAL stepmx;

        tmp=(LM_REAL)sqrt(p_L2); stepmx=CNST(1e3)*( (tmp>=CNST(1.0))? tmp : CNST(1.0) );

#if 1
        /* use Schnabel's backtracking line search; it requires fewer "func" evaluations */
        LNSRCH(m, p, p_eL2, jacTe, Dp, alpha, pDp, &pDp_eL2, func, fstate,
               &mxtake, &iretcd, stepmx, steptl, NULL); /* NOTE: LNSRCH() updates hx */
        if(iretcd!=0) goto gradproj; /* rather inelegant but effective way to handle LNSRCH() failures... */
#else
        /* use the simpler (but slower!) line search described by Kanzow */
        for(t=tini; t>tmin; t*=beta){
          for(i=0; i<m; ++i){
            pDp[i]=p[i] + t*Dp[i];
            //pDp[i]=__MEDIAN3(lb[i], pDp[i], ub[i]); /* project to feasible set */
          }

          (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + t*Dp */
          for(i=0, pDp_eL2=0.0; i<n; ++i){ /* compute ||e(pDp)||_2 */
            hx[i]=tmp=x[i]-hx[i];
            pDp_eL2+=tmp*tmp;
          }
          //if(CNST(0.5)*pDp_eL2<=CNST(0.5)*p_eL2 + t*alpha*jacTeDp) break;
          if(pDp_eL2<=p_eL2 + CNST(2.0)*t*alpha*jacTeDp) break;
        }
#endif
        ++nLSsteps;
        gprevtaken=0;

        /* NOTE: new estimate for p is in pDp, associated error in hx and its norm in pDp_eL2.
         * These values are used below to update their corresponding variables 
         */
      }
      else{
gradproj: /* Note that this point can also be reached via a goto when LNSRCH() fails */

        /* jacTe is a descent direction; make a projected gradient step */

        /* if the previous step was along the gradient descent, try to use the t employed in that step */
        /* compute ||g|| */
        for(i=0, tmp=0.0; i<m; ++i)
          tmp=jacTe[i]*jacTe[i];
        tmp=(LM_REAL)sqrt(tmp);
        tmp=CNST(100.0)/(CNST(1.0)+tmp);
        t0=(tmp<=tini)? tmp : tini; /* guard against poor scaling & large steps; see (3.50) in C.T. Kelley's book */

        for(t=(gprevtaken)? t : t0; t>tming; t*=beta){
          for(i=0; i<m; ++i)
            pDp[i]=p[i] - t*jacTe[i];
          BOXPROJECT(pDp, lb, ub, m); /* project to feasible set */
          for(i=0; i<m; ++i)
            Dp[i]=pDp[i]-p[i];

          (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p - t*g */
          for(i=0, pDp_eL2=0.0; i<n; ++i){ /* compute ||e(pDp)||_2 */
            hx[i]=tmp=x[i]-hx[i];
            pDp_eL2+=tmp*tmp;
          }
          for(i=0, tmp=0.0; i<m; ++i) /* compute ||g^T * Dp|| */
            tmp+=jacTe[i]*Dp[i];

          if(gprevtaken && pDp_eL2<=p_eL2 + CNST(2.0)*CNST(0.99999)*tmp){ /* starting t too small */
            t=t0;
            gprevtaken=0;
            continue;
          }
          //if(CNST(0.5)*pDp_eL2<=CNST(0.5)*p_eL2 + alpha*tmp) break;
          if(pDp_eL2<=p_eL2 + CNST(2.0)*alpha*tmp) break;
        }

        ++nPGsteps;
        gprevtaken=1;
        /* NOTE: new estimate for p is in pDp, associated error in hx and its norm in pDp_eL2 */
      }

      /* update using computed values */

      for(i=0, Dp_L2=0.0; i<m; ++i){
        tmp=pDp[i]-p[i];
        Dp_L2+=tmp*tmp;
      }
      //Dp_L2=sqrt(Dp_L2);

      if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
        stop=2;
        break;
      }

      for(i=0 ; i<m; ++i) /* update p's estimate */
        p[i]=pDp[i];

      for(i=0; i<n; ++i) /* update e and ||e||_2 */
        e[i]=hx[i];
      p_eL2=pDp_eL2;
      break;
    } /* inner loop */
  }

  if(k>=itmax) stop=3;

  for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
    jacTjac[i*m+i]=diag_jacTjac[i];

  if(info){
    info[0]=init_p_eL2;
    info[1]=p_eL2;
    info[2]=jacTe_inf;
    info[3]=Dp_L2;
    for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
      if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
    info[4]=mu/tmp;
    info[5]=(LM_REAL)k;
    info[6]=(LM_REAL)stop;
    info[7]=(LM_REAL)nfev;
    info[8]=(LM_REAL)njev;
  }

  /* covariance matrix */
  if(covar){
    LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
  }
                                                               
  if(freework) free(work);

#if 0
printf("%d LM steps, %d line search, %d projected gradient\n", nLMsteps, nLSsteps, nPGsteps);
#endif

  return (stop!=4)?  k : -1;
}
Esempio n. 2
0
int LEVMAR_DER(
  void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
  void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the jacobian \part x / \part p */ 
  LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
  LM_REAL *x,         /* I: measurement vector */
  int m,              /* I: parameter vector dimension (i.e. #unknowns) */
  int n,              /* I: measurement vector dimension */
  int itmax,          /* I: maximum number of iterations */
  LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
                       * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
                       */
  LM_REAL info[LM_INFO_SZ],
					           /* O: information regarding the minimization. Set to NULL if don't care
                      * info[0]= ||e||_2 at initial p.
                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
                      * info[5]= # iterations,
                      * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
                      *                                 2 - stopped by small Dp
                      *                                 3 - stopped by itmax
                      *                                 4 - singular matrix. Restart from current p with increased mu 
                      *                                 5 - no further error reduction is possible. Restart with increased mu
                      *                                 6 - stopped by small ||e||_2
                      * info[7]= # function evaluations
                      * info[8]= # jacobian evaluations
                      */
  LM_REAL *work,     /* working memory, allocate if NULL */
  LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
  void *adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf.
                      * Set to NULL if not needed
                      */
{
register int i, j, k, l;
int worksz, freework=0, issolved;
/* temp work arrays */
LM_REAL *e,          /* nx1 */
       *hx,         /* \hat{x}_i, nx1 */
       *jacTe,      /* J^T e_i mx1 */
       *jac,        /* nxm */
       *jacTjac,    /* mxm */
       *Dp,         /* mx1 */
   *diag_jacTjac,   /* diagonal of J^T J, mx1 */
       *pDp;        /* p + Dp, mx1 */

register LM_REAL mu,  /* damping constant */
                tmp; /* mainly used in matrix & vector multiplications */
LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
LM_REAL tau, eps1, eps2, eps2_sq, eps3;
LM_REAL init_p_eL2;
int nu=2, nu2, stop, nfev, njev=0;
const int nm=n*m;

  mu=jacTe_inf=0.0; /* -Wall */

  if(n<m){
    fprintf(stderr, LCAT(LEVMAR_DER, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
    return -1;
  }

  if(!jacf){
    fprintf(stderr, RCAT("No function specified for computing the jacobian in ", LEVMAR_DER)
        RCAT("().\nIf no such function is available, use ", LEVMAR_DIF) RCAT("() rather than ", LEVMAR_DER) "()\n");
    return -1;
  }

  if(opts){
	  tau=opts[0];
	  eps1=opts[1];
	  eps2=opts[2];
	  eps2_sq=opts[2]*opts[2];
    eps3=opts[3];
  }
  else{ // use default values
	  tau=CNST(LM_INIT_MU);
	  eps1=CNST(LM_STOP_THRESH);
	  eps2=CNST(LM_STOP_THRESH);
	  eps2_sq=CNST(LM_STOP_THRESH)*CNST(LM_STOP_THRESH);
    eps3=CNST(LM_STOP_THRESH);
  }

  if(!work){
    worksz=LM_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m;
    work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
    if(!work){
      fprintf(stderr, LCAT(LEVMAR_DER, "(): memory allocation request failed\n"));
      return -1;
    }
    freework=1;
  }

  /* set up work arrays */
  e=work;
  hx=e + n;
  jacTe=hx + n;
  jac=jacTe + m;
  jacTjac=jac + nm;
  Dp=jacTjac + m*m;
  diag_jacTjac=Dp + m;
  pDp=diag_jacTjac + m;

  /* compute e=x - f(p) and its L2 norm */
  (*func)(p, hx, m, n, adata); nfev=1;
  for(i=0, p_eL2=0.0; i<n; ++i){
    e[i]=tmp=x[i]-hx[i];
    p_eL2+=tmp*tmp;
  }
  init_p_eL2=p_eL2;

  for(k=stop=0; k<itmax && !stop; ++k){
    /* Note that p and e have been updated at a previous iteration */

    if(p_eL2<=eps3){ /* error is small */
      stop=6;
      break;
    }

    /* Compute the jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.
     * Since J^T J is symmetric, its computation can be speeded up by computing
     * only its upper triangular part and copying it to the lower part
     */

    (*jacf)(p, jac, m, n, adata); ++njev;

    /* J^T J, J^T e */
    if(nm<__BLOCKSZ__SQ){ // this is a small problem
      /* This is the straightforward way to compute J^T J, J^T e. However, due to
       * its noncontinuous memory access pattern, it incures many cache misses when
       * applied to large minimization problems (i.e. problems involving a large
       * number of free variables and measurements), in which J is too large to
       * fit in the L1 cache. For such problems, a cache-efficient blocking scheme
       * is preferable.
       *
       * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
       * performance problem.
       *
       * On the other hand, the straightforward algorithm is faster on small
       * problems since in this case it avoids the overheads of blocking. 
       */

      for(i=0; i<m; ++i){
        for(j=i; j<m; ++j){
          int lm;

          for(l=0, tmp=0.0; l<n; ++l){
            lm=l*m;
            tmp+=jac[lm+i]*jac[lm+j];
          }

		      /* store tmp in the corresponding upper and lower part elements */
          jacTjac[i*m+j]=jacTjac[j*m+i]=tmp;
        }

        /* J^T e */
        for(l=0, tmp=0.0; l<n; ++l)
          tmp+=jac[l*m+i]*e[l];
        jacTe[i]=tmp;
      }
    }
    else{ // this is a large problem
      /* Cache efficient computation of J^T J based on blocking
       */
      TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);

      /* cache efficient computation of J^T e */
      for(i=0; i<m; ++i)
        jacTe[i]=0.0;

      for(i=0; i<n; ++i){
        register LM_REAL *jacrow;

        for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
          jacTe[l]+=jacrow[l]*tmp;
      }
    }

	  /* Compute ||J^T e||_inf and ||p||^2 */
    for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){
      if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;

      diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
      p_L2+=p[i]*p[i];
    }
    //p_L2=sqrt(p_L2);

#if 0
if(!(k%10)){
  printf("Iter: %d, estimate: ", k);
  for(i=0; i<m; ++i)
    printf("%.9g ", p[i]);
  printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
}
#endif

    /* check for convergence */
    if((jacTe_inf <= eps1)){
      Dp_L2=0.0; /* no increment for p in this case */
      stop=1;
      break;
    }

   /* compute initial damping factor */
    if(k==0){
      for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
        if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
      mu=tau*tmp;
    }

    /* determine increment using adaptive damping */
    while(1){
      /* augment normal equations */
      for(i=0; i<m; ++i)
        jacTjac[i*m+i]+=mu;

      /* solve augmented equations */
#ifdef HAVE_LAPACK
      /* 5 alternatives are available: LU, Cholesky, 2 variants of QR decomposition and SVD.
       * Cholesky is the fastest but might be inaccurate; QR is slower but more accurate;
       * SVD is the slowest but most accurate; LU offers a tradeoff between accuracy and speed
       */

      issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m);
      //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m);
      //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m);
      //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m);
      //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m);

#else
      /* use the LU included with levmar */
      issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m);
#endif /* HAVE_LAPACK */

      if(issolved){
        /* compute p's new estimate and ||Dp||^2 */
        for(i=0, Dp_L2=0.0; i<m; ++i){
          pDp[i]=p[i] + (tmp=Dp[i]);
          Dp_L2+=tmp*tmp;
        }
        //Dp_L2=sqrt(Dp_L2);

        if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
        //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
          stop=2;
          break;
        }

       if(Dp_L2>=(p_L2+eps2)/(CNST(EPSILON)*CNST(EPSILON))){ /* almost singular */
       //if(Dp_L2>=(p_L2+eps2)/CNST(EPSILON)){ /* almost singular */
         stop=4;
         break;
       }

        (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */
        for(i=0, pDp_eL2=0.0; i<n; ++i){ /* compute ||e(pDp)||_2 */
          hx[i]=tmp=x[i]-hx[i];
          pDp_eL2+=tmp*tmp;
        }

        for(i=0, dL=0.0; i<m; ++i)
          dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);

        dF=p_eL2-pDp_eL2;

        if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */
          tmp=(CNST(2.0)*dF/dL-CNST(1.0));
          tmp=CNST(1.0)-tmp*tmp*tmp;
          mu=mu*( (tmp>=CNST(ONE_THIRD))? tmp : CNST(ONE_THIRD) );
          nu=2;

          for(i=0 ; i<m; ++i) /* update p's estimate */
            p[i]=pDp[i];

          for(i=0; i<n; ++i) /* update e and ||e||_2 */
            e[i]=hx[i];
          p_eL2=pDp_eL2;
          break;
        }
      }

      /* if this point is reached, either the linear system could not be solved or
       * the error did not reduce; in any case, the increment must be rejected
       */

      mu*=nu;
      nu2=nu<<1; // 2*nu;
      if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
        stop=5;
        break;
      }
      nu=nu2;

      for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
        jacTjac[i*m+i]=diag_jacTjac[i];
    } /* inner loop */
  }

  if(k>=itmax) stop=3;

  for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
    jacTjac[i*m+i]=diag_jacTjac[i];

  if(info){
    info[0]=init_p_eL2;
    info[1]=p_eL2;
    info[2]=jacTe_inf;
    info[3]=Dp_L2;
    for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
      if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
    info[4]=mu/tmp;
    info[5]=(LM_REAL)k;
    info[6]=(LM_REAL)stop;
    info[7]=(LM_REAL)nfev;
    info[8]=(LM_REAL)njev;
  }

  /* covariance matrix */
  if(covar){
    LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
  }

  if(freework) free(work);

  return (stop!=4)?  k : -1;
}
Esempio n. 3
0
/* Similar to the LEVMAR_LEC_DER() function above, except that the jacobian is approximated
 * with the aid of finite differences (forward or central, see the comment for the opts argument)
 */
int LEVMAR_LEC_DIF(
  void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
  LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
  LM_REAL *x,         /* I: measurement vector */
  int m,              /* I: parameter vector dimension (i.e. #unknowns) */
  int n,              /* I: measurement vector dimension */
  LM_REAL *A,         /* I: constraints matrix, kxm */
  LM_REAL *b,         /* I: right hand constraints vector, kx1 */
  int k,              /* I: number of contraints (i.e. A's #rows) */
  int itmax,          /* I: maximum number of iterations */
  LM_REAL opts[5],    /* I: opts[0-3] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
                       * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
                       * the step used in difference approximation to the jacobian. Set to NULL for defaults to be used.
                       * If \delta<0, the jacobian is approximated with central differences which are more accurate
                       * (but slower!) compared to the forward differences employed by default. 
                       */
  LM_REAL info[LM_INFO_SZ],
					           /* O: information regarding the minimization. Set to NULL if don't care
                      * info[0]= ||e||_2 at initial p.
                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
                      * info[5]= # iterations,
                      * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
                      *                                 2 - stopped by small Dp
                      *                                 3 - stopped by itmax
                      *                                 4 - singular matrix. Restart from current p with increased mu 
                      *                                 5 - no further error reduction is possible. Restart with increased mu
                      *                                 6 - stopped by small ||e||_2
                      * info[7]= # function evaluations
                      * info[8]= # jacobian evaluations
                      */
  LM_REAL *work,     /* working memory, allocate if NULL */
  LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
  void *adata)       /* pointer to possibly additional data, passed uninterpreted to func.
                      * Set to NULL if not needed
                      */
{
  struct LMLEC_DATA data;
  LM_REAL *ptr, *Z, *pp, *p0, *Zimm; /* Z is mxmm */
  int mm, ret;
  register int i, j;
  register LM_REAL tmp;
  LM_REAL locinfo[LM_INFO_SZ];

  mm=m-k;

  ptr=(LM_REAL *)malloc((2*m + m*mm + mm)*sizeof(LM_REAL));
  if(!ptr){
    fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): memory allocation request failed\n"));
    exit(1);
  }
  data.p=p;
  p0=ptr;
  data.c=p0+m;
  data.Z=Z=data.c+m;
  data.jac=NULL;
  pp=data.Z+m*mm;
  data.ncnstr=k;
  data.func=func;
  data.jacf=NULL;
  data.adata=adata;

  LMLEC_ELIM(A, b, data.c, NULL, Z, k, m); // compute c, Z

  /* compute pp s.t. p = c + Z*pp or (Z^T Z)*pp=Z^T*(p-c)
   * Due to orthogonality, Z^T Z = I and the last equation
   * becomes pp=Z^T*(p-c). Also, save the starting p in p0
   */
  for(i=0; i<m; ++i){
    p0[i]=p[i];
    p[i]-=data.c[i];
  }

  /* Z^T*(p-c) */
  for(i=0; i<mm; ++i){
    for(j=0, tmp=0.0; j<m; ++j)
      tmp+=Z[j*mm+i]*p[j];
    pp[i]=tmp;
  }

  /* compute the p corresponding to pp (i.e. c + Z*pp) and compare with p0 */
  for(i=0; i<m; ++i){
    Zimm=Z+i*mm;
    for(j=0, tmp=data.c[i]; j<mm; ++j)
      tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j];
    if(FABS(tmp-p0[i])>CNST(1E-03))
      fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_LEC_DIF) "()! [%.10g reset to %.10g]\n",
                      i, p0[i], tmp);
  }

  if(!info) info=locinfo; /* make sure that LEVMAR_DIF() is called with non-null info */
  /* note that covariance computation is not requested from LEVMAR_DIF() */
  ret=LEVMAR_DIF(LMLEC_FUNC, pp, x, mm, n, itmax, opts, info, work, NULL, (void *)&data);

  /* p=c + Z*pp */
  for(i=0; i<m; ++i){
    Zimm=Z+i*mm;
    for(j=0, tmp=data.c[i]; j<mm; ++j)
      tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j];
    p[i]=tmp;
  }

  /* compute the jacobian with finite differences and use it to estimate the covariance */
  if(covar){
    LM_REAL *hx, *wrk, *jac;

    hx=(LM_REAL *)malloc((2*n+n*m)*sizeof(LM_REAL));
    if(!work){
      fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): memory allocation request failed\n"));
      exit(1);
    }

    wrk=hx+n;
    jac=wrk+n;

    (*func)(p, hx, m, n, adata); /* evaluate function at p */
    FDIF_FORW_JAC_APPROX(func, p, hx, wrk, (LM_REAL)LM_DIFF_DELTA, jac, m, n, adata); /* compute the jacobian at p */
    TRANS_MAT_MAT_MULT(jac, covar, n, m, __BLOCKSZ__); /* covar = J^T J */
    LEVMAR_COVAR(covar, covar, info[1], m, n);
    free(hx);
  }

  free(ptr);

  return ret;
}