static void set_reference_direction(void){ struct NedCoor_d ref_dir_ned; struct EcefCoor_d pos_0_ecef_pprz, ref_dir_ecef; EARTHS_GEOMAGNETIC_FIELD_NORMED(ref_dir_ned); struct LtpDef_d current_ltp; VECTOR_AS_VECT3(pos_0_ecef_pprz, pos_0_ecef); ltp_def_from_ecef_d(¤t_ltp, &pos_0_ecef_pprz); ecef_of_ned_vect_d(&ref_dir_ecef, ¤t_ltp, &ref_dir_ned); // THIS SOMEWHERE ELSE! DoubleQuat initial_orientation; FLOAT_QUAT_ZERO(initial_orientation); ENU_NED_transformation(current_ltp.ltp_of_ecef); DOUBLE_QUAT_OF_RMAT(initial_orientation, current_ltp.ltp_of_ecef); ins.avg_state.orientation = DOUBLEQUAT_AS_QUATERNIOND(initial_orientation); // THIS SOMEWHERE ELSE! (END) // old transformation: //struct DoubleRMat ned2ecef; //NED_TO_ECEF_MAT(pos_0_lla, ned2ecef.m); //RMAT_VECT3_MUL(ref_dir_ecef, ned2ecef, ref_dir_ned); reference_direction = VECT3_AS_VECTOR3D(ref_dir_ecef).normalized(); //reference_direction = Vector3d(1, 0, 0); std::cout <<"reference direction NED : " << VECT3_AS_VECTOR3D(ref_dir_ned).transpose() << std::endl; std::cout <<"reference direction ECEF: " << reference_direction.transpose() << std::endl; }
static void main_run_ins(uint8_t data_valid) { struct timespec now; clock_gettime(TIMER, &now); double dt_imu_freq = 0.001953125; // 1/512; // doesn't work? ins.predict(RATES_AS_VECTOR3D(imu_float.gyro), VECT3_AS_VECTOR3D(imu_float.accel), dt_imu_freq); if(MAG_READY(data_valid)){ ins.obs_vector(reference_direction, VECT3_AS_VECTOR3D(imu_float.mag), mag_noise); } #if UPDATE_WITH_GRAVITY if(CLOSE_TO_GRAVITY(imu_float.accel)){ // use the gravity as reference ins.obs_vector(ins.avg_state.position.normalized(), VECT3_AS_VECTOR3D(imu_float.accel), 1.0392e-3); } #endif if(GPS_READY(data_valid)){ ins.obs_gps_pv_report(VECT3_AS_VECTOR3D(imu_ecef_pos)/100, VECT3_AS_VECTOR3D(imu_ecef_vel)/100, gps_pos_noise, gps_speed_noise); } print_estimator_state(absTime(time_diff(now, start))); }
static void set_reference_direction(void){ struct NedCoor_d ref_dir_ned; struct EcefCoor_d pos_0_ecef_pprz, ref_dir_ecef; EARTHS_GEOMAGNETIC_FIELD_NORMED(ref_dir_ned); VECTOR_AS_VECT3(pos_0_ecef_pprz, pos_0_ecef); ltp_def_from_ecef_d(¤t_ltp, &pos_0_ecef_pprz); ecef_of_ned_vect_d(&ref_dir_ecef, ¤t_ltp, &ref_dir_ned); reference_direction = VECT3_AS_VECTOR3D(ref_dir_ecef).normalized(); }
static void main_run_ins(uint8_t data_valid) { double dt_imu_freq = 0.001953125; // 1/512; // doesn't work? ins.predict(RATES_AS_VECTOR3D(imu_float.gyro), VECT3_AS_VECTOR3D(imu_float.accel), dt_imu_freq); if(MAG_READY(data_valid)){ ins.obs_vector(reference_direction, VECT3_AS_VECTOR3D(imu_float.mag), magnetometer_noise.norm()); } #if UPDATE_WITH_GRAVITY if(CLOSE_TO_GRAVITY(imu_float.accel)){ // use the gravity as reference ins.obs_vector(ins.avg_state.position.normalized(), VECT3_AS_VECTOR3D(imu_float.accel), accelerometer_noise.norm()); } #endif /* UPDATE_WITH_GRAVITY */ if(BARO_READY(data_valid)){ ins.obs_baro_report(baro_0_height+imu_baro_height, baro_noise); } // comment out multiple lines */ if(GPS_READY(data_valid)){ ins.obs_gps_pv_report(VECT3_AS_VECTOR3D(imu_ecef_pos)/100, VECT3_AS_VECTOR3D(imu_ecef_vel)/100, 10*gps_pos_noise, 10*gps_speed_noise); } // comment out multiple lines */ }
static struct raw_log_entry first_entry_after_initialisation(int file_descriptor){ int imu_measurements = 0, // => Gyro + Accel magnetometer_measurements = 0, baro_measurements = 0, gps_measurements = 0; // only the position struct DoubleMat33 attitude_profile_matrix, sigmaB; // the attitude profile matrix is often called "B" struct Orientation_Measurement gravity, magneto, fake; struct DoubleQuat q_ned2body, sigma_q; /* Prepare the attitude profile matrix */ FLOAT_MAT33_ZERO(attitude_profile_matrix); FLOAT_MAT33_ZERO(sigmaB); // for faster converging, but probably more rounding error #define MEASUREMENT_WEIGHT_SCALE 10 /* set the gravity measurement */ VECT3_ASSIGN(gravity.reference_direction, 0,0,-1); gravity.weight_of_the_measurement = MEASUREMENT_WEIGHT_SCALE/(double)(imu_frequency); // originally 1/(imu_frequency*gravity.norm() //gravity.weight_of_the_measurement = 1; /* set the magneto - measurement */ EARTHS_GEOMAGNETIC_FIELD_NORMED(magneto.reference_direction); magneto.weight_of_the_measurement = MEASUREMENT_WEIGHT_SCALE/(double)(mag_frequency); // originally 1/(mag_frequency*reference_direction.norm() //magneto.weight_of_the_measurement = 1; uint8_t read_ok; #if WITH_GPS struct raw_log_entry e = next_GPS(file_descriptor); #else /* WITH_GPS */ struct raw_log_entry e = read_raw_log_entry(file_descriptor, &read_ok); pos_0_ecef = Vector3d(4627578.56, 119659.25, 4373248.00); pos_cov_0 = Vector3d::Ones()*100; speed_0_ecef = Vector3d::Zero(); speed_cov_0 = Vector3d::Ones(); #endif /* WITH_GPS */ #ifdef EKNAV_FROM_LOG_DEBUG int imu_ready = 0, mag_ready = 0, baro_ready = 0, gps_ready = 0; #endif /* EKNAV_FROM_LOG_DEBUG */ for(read_ok = 1; (read_ok) && NOT_ENOUGH_MEASUREMENTS(imu_measurements, magnetometer_measurements, baro_measurements, gps_measurements); e = read_raw_log_entry(file_descriptor, &read_ok)){ if(IMU_READY(e.message.valid_sensors)){ imu_measurements++; // update the estimated bias bias_0 = NEW_MEAN(bias_0, RATES_BFP_AS_VECTOR3D(e.message.gyro), imu_measurements); // update the attitude profile matrix ACCELS_FLOAT_OF_BFP(gravity.measured_direction,e.message.accel); add_orientation_measurement(&attitude_profile_matrix, gravity); } if(MAG_READY(e.message.valid_sensors)){ magnetometer_measurements++; // update the attitude profile matrix MAGS_FLOAT_OF_BFP(magneto.measured_direction,e.message.mag); add_orientation_measurement(&attitude_profile_matrix, magneto); // now, generate fake measurement with the last gravity measurement fake = fake_orientation_measurement(gravity, magneto); add_orientation_measurement(&attitude_profile_matrix, fake); } if(BARO_READY(e.message.valid_sensors)){ baro_measurements++; // TODO: Fix it! //NEW_MEAN(baro_0_height, BARO_FLOAT_OF_BFP(e.message.pressure_absolute), baro_measurements); baro_0_height = (baro_0_height*(baro_measurements-1)+BARO_FLOAT_OF_BFP(e.message.pressure_absolute))/baro_measurements; } if(GPS_READY(e.message.valid_sensors)){ gps_measurements++; // update the estimated bias pos_0_ecef = NEW_MEAN(pos_0_ecef, VECT3_AS_VECTOR3D(e.message.ecef_pos)/100, gps_measurements); speed_0_ecef = NEW_MEAN(speed_0_ecef, VECT3_AS_VECTOR3D(e.message.ecef_vel)/100, gps_measurements); } #ifdef EKNAV_FROM_LOG_DEBUG if(imu_ready==0){ if(!NOT_ENOUGH_IMU_MEASUREMENTS(imu_measurements)){ printf("IMU READY %3i %3i %3i %3i\n", imu_measurements, magnetometer_measurements, baro_measurements, gps_measurements); imu_ready = 1; } } if(mag_ready==0){ if(!NOT_ENOUGH_MAGNETIC_FIELD_MEASUREMENTS(magnetometer_measurements)){ printf("MAG READY %3i %3i %3i %3i\n", imu_measurements, magnetometer_measurements, baro_measurements, gps_measurements); mag_ready = 1; } } if(baro_ready==0){ if(!NOT_ENOUGH_BARO_MEASUREMENTS(baro_measurements)){ printf("BARO READY %3i %3i %3i %3i\n", imu_measurements, magnetometer_measurements, baro_measurements, gps_measurements); baro_ready = 1; } } if(gps_ready==0){ if(!NOT_ENOUGH_GPS_MEASUREMENTS(gps_measurements)){ printf("GPS READY %3i %3i %3i %3i\n", imu_measurements, magnetometer_measurements, baro_measurements, gps_measurements); gps_ready = 1; } } #endif /* EKNAV_FROM_LOG_DEBUG */ } // setting the covariance gravity.weight_of_the_measurement *= imu_measurements; VECTOR_AS_VECT3(gravity.measured_direction, accelerometer_noise); magneto.weight_of_the_measurement *= magnetometer_measurements; VECTOR_AS_VECT3(magneto.measured_direction, magnetometer_noise); add_set_of_three_measurements(&sigmaB, gravity, magneto); #ifdef EKNAV_FROM_LOG_DEBUG DISPLAY_FLOAT_RMAT(" B", attitude_profile_matrix); DISPLAY_FLOAT_RMAT("sigmaB", sigmaB); #endif /* EKNAV_FROM_LOG_DEBUG */ // setting the initial orientation q_ned2body = estimated_attitude(attitude_profile_matrix, 1000, 1e-6, sigmaB, &sigma_q); orientation_0 = ecef2body_from_pprz_ned2body(pos_0_ecef,q_ned2body); baro_0_height += pos_0_ecef.norm(); struct DoubleEulers sigma_eu = sigma_euler_from_sigma_q(q_ned2body, sigma_q); orientation_cov_0 = EULER_AS_VECTOR3D(sigma_eu); #if WITH_GPS pos_cov_0 = 10*gps_pos_noise / gps_measurements; speed_cov_0 = 10*gps_speed_noise / gps_measurements; #endif // WITH_GPS return e; }