Esempio n. 1
0
			.EndpointSize           = VENDOR_OUT_EPSIZE,
			.PollingIntervalMS      = 0x01
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(UNICODE(USB_SETTINGS_VENDOR_NAME));

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(UNICODE(USB_SETTINGS_DEVICE_NAME));

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 2
0
			.EndpointSize           = CDC_TXRX_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"LED Notifier");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 3
0
  },

  .CDC_DataInEndpoint = {
    .Header = {
      .Size = sizeof(USB_Descriptor_Endpoint_t),
      .Type = DTYPE_Endpoint
    },
    .EndpointAddress   = CDC_TX_EPADDR,
    .Attributes        = (EP_TYPE_BULK | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
    .EndpointSize      = CDC_TXRX_EPSIZE,
    .PollingIntervalMS = 0x05
  },
};

const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera");
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"LUFA Dual CDC Demo");

USB_ClassInfo_CDC_Device_t cdc = {
  .Config = {
    .ControlInterfaceNumber = INTERFACE_ID_CDC_CCI,
    .DataINEndpoint = {
      .Address = CDC_TX_EPADDR,
      .Size    = CDC_TXRX_EPSIZE,
      .Banks   = 1,
    },
    .DataOUTEndpoint = {
      .Address = CDC_RX_EPADDR,
      .Size    = CDC_TXRX_EPSIZE,
      .Banks   = 1,
    },
Esempio n. 4
0
/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM RelayBoard_LanguageString =
{
	.Header                 = {.Size = USB_STRING_LEN(1), .Type = DTYPE_String},

	.UnicodeString          = {LANGUAGE_ID_ENG}
};

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM RelayBoard_ManufacturerString = USB_STRING_DESCRIPTOR(L"SISPM");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM RelayBoard_ProductString = USB_STRING_DESCRIPTOR(L"RelayBoard");

/** Serial number string. This is a Unicode string containing the device's unique serial number, expressed as a
 *  series of uppercase hexadecimal digits.
 */
const USB_Descriptor_String_t PROGMEM RelayBoard_SerialString = USB_STRING_DESCRIPTOR(L"00001");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
			.EndpointSize           = AVRISP_DATA_EPSIZE,
			.PollingIntervalMS      = 0x0A
		},
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM AVRISP_LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM AVRISP_ManufacturerString = USB_STRING_DESCRIPTOR(L"ATMEL");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM AVRISP_ProductString = USB_STRING_DESCRIPTOR(L"AVRISP mkII");

/** Serial number string. This is a Unicode string containing the device's unique serial number, expressed as a
 *  series of uppercase hexadecimal digits.
 */
USB_Descriptor_String_t AVRISP_SerialString = USB_STRING_DESCRIPTOR(L"000200012345\0"
    // Note: Real AVRISP-MKII has the embedded NUL byte, bug in firmware?
);

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
Esempio n. 6
0
			.EndpointSize           = JOYSTICK_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Your Mother");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"LUFA Joystick");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 7
0
			.EndpointSize           = CDC_TXRX_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Klaus Gusenleitner");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"LUFA USB-Homebus Adapter 1.00");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 8
0
			.EndpointSize           = CDC_TXRX_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Simon Foster");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"USB-HD44780 Adapter");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 9
0
			.EndpointSize           = KEYBOARD_EPSIZE,
			.PollingIntervalMS      = 0x05
		},
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"LUFA Mass Storage and Keyboard Demo");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 10
0
			.EndpointSize           = CDC_TX_EPSIZE,
			.PollingIntervalMS      = 0x01
		}
};

/** Language descriptor structure. This descriptor, located in SRAM memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t DESCRIPTOR_PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t DESCRIPTOR_PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"NicoHood");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t DESCRIPTOR_PROGMEM ProductString = USB_STRING_DESCRIPTOR(USB_DESCRIPTOR_STRING);

/** This function is called by the library when in device mode, and must be overridden (see LUFA library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 11
0
      .EndpointSize           = KEYBOARD_EPSIZE,
      .PollingIntervalMS      = 0x05
    },
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Patrick Tsai");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"GH60 Acrylic");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 12
0
			.DFUSpecification       = VERSION_BCD(1,1,0)
		}
};

/** Language descriptor structure. This descriptor, located in SRAM memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t ProductString = USB_STRING_DESCRIPTOR(L"LUFA DFU");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint16_t wIndex,
Esempio n. 13
0
			.EndpointSize           = CDC_TXRX_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"QuinnDunki");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"AppleIIROMTool");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
			.EndpointSize           = CDC_TXRX_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM USART_LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM USART_ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM USART_ProductString = USB_STRING_DESCRIPTOR(L"LUFA XPLAIN Bridge");

/** Descriptor retrieval function for the USART Bridge descriptors. This function is in turn called by the GetDescriptor
 *  callback function in the main source file, to retrieve the device's descriptors when in USART bridge mode.
 */
uint16_t USART_GetDescriptor(const uint16_t wValue,
                             const uint16_t wIndex,
                             const void** const DescriptorAddress,
                             uint8_t* const DescriptorMemorySpace)
{
Esempio n. 15
0
			.EndpointSize           = CDC_TXRX_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in SRAM memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t ManufacturerString = USB_STRING_DESCRIPTOR(L"Joerg Prim");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t ProductString = USB_STRING_DESCRIPTOR(L"Avilight BL");

/** This function is called by the library when in device mode, and must be overridden (see LUFA library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 16
0
            .PollingIntervalMS      = 0x05
        }
#endif
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Eric Tang");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"Keystrokes");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint16_t wIndex,
Esempio n. 17
0
			.EndpointSize           = PRINTER_IO_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in SRAM memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t ProductString = USB_STRING_DESCRIPTOR(L"LUFA Printer Bootloader");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint16_t wIndex,
Esempio n. 18
0
			.TotalEmbeddedJacks       = 0x01,
			.AssociatedJackID         = {0x03}
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t ManufacturerString = USB_STRING_DESCRIPTOR(L"nootropic design");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t ProductString = USB_STRING_DESCRIPTOR(L"SynthinoXM");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 19
0
			.EndpointSize           = CDC_TXRX_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"Benito Arduino Programmer");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint16_t wIndex,
Esempio n. 20
0
        .TotalEmbeddedJacks       = 0x01,
        .AssociatedJackID         = {0x03}
    }
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Shantea Controls");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"OpenDeck");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint16_t wIndex,
Esempio n. 21
0
			.EndpointSize           = MEDIACONTROL_HID_EPSIZE,
			.PollingIntervalMS      = 0x05
		},
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"LUFA Media Controller");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 22
0
			.EndpointSize           = HAP_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"chrdev");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"HAP");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint16_t wIndex,
Esempio n. 23
0
			.EndpointSize           = CDC_TXRX_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"LUFA USB-RS232 Adapter");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
			.EndpointSize           = CDC_TXRX_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Arduino (www.arduino.cc)");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
#if (ARDUINO_MODEL_PID == ARDUINO_UNO_PID)
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"Arduino UNO");
#elif (ARDUINO_MODEL_PID == ARDUINO_MEGA2560_PID)
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"Arduino Mega 2560");
#elif (ARDUINO_MODEL_PID == ARDUINO_USBSERIAL_PID)
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"Arduino USB-Serial");
#elif (ARDUINO_MODEL_PID == ARDUINO_MEGAADK_PID)
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"Arduino Mega ADK");
#elif (ARDUINO_MODEL_PID == ARDUINO_MEGA2560R3_PID)
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"Arduino Mega 2560 R3");
Esempio n. 25
0
			.EndpointSize           = TMC_NOTIFICATION_EPSIZE,
			.PollingIntervalMS      = 0xFF
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"LUFA Library");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"LUFA TMC Demo");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint16_t wIndex,
Esempio n. 26
0
			.EndpointSize           = KEYBOARD_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Untaugh");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"KeyBoard");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 27
0
            .EndpointSize           = MASS_STORAGE_IO_EPSIZE,
            .PollingIntervalMS      = 0x05
        }
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Matt Keeter");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"Bumpy");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 28
0
			.EndpointSize           = KEYBOARD_EPSIZE,
			.PollingIntervalMS      = 0x05
		}
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"flabbergast");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"serial/keyboard AVR stick dev demo");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,
Esempio n. 29
0
			.Attributes             = (EP_TYPE_INTERRUPT | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
			.EndpointSize           = KEYBOARD_EPSIZE,
			.PollingIntervalMS      = 0x05
		},
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors. */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera and Denver Gingerich");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"Magnetic Card Reader");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint16_t wIndex,
Esempio n. 30
0
			.EndpointSize           = GENERIC_EPSIZE,
			.PollingIntervalMS      = 0x05
		},
};

/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
 *  the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
 *  via the language ID table available at USB.org what languages the device supports for its string descriptors.
 */
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);

/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
 *  form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera");

/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
 *  and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
 *  Descriptor.
 */
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"Temperature Datalogger");

/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
 *  documentation) by the application code so that the address and size of a requested descriptor can be given
 *  to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
 *  is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
 *  USB host.
 */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
                                    const uint8_t wIndex,