/** Calculate double dot product of two tensors */ double TensorArray_DoubleContraction(TensorArray tensorA,TensorArray tensorB, Dimension_Index dim){ double contraction; Dimension_Index i, j; /** \[\sigma:\epsilon=\sum_{i=1}^{n}\sum_{i=1}^{n}\sigma_{ij}\epsilon_{ij}\] */ /* Check dimension */ if ( (dim != 2)&&(dim != 3) ) { Stream* error = Journal_Register( ErrorStream_Type, (Name)"TensorMultMath" ); Journal_Printf( error, "Cannot get tensor value for dimension %d in %s.\n", dim, __func__); Journal_Firewall( dim, error, "In func '%s' don't understand dim = %u\n", __func__, dim ); } /* Calculate contraction */ contraction = 0.0; for ( i = 0; i < dim; i++) { for (j = 0; j < dim; j++) { contraction = contraction + tensorA[ TensorArray_TensorMap(i, j, dim) ] * tensorB[ TensorArray_TensorMap(i, j, dim) ]; } } return contraction; }
/** Create Identity Tensor */ void TensorArray_Identity(Dimension_Index dim, TensorArray tensorArray){ Dimension_Index index; /* Check dimension */ if ( (dim != 2)&&(dim != 3) ) { Stream* error = Journal_Register( ErrorStream_Type, (Name)"TensorMultMath" ); Journal_Printf( error, "Cannot get tensor value for dimension %d in %s.\n", dim, __func__); Journal_Firewall( dim, error, "In func '%s' don't understand dim = %u\n", __func__, dim ); } /* Calculate indentity matrix */ for (index = 0; index < (dim * dim); index++){ tensorArray[index] = 0.0; } for (index = 0; index < dim; index++ ){ tensorArray[TensorArray_TensorMap(index, index, dim)] = 1.0; } return; }
/** This function will call the blas-lapack library and calculate the eigenvalues and eigenvectors For a given tensorArray and return the answers in a ComplexEigenvector structure.*/ void TensorArray_CalcAllEigenFunctions(TensorArray tensor, Dimension_Index dim, Bool eigenFlag, ComplexEigenvector* eigenvectorList) { /**This function will call the blas-lapack library and calculate the eigenvalues and eigenvectors */ /* Define functions needed to pass to blaslapack library function */ char jobVecLeft='V'; char jobVecRight='N'; double* arrayA; int leadDimVL, leadDimVR, dimWorkSpace, INFO; double errorValue; double* workSpace; double* outputReal; double* outputImag; double* leftEigenVec; double* rightEigenVec; int row_I, col_I; //char* errorStringValues; Stream* errorStream = Journal_Register( ErrorStream_Type, "FullTensorMath" ); /* Set size of workspace to pass to function */ dimWorkSpace = 10*dim; /* define array size */ arrayA = Memory_Alloc_Array( double, dim * dim, "ArrayA" ); /* define output eigenvalue matrices */ outputReal = Memory_Alloc_Array( double, dim, "OutputReal" ); outputImag = Memory_Alloc_Array( double, dim, "OutputImag" ); for (row_I = 0; row_I < dim; row_I++) { outputReal[row_I] = 0; outputImag[row_I] = 0; } /* Define workspace */ workSpace = Memory_Alloc_Array( double, dimWorkSpace, "DimWorkSpace" ); /* Transpose array so that it is in Fortran-style indexing */ for( row_I = 0 ; row_I < dim ; row_I++ ) { for( col_I = 0 ; col_I < dim ; col_I++ ) { arrayA[ ( row_I * dim ) + col_I ] = tensor[TensorArray_TensorMap(row_I, col_I, dim)]; } } /* Turn off eigenvector calculations if eigenvector flag is not set */ if (eigenFlag == False) { jobVecLeft = 'N'; } /* Set sizes for eigenvectors */ if (jobVecLeft=='V') { /* times size by 2 to account for complex eigenvectors */ leadDimVL = 2*dim; } else { leadDimVL = 1; } /* Set sizes for alternate eigenvectors This is currently always turned off since calculating right eigenvectors as well is redundant */ if (jobVecRight=='V') { /* times 2 to account for complex eigenvectors */ leadDimVR = 2*dim; } else { leadDimVR = 1; } /* set size of eigenvector arrays */ leftEigenVec = Memory_Alloc_Array( double, leadDimVL * dim, "LeftEigenVec" ); rightEigenVec = Memory_Alloc_Array( double, leadDimVR * dim, "RightEigenVec" ); for (row_I = 0; row_I < leadDimVL * dim; row_I++) { leftEigenVec[row_I] = 0; } for (row_I = 0; row_I < leadDimVR * dim; row_I++) { rightEigenVec[row_I] = 0; } /* Definitions of lapack call inputs (from dgeev man page): JOBVL (input) CHARACTER*1 = 'N': left eigenvectors of A are not computed; = 'V': left eigenvectors of A are computed. JOBVR (input) CHARACTER*1 = 'N': right eigenvectors of A are not computed; = 'V': right eigenvectors of A are computed N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). WR (output) DOUBLE PRECISION array, dimension (N) WI (output) DOUBLE PRECISION array, dimension (N) WR and WI contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part first. VL (output) DOUBLE PRECISION array, dimension (LDVL,N) If JOBVL = 'V', the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = 'N', VL is not referenced. If the j-th eigenvalue is real, then u(j) = VL(:,j), the j-th column of VL. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and u(j+1) = VL(:,j) - i*VL(:,j+1). LDVL (input) INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = 'V', LDVL >= N. VR (output) DOUBLE PRECISION array, dimension (LDVR,N) If JOBVR = 'V', the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = 'N', VR is not referenced. If the j-th eigenvalue is real, then v(j) = VR(:,j), the j-th column of VR. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and v(j+1) = VR(:,j) - i*VR(:,j+1). LDVR (input) INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = 'V', LDVR >= N. WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,3*N), and if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good performance, LWORK must generally be larger. If LWORK = -1, a workspace query is assumed. The optimal size for the WORK array is calculated and stored in WORK(1), and no other work except argument checking is performed. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements i+1:N of WR and WI contain eigenvalues which have converged. */ /** Passes into blaslapack function dgeev: From Man page: 1. JOBVL 2. JOBVR 3. N 4. A 5. LDA 6. WR 7. WI 8. VL 9. LDVL 10. VR 11. LDVR 12. WORK 13. LWORK 14. INFO In this code: 1. &jobVecLeft 2. &jobVecRight 3. &dimOrderN 4. arrayA 5. &dim 6. outputReal 7. outputImag 8. leftEigenVec 9. &dimOrderN 10. rightEigenVec 11. &dimOrderN 12. workSpace 13. &dimWorkSpace 14. &INFO */ /** Calls blas-lapack function, dgeev through stg_lapack header file substitution to take account of different Fortran compilers */ stg_dgeev( &jobVecLeft, &jobVecRight, &dim, arrayA, &dim, outputReal, outputImag, leftEigenVec, &leadDimVL, rightEigenVec, &leadDimVR, workSpace, &dimWorkSpace, &INFO ); /* Check flag for succesful calculation */ if (INFO < 0) { Journal_Printf( errorStream, "Error in %s, Blas-Lapack failed at %f-th argument for tensor:", __func__, fabs(INFO)); Journal_PrintTensorArray( errorStream, tensor, dim ); Journal_Firewall(INFO , errorStream, "Error.\n" ); } else if (INFO > 0) { Journal_Printf( errorStream, "Error in %s, Blas-Lapack function failed for tensor:", __func__ ); Journal_PrintTensorArray( errorStream, tensor, dim ); Journal_Firewall(INFO, errorStream, "Error.\n" ); } /*Pass values back */ errorValue = STG_TENSOR_ERROR; /* Assign eigenvalues */ for (col_I=0; col_I < dim; col_I++) { eigenvectorList[col_I].eigenvalue[REAL_PART] = outputReal[col_I]; eigenvectorList[col_I].eigenvalue[IMAG_PART] = outputImag[col_I]; if (fabs(eigenvectorList[col_I].eigenvalue[REAL_PART]) < errorValue) { eigenvectorList[col_I].eigenvalue[REAL_PART] = 0; } if (fabs(eigenvectorList[col_I].eigenvalue[IMAG_PART]) < errorValue) { eigenvectorList[col_I].eigenvalue[IMAG_PART] = 0; } } /* If eigenvectors have been calculated */ if (eigenFlag == True ) { int index_K; int numSign; /* Assign eigenvectors - see format for VL in comments for lapack pass above*/ for (col_I=0; col_I < dim; col_I++) { if (outputImag[col_I] == 0.0) { for (row_I = 0; row_I < dim; row_I++) { eigenvectorList[col_I].vector[row_I][REAL_PART] = leftEigenVec[col_I * leadDimVL + row_I]; eigenvectorList[col_I].vector[row_I][IMAG_PART] = 0; } } else { for (index_K = col_I; index_K <= col_I + 1; index_K++) { /* set sign of complex vector components */ if (index_K == col_I) { numSign = -1; } else { numSign = 1; } for (row_I = 0; row_I < dim; row_I++) { /* u(col, row) = v(row, col) \+- i * v(row, col + 1) */ eigenvectorList[index_K].vector[row_I][REAL_PART] = leftEigenVec[col_I * leadDimVL + row_I]; eigenvectorList[index_K].vector[row_I][IMAG_PART] = numSign * leftEigenVec[(col_I + 1) * leadDimVL + row_I]; } } col_I++; } } } /* Round up values that are less than the error bar */ for (row_I = 0; row_I < dim; row_I++) { for (col_I = 0; col_I <dim; col_I++) { if (fabs(eigenvectorList[row_I].vector[col_I][REAL_PART]) < errorValue) { eigenvectorList[row_I].vector[col_I][REAL_PART] = 0.0; } if (fabs(eigenvectorList[row_I].vector[col_I][IMAG_PART]) < errorValue) { eigenvectorList[row_I].vector[col_I][IMAG_PART] = 0.0; } } } /* Free memory and exit function */ Memory_Free( arrayA ); Memory_Free( outputReal ); Memory_Free( outputImag ); Memory_Free( leftEigenVec ); Memory_Free( rightEigenVec ); Memory_Free( workSpace ); }