Esempio n. 1
0
void reduce_4 (T const& in, image_data_8 & out, octree<rgb> trees[], unsigned limits[], unsigned levels, std::vector<unsigned> & alpha)
{
    unsigned width = in.width();
    unsigned height = in.height();

    //unsigned alphaCount[alpha.size()];
    std::vector<unsigned> alphaCount(alpha.size());
    for(unsigned i=0; i<alpha.size(); i++)
    {
        alpha[i] = 0;
        alphaCount[i] = 0;
    }

    for (unsigned y = 0; y < height; ++y)
    {
        mapnik::image_data_32::pixel_type const * row = in.getRow(y);
        mapnik::image_data_8::pixel_type  * row_out = out.getRow(y);

        for (unsigned x = 0; x < width; ++x)
        {
            unsigned val = row[x];
            mapnik::rgb c(U2RED(val), U2GREEN(val), U2BLUE(val));
            byte index = 0;
            int idx=-1;
            for(int j=levels-1; j>0; j--){
                if (U2ALPHA(val)>=limits[j] && trees[j].colors()>0) {
                    index = idx = trees[j].quantize(c);
                    break;
                }
            }
            if (idx>=0 && idx<(int)alpha.size())
            {
                alpha[idx]+=U2ALPHA(val);
                alphaCount[idx]++;
            }
            if (x%2 == 0) index = index<<4;
            row_out[x>>1] |= index;
        }
    }
    for(unsigned i=0; i<alpha.size(); i++)
    {
        if (alphaCount[i]!=0)
            alpha[i] /= alphaCount[i];
    }
}
Esempio n. 2
0
void save_as_png8_hex(T1 & file, T2 const& image, int colors = 256,
                      int compression = Z_DEFAULT_COMPRESSION, int strategy = Z_DEFAULT_STRATEGY,
                      int trans_mode = -1, double gamma = 2.0)
{
    unsigned width = image.width();
    unsigned height = image.height();

    // structure for color quantization
    hextree<mapnik::rgba> tree(colors);
    if (trans_mode >= 0)
        tree.setTransMode(trans_mode);
    if (gamma > 0)
        tree.setGamma(gamma);

    for (unsigned y = 0; y < height; ++y)
    {
        typename T2::pixel_type const * row = image.getRow(y);
        for (unsigned x = 0; x < width; ++x)
        {
            unsigned val = row[x];
            tree.insert(mapnik::rgba(U2RED(val), U2GREEN(val), U2BLUE(val), U2ALPHA(val)));
        }
    }

    //transparency values per palette index
    std::vector<mapnik::rgba> pal;
    tree.create_palette(pal);
    assert(int(pal.size()) <= colors);

    std::vector<mapnik::rgb> palette;
    std::vector<unsigned> alphaTable;
    for(unsigned i=0; i<pal.size(); i++)
    {
        palette.push_back(rgb(pal[i].r, pal[i].g, pal[i].b));
        alphaTable.push_back(pal[i].a);
    }

    save_as_png8<T1, T2, hextree<mapnik::rgba> >(file, image, tree, palette, alphaTable, compression, strategy);
}
Esempio n. 3
0
void save_as_png8_oct(T1 & file,
                      T2 const& image,
                      png_options const& opts)
{
    // number of alpha ranges in png8 format; 2 results in smallest image with binary transparency
    // 3 is minimum for semitransparency, 4 is recommended, anything else is worse
    const unsigned TRANSPARENCY_LEVELS = (opts.trans_mode==2||opts.trans_mode<0)?MAX_OCTREE_LEVELS:2;
    unsigned width = image.width();
    unsigned height = image.height();
    unsigned alphaHist[256];//transparency histogram
    unsigned semiCount = 0;//sum of semitransparent pixels
    unsigned meanAlpha = 0;

    if (opts.trans_mode == 0)
    {
        meanAlpha = 255;
    }
    else
    {
        for(int i=0; i<256; i++)
        {
            alphaHist[i] = 0;
        }
        for (unsigned y = 0; y < height; ++y)
        {
            for (unsigned x = 0; x < width; ++x)
            {
                unsigned val = U2ALPHA(static_cast<unsigned>(image.get_row(y)[x]));
                alphaHist[val]++;
                meanAlpha += val;
                if (val>0 && val<255)
                {
                    semiCount++;
                }
            }
        }
        meanAlpha /= width*height;
    }

    // transparency ranges division points
    unsigned limits[MAX_OCTREE_LEVELS+1];
    limits[0] = 0;
    limits[1] = (opts.trans_mode!=0 && alphaHist[0]>0)?1:0;
    limits[TRANSPARENCY_LEVELS] = 256;
    for(unsigned j=2; j<TRANSPARENCY_LEVELS; j++)
    {
        limits[j] = limits[1];
    }
    if (opts.trans_mode != 0)
    {
        unsigned alphaHistSum = 0;
        for(unsigned i=1; i<256; i++)
        {
            alphaHistSum += alphaHist[i];
            for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
            {
                if (alphaHistSum<semiCount*(j)/4)
                {
                    limits[j] = i;
                }
            }
        }
    }
    // avoid too wide full transparent range
    if (limits[1]>256/(TRANSPARENCY_LEVELS-1))
    {
        limits[1]=256/(TRANSPARENCY_LEVELS-1);
    }
    // avoid too wide full opaque range
    if (limits[TRANSPARENCY_LEVELS-1]<212)
    {
        limits[TRANSPARENCY_LEVELS-1]=212;
    }
    if (TRANSPARENCY_LEVELS==2)
    {
        limits[1]=127;
    }
    // estimated number of colors from palette assigned to chosen ranges
    unsigned cols[MAX_OCTREE_LEVELS];
    // count colors
    if (opts.trans_mode == 0)
    {
        for (unsigned j=0; j<TRANSPARENCY_LEVELS; j++)
        {
            cols[j] = 0;
        }
        cols[TRANSPARENCY_LEVELS-1] = width * height;
    }
    else
    {
        for (unsigned j=0; j<TRANSPARENCY_LEVELS; j++)
        {
            cols[j] = 0;
            for (unsigned i=limits[j]; i<limits[j+1]; i++)
            {
                cols[j] += alphaHist[i];
            }
        }
    }

    unsigned divCoef = width*height-cols[0];
    if (divCoef==0)
    {
        divCoef = 1;
    }
    cols[0] = cols[0]>0?1:0; // fully transparent color (one or not at all)

    if (opts.colors>=64)
    {
        // give chance less populated but not empty cols to have at least few colors(12)
        unsigned minCols = (12+1)*divCoef/(opts.colors-cols[0]);
        for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
        {
            if (cols[j]>12 && cols[j]<minCols)
            {
                divCoef += minCols-cols[j];
                cols[j] = minCols;
            }
        }
    }
    unsigned usedColors = cols[0];
    for(unsigned j=1; j<TRANSPARENCY_LEVELS-1; j++)
    {
        cols[j] = cols[j]*(opts.colors-cols[0])/divCoef;
        usedColors += cols[j];
    }
    // use rest for most opaque group of pixels
    cols[TRANSPARENCY_LEVELS-1] = opts.colors-usedColors;

    //no transparency
    if (opts.trans_mode == 0)
    {
        limits[1] = 0;
        cols[0] = 0;
        cols[1] = opts.colors;
    }

    // octree table for separate alpha range with 1-based index (0 is fully transparent: no color)
    octree<rgb> trees[MAX_OCTREE_LEVELS];
    for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
    {
        trees[j].setMaxColors(cols[j]);
    }
    for (unsigned y = 0; y < height; ++y)
    {
        typename T2::pixel_type const * row = image.get_row(y);
        for (unsigned x = 0; x < width; ++x)
        {
            unsigned val = row[x];
            // insert to proper tree based on alpha range
            for(unsigned j=TRANSPARENCY_LEVELS-1; j>0; j--)
            {
                if (cols[j]>0 && U2ALPHA(val)>=limits[j])
                {
                    trees[j].insert(mapnik::rgb(U2RED(val), U2GREEN(val), U2BLUE(val)));
                    break;
                }
            }
        }
    }
    unsigned leftovers = 0;
    std::vector<rgb> palette;
    palette.reserve(opts.colors);
    if (cols[0])
    {
        palette.push_back(rgb(0,0,0));
    }

    for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
    {
        if (cols[j]>0)
        {
            if (leftovers>0)
            {
                cols[j] += leftovers;
                trees[j].setMaxColors(cols[j]);
                leftovers = 0;
            }
            std::vector<rgb> pal;
            trees[j].setOffset( static_cast<unsigned>(palette.size()));
            trees[j].create_palette(pal);
            leftovers = cols[j] - static_cast<unsigned>(pal.size());
            cols[j] = static_cast<unsigned>(pal.size());
            palette.insert(palette.end(), pal.begin(), pal.end());
        }
    }

    //transparency values per palette index
    std::vector<unsigned> alphaTable;
    //alphaTable.resize(palette.size());//allow semitransparency also in almost opaque range
    if (opts.trans_mode != 0)
    {
        alphaTable.resize(palette.size() - cols[TRANSPARENCY_LEVELS-1]);
    }

    if (palette.size() > 16 )
    {
        // >16 && <=256 colors -> write 8-bit color depth
        image_gray8 reduced_image(width,height);
        reduce_8(image, reduced_image, trees, limits, TRANSPARENCY_LEVELS, alphaTable);
        save_as_png(file,palette,reduced_image,width,height,8,alphaTable,opts);
    }
    else if (palette.size() == 1)
    {
        // 1 color image ->  write 1-bit color depth PNG
        unsigned image_width  = ((width + 15) >> 3) & ~1U; // 1-bit image, round up to 16-bit boundary
        unsigned image_height = height;
        image_gray8 reduced_image(image_width,image_height);
        reduce_1(image,reduced_image,trees, limits, alphaTable);
        if (meanAlpha<255 && cols[0]==0)
        {
            alphaTable.resize(1);
            alphaTable[0] = meanAlpha;
        }
        save_as_png(file,palette,reduced_image,width,height,1,alphaTable,opts);
    }
Esempio n. 4
0
void save_as_png256_hex(T1 & file, T2 const& image, int colors = 256, int trans_mode = -1, double gamma = 2.0)
{
    unsigned width = image.width();
    unsigned height = image.height();

    // structure for color quantization
    hextree<mapnik::rgba> tree(colors);
    if (trans_mode >= 0)
        tree.setTransMode(trans_mode);
    if (gamma > 0)
        tree.setGamma(gamma);

    for (unsigned y = 0; y < height; ++y)
    {
        typename T2::pixel_type const * row = image.getRow(y);
        for (unsigned x = 0; x < width; ++x)
        {
            unsigned val = row[x];
            tree.insert(mapnik::rgba(U2RED(val), U2GREEN(val), U2BLUE(val), U2ALPHA(val)));
        }
    }

    //transparency values per palette index
    std::vector<mapnik::rgba> pal;
    tree.create_palette(pal);
    assert(int(pal.size()) <= colors);

    std::vector<mapnik::rgb> palette;
    std::vector<unsigned> alphaTable;
    for(unsigned i=0; i<pal.size(); i++)
    {
        palette.push_back(rgb(pal[i].r, pal[i].g, pal[i].b));
        alphaTable.push_back(pal[i].a);
    }

    if (palette.size() > 16 )
    {
        // >16 && <=256 colors -> write 8-bit color depth
        image_data_8 reduced_image(width, height);

        for (unsigned y = 0; y < height; ++y)
        {
            mapnik::image_data_32::pixel_type const * row = image.getRow(y);
            mapnik::image_data_8::pixel_type  * row_out = reduced_image.getRow(y);

            for (unsigned x = 0; x < width; ++x)
            {
                unsigned val = row[x];
                mapnik::rgba c(U2RED(val), U2GREEN(val), U2BLUE(val), U2ALPHA(val));
                row_out[x] = tree.quantize(c);
            }
        }
        save_as_png(file, palette, reduced_image, width, height, 8, alphaTable);
    }
    else if (palette.size() == 1)
    {
        // 1 color image ->  write 1-bit color depth PNG
        unsigned image_width  = (int(0.125*width) + 7)&~7;
        unsigned image_height = height;
        image_data_8 reduced_image(image_width, image_height);
        reduced_image.set(0);
        save_as_png(file, palette, reduced_image, width, height, 1, alphaTable);
    }
    else
    {
        // <=16 colors -> write 4-bit color depth PNG
        unsigned image_width  = (int(0.5*width) + 3)&~3;
        unsigned image_height = height;
        image_data_8 reduced_image(image_width, image_height);
        for (unsigned y = 0; y < height; ++y)
        {
            mapnik::image_data_32::pixel_type const * row = image.getRow(y);
            mapnik::image_data_8::pixel_type  * row_out = reduced_image.getRow(y);
            byte index = 0;

            for (unsigned x = 0; x < width; ++x)
            {
                unsigned val = row[x];
                mapnik::rgba c(U2RED(val), U2GREEN(val), U2BLUE(val), U2ALPHA(val));
                index = tree.quantize(c);
                if (x%2 == 0) index = index<<4;
                row_out[x>>1] |= index;
            }
        }
        save_as_png(file, palette, reduced_image, width, height, 4, alphaTable);
    }
}