Esempio n. 1
0
static PetscErrorCode KSPSolve_PIPEFCG(KSP ksp)
{
  PetscErrorCode ierr;
  KSP_PIPEFCG    *pipefcg;
  PetscScalar    gamma;
  PetscReal      dp=0.0;
  Vec            B,R,Z,X;
  Mat            Amat,Pmat;

#define VecXDot(x,y,a)         (((pipefcg->type) == (KSP_CG_HERMITIAN)) ? VecDot       (x,y,a)   : VecTDot       (x,y,a))

  PetscFunctionBegin;
  ierr = PetscCitationsRegister(citation,&cited);CHKERRQ(ierr);

  pipefcg       = (KSP_PIPEFCG*)ksp->data;
  X             = ksp->vec_sol;
  B             = ksp->vec_rhs;
  R             = ksp->work[0];
  Z             = ksp->work[1];

  ierr = PCGetOperators(ksp->pc,&Amat,&Pmat);CHKERRQ(ierr);

  /* Compute initial residual needed for convergence check*/
  ksp->its = 0;
  if (!ksp->guess_zero) {
    ierr = KSP_MatMult(ksp,Amat,X,R);CHKERRQ(ierr);
    ierr = VecAYPX(R,-1.0,B);CHKERRQ(ierr);                 /* r <- b - Ax                             */
  } else {
    ierr = VecCopy(B,R);CHKERRQ(ierr);                      /* r <- b (x is 0)                         */
  }
  switch (ksp->normtype) {
    case KSP_NORM_PRECONDITIONED:
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);            /* z <- Br                                 */
      ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr);           /* dp <- dqrt(z'*z) = sqrt(e'*A'*B'*B*A*e) */
      break;
    case KSP_NORM_UNPRECONDITIONED:
      ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr);           /* dp <- sqrt(r'*r) = sqrt(e'*A'*A*e)      */
      break;
    case KSP_NORM_NATURAL:
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);            /* z <- Br                                 */
      ierr = VecXDot(Z,R,&gamma);CHKERRQ(ierr);
      dp = PetscSqrtReal(PetscAbsScalar(gamma));            /* dp <- sqrt(r'*z) = sqrt(e'*A'*B*A*e)    */
      break;
    case KSP_NORM_NONE:
      dp = 0.0;
      break;
    default: SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"%s",KSPNormTypes[ksp->normtype]);
  }

  /* Initial Convergence Check */
  ierr       = KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
  ierr       = KSPMonitor(ksp,0,dp);CHKERRQ(ierr);
  ksp->rnorm = dp;
  if (ksp->normtype == KSP_NORM_NONE) {
    ierr = KSPConvergedSkip (ksp,0,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
  } else {
    ierr = (*ksp->converged)(ksp,0,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
  }
  if (ksp->reason) PetscFunctionReturn(0);

  do {
    /* A cycle is broken only if a norm breakdown occurs. If not the entire solve happens in a single cycle.
       This is coded this way to allow both truncation and truncation-restart strategy
       (see KSPFCDGetNumOldDirections()) */
    ierr = KSPSolve_PIPEFCG_cycle(ksp);CHKERRQ(ierr);
    if (ksp->reason) break;
    if (pipefcg->norm_breakdown) {
      pipefcg->n_restarts++;
      pipefcg->norm_breakdown = PETSC_FALSE;
    }
  } while (ksp->its < ksp->max_it);

  if (ksp->its >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
  PetscFunctionReturn(0);
}
Esempio n. 2
0
File: cg.c Progetto: PeiLiu90/petsc
PetscErrorCode  KSPSolve_CG(KSP ksp)
{
  PetscErrorCode ierr;
  PetscInt       i,stored_max_it,eigs;
  PetscScalar    dpi = 0.0,a = 1.0,beta,betaold = 1.0,b = 0,*e = 0,*d = 0,delta,dpiold;
  PetscReal      dp  = 0.0;
  Vec            X,B,Z,R,P,S,W;
  KSP_CG         *cg;
  Mat            Amat,Pmat;
  PetscBool      diagonalscale;

  PetscFunctionBegin;
  ierr = PCGetDiagonalScale(ksp->pc,&diagonalscale);CHKERRQ(ierr);
  if (diagonalscale) SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Krylov method %s does not support diagonal scaling",((PetscObject)ksp)->type_name);

  cg            = (KSP_CG*)ksp->data;
  eigs          = ksp->calc_sings;
  stored_max_it = ksp->max_it;
  X             = ksp->vec_sol;
  B             = ksp->vec_rhs;
  R             = ksp->work[0];
  Z             = ksp->work[1];
  P             = ksp->work[2];
  if (cg->singlereduction) {
    S = ksp->work[3];
    W = ksp->work[4];
  } else {
    S = 0;                      /* unused */
    W = Z;
  }

#define VecXDot(x,y,a) (((cg->type) == (KSP_CG_HERMITIAN)) ? VecDot(x,y,a) : VecTDot(x,y,a))

  if (eigs) {e = cg->e; d = cg->d; e[0] = 0.0; }
  ierr = PCGetOperators(ksp->pc,&Amat,&Pmat);CHKERRQ(ierr);

  ksp->its = 0;
  if (!ksp->guess_zero) {
    ierr = KSP_MatMult(ksp,Amat,X,R);CHKERRQ(ierr);            /*     r <- b - Ax     */
    ierr = VecAYPX(R,-1.0,B);CHKERRQ(ierr);
  } else {
    ierr = VecCopy(B,R);CHKERRQ(ierr);                         /*     r <- b (x is 0) */
  }

  switch (ksp->normtype) {
  case KSP_NORM_PRECONDITIONED:
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
    ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr);                /*    dp <- z'*z = e'*A'*B'*B*A'*e'     */
    break;
  case KSP_NORM_UNPRECONDITIONED:
    ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr);                /*    dp <- r'*r = e'*A'*A*e            */
    break;
  case KSP_NORM_NATURAL:
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
    if (cg->singlereduction) {
      ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
      ierr = VecXDot(Z,S,&delta);CHKERRQ(ierr);
    }
    ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);                     /*  beta <- z'*r       */
    if (PetscIsInfOrNanScalar(beta)) {
      if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf inner product");
      else {
        ksp->reason = KSP_DIVERGED_NANORINF;
        PetscFunctionReturn(0);
      }
    }
    dp = PetscSqrtReal(PetscAbsScalar(beta));                           /*    dp <- r'*z = r'*B*r = e'*A'*B*A*e */
    break;
  case KSP_NORM_NONE:
    dp = 0.0;
    break;
  default: SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"%s",KSPNormTypes[ksp->normtype]);
  }
  ierr       = KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
  ierr       = KSPMonitor(ksp,0,dp);CHKERRQ(ierr);
  ksp->rnorm = dp;

  ierr = (*ksp->converged)(ksp,0,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);      /* test for convergence */
  if (ksp->reason) PetscFunctionReturn(0);

  if (ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) {
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
  }
  if (ksp->normtype != KSP_NORM_NATURAL) {
    if (cg->singlereduction) {
      ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
      ierr = VecXDot(Z,S,&delta);CHKERRQ(ierr);
    }
    ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);         /*  beta <- z'*r       */
    if (PetscIsInfOrNanScalar(beta)) {
      if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf inner product");
      else {
        ksp->reason = KSP_DIVERGED_NANORINF;
        PetscFunctionReturn(0);
      }
    }
  }

  i = 0;
  do {
    ksp->its = i+1;
    if (beta == 0.0) {
      ksp->reason = KSP_CONVERGED_ATOL;
      ierr        = PetscInfo(ksp,"converged due to beta = 0\n");CHKERRQ(ierr);
      break;
#if !defined(PETSC_USE_COMPLEX)
    } else if ((i > 0) && (beta*betaold < 0.0)) {
      ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
      ierr        = PetscInfo(ksp,"diverging due to indefinite preconditioner\n");CHKERRQ(ierr);
      break;
#endif
    }
    if (!i) {
      ierr = VecCopy(Z,P);CHKERRQ(ierr);         /*     p <- z          */
      b    = 0.0;
    } else {
      b = beta/betaold;
      if (eigs) {
        if (ksp->max_it != stored_max_it) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Can not change maxit AND calculate eigenvalues");
        e[i] = PetscSqrtReal(PetscAbsScalar(b))/a;
      }
      ierr = VecAYPX(P,b,Z);CHKERRQ(ierr);    /*     p <- z + b* p   */
    }
    dpiold = dpi;
    if (!cg->singlereduction || !i) {
      ierr = KSP_MatMult(ksp,Amat,P,W);CHKERRQ(ierr);          /*     w <- Ap         */
      ierr = VecXDot(P,W,&dpi);CHKERRQ(ierr);                  /*     dpi <- p'w     */
    } else {
      ierr = VecAYPX(W,beta/betaold,S);CHKERRQ(ierr);                  /*     w <- Ap         */
      dpi  = delta - beta*beta*dpiold/(betaold*betaold);             /*     dpi <- p'w     */
    }
    betaold = beta;
    if (PetscIsInfOrNanScalar(dpi)) {
      if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf inner product");
      else {
        ksp->reason = KSP_DIVERGED_NANORINF;
        PetscFunctionReturn(0);
      }
    }

    if ((dpi == 0.0) || ((i > 0) && (PetscRealPart(dpi*dpiold) <= 0.0))) {
      ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
      ierr        = PetscInfo(ksp,"diverging due to indefinite or negative definite matrix\n");CHKERRQ(ierr);
      break;
    }
    a = beta/dpi;                                 /*     a = beta/p'w   */
    if (eigs) d[i] = PetscSqrtReal(PetscAbsScalar(b))*e[i] + 1.0/a;
    ierr = VecAXPY(X,a,P);CHKERRQ(ierr);          /*     x <- x + ap     */
    ierr = VecAXPY(R,-a,W);CHKERRQ(ierr);                      /*     r <- r - aw    */
    if (ksp->normtype == KSP_NORM_PRECONDITIONED && ksp->chknorm < i+2) {
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*     z <- Br         */
      if (cg->singlereduction) {
        ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
      }
      ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr);              /*    dp <- z'*z       */
    } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED && ksp->chknorm < i+2) {
      ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr);              /*    dp <- r'*r       */
    } else if (ksp->normtype == KSP_NORM_NATURAL) {
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*     z <- Br         */
      if (cg->singlereduction) {
        PetscScalar tmp[2];
        Vec         vecs[2];
        vecs[0] = S; vecs[1] = R;
        ierr    = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
        ierr  = VecMDot(Z,2,vecs,tmp);CHKERRQ(ierr);
        delta = tmp[0]; beta = tmp[1];
      } else {
        ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);     /*  beta <- r'*z       */
      }
      if (PetscIsInfOrNanScalar(beta)) {
        if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf inner product");
        else {
          ksp->reason = KSP_DIVERGED_NANORINF;
          PetscFunctionReturn(0);
        }
      }
      dp = PetscSqrtReal(PetscAbsScalar(beta));
    } else {
      dp = 0.0;
    }
    ksp->rnorm = dp;
    CHKERRQ(ierr);KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
    ierr = KSPMonitor(ksp,i+1,dp);CHKERRQ(ierr);
    ierr = (*ksp->converged)(ksp,i+1,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
    if (ksp->reason) break;

    if ((ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) || (ksp->chknorm >= i+2)) {
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
      if (cg->singlereduction) {
        ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
      }
    }
    if ((ksp->normtype != KSP_NORM_NATURAL) || (ksp->chknorm >= i+2)) {
      if (cg->singlereduction) {
        PetscScalar tmp[2];
        Vec         vecs[2];
        vecs[0] = S; vecs[1] = R;
        ierr  = VecMDot(Z,2,vecs,tmp);CHKERRQ(ierr);
        delta = tmp[0]; beta = tmp[1];
      } else {
        ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);        /*  beta <- z'*r       */
      }
      if (PetscIsInfOrNanScalar(beta)) {
        if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf inner product");
        else {
          ksp->reason = KSP_DIVERGED_NANORINF;
          PetscFunctionReturn(0);
        }
      }
    }

    i++;
  } while (i<ksp->max_it);
  if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
  PetscFunctionReturn(0);
}
Esempio n. 3
0
PetscErrorCode  KSPSolve_CG(KSP ksp)
{
  PetscErrorCode ierr;
  PetscInt       i,stored_max_it,eigs;
  PetscScalar    dpi = 0.0,a = 1.0,beta,betaold = 1.0,b = 0,*e = 0,*d = 0,delta,dpiold;
  PetscReal      dp  = 0.0;
  Vec            X,B,Z,R,P,S,W;
  KSP_CG         *cg;
  Mat            Amat,Pmat;
  PetscBool      diagonalscale;
  /* Dingwen */
  PetscInt		itv_d, itv_c;
  PetscScalar	CKSX1,CKSZ1,CKSR1,CKSP1,CKSS1,CKSW1;
  PetscScalar	CKSX2,CKSZ2,CKSR2,CKSP2,CKSS2,CKSW2;
  Vec			CKSAmat1;
  Vec			CKSAmat2;
  Vec			C1,C2;
  PetscScalar	d1,d2;
  PetscScalar	sumX1,sumR1;
  PetscScalar	sumX2,sumR2;
  Vec			CKPX,CKPP;
  PetscScalar	CKPbetaold;
  PetscInt		CKPi;
  PetscBool		flag1 = PETSC_TRUE, flag2 = PETSC_TRUE;
  PetscInt		pos;
  PetscScalar	v;
  VecScatter ctx;
  Vec W_SEQ;
  PetscScalar *_W;

  /* Dingwen */
  PetscFunctionBegin;
  ierr = PCGetDiagonalScale(ksp->pc,&diagonalscale);CHKERRQ(ierr);
  if (diagonalscale) SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Krylov method %s does not support diagonal scaling",((PetscObject)ksp)->type_name);

  cg            = (KSP_CG*)ksp->data;
  eigs          = ksp->calc_sings;
  stored_max_it = ksp->max_it;
  X             = ksp->vec_sol;
  B             = ksp->vec_rhs;
  R             = ksp->work[0];
  Z             = ksp->work[1];
  P             = ksp->work[2];
  /* Dingwen */
  CKPX			= ksp->work[3];
  CKPP			= ksp->work[4];
  CKSAmat1		= ksp->work[5];
  CKSAmat2		= ksp->work[6];
  C1			= ksp->work[7];
  C2			= ksp->work[8];
  /* Dingwen */
 
 
 /* Dingwen */
 int rank;									/* Get MPI variables */
 MPI_Comm_rank	(MPI_COMM_WORLD,&rank);
 /* Dingwen */
 
  #define VecXDot(x,y,a) (((cg->type) == (KSP_CG_HERMITIAN)) ? VecDot(x,y,a) : VecTDot(x,y,a))

  
  if (cg->singlereduction) {
    S = ksp->work[9];
    W = ksp->work[10];
  } else {
    S = 0;                      /* unused */
    W = Z;
  }
    
  if (eigs) {e = cg->e; d = cg->d; e[0] = 0.0; }
  ierr = PCGetOperators(ksp->pc,&Amat,&Pmat);CHKERRQ(ierr);
  
  ksp->its = 0;
  if (!ksp->guess_zero) {
    ierr = KSP_MatMult(ksp,Amat,X,R);CHKERRQ(ierr);            /*     r <- b - Ax     */
    ierr = VecAYPX(R,-1.0,B);CHKERRQ(ierr);
  } else {
    ierr = VecCopy(B,R);CHKERRQ(ierr);                         /*     r <- b (x is 0) */
  }
  

  /* Dingwen */	
  /* checksum coefficients initialization */
  PetscInt size;
  ierr = VecGetSize(B,&size);	
  for (i=0; i<size; i++)
  {
	  v		= 1.0;
	  ierr	= VecSetValues(C1,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);	
	  v		= i;
	  ierr 	= VecSetValues(C2,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
  }	
  d1 = 1.0;
  d2 = 2.0;
  /* Dingwen */	
	
  switch (ksp->normtype) {
  case KSP_NORM_PRECONDITIONED:
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
    ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr);                /*    dp <- z'*z = e'*A'*B'*B*A'*e'     */
    break;
  case KSP_NORM_UNPRECONDITIONED:
    ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr);                /*    dp <- r'*r = e'*A'*A*e            */
    break;
  case KSP_NORM_NATURAL:
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
    if (cg->singlereduction) {
      ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
      ierr = VecXDot(Z,S,&delta);CHKERRQ(ierr);
	  /* Dingwen */
	  ierr = VecXDot(C1,S,&CKSS1);CHKERRQ(ierr);						/* Compute the initial checksum1(S) */
	  ierr = VecXDot(C2,S,&CKSS2);CHKERRQ(ierr);						/* Compute the initial checksum2(S) */
	  /* Dingwen */
	}
    ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);                     /*  beta <- z'*r       */
    KSPCheckDot(ksp,beta);
    dp = PetscSqrtReal(PetscAbsScalar(beta));                           /*    dp <- r'*z = r'*B*r = e'*A'*B*A*e */
    break;
  case KSP_NORM_NONE:
    dp = 0.0;
    break;
  default: SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"%s",KSPNormTypes[ksp->normtype]);
  }
  
  ierr       = KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
  ierr       = KSPMonitor(ksp,0,dp);CHKERRQ(ierr);
  ksp->rnorm = dp;

  ierr = (*ksp->converged)(ksp,0,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);      /* test for convergence */
  if (ksp->reason) PetscFunctionReturn(0);

  if (ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) {
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
  }
  if (ksp->normtype != KSP_NORM_NATURAL) {
    if (cg->singlereduction) {
      ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
      ierr = VecXDot(Z,S,&delta);CHKERRQ(ierr);
    }
    ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);         /*  beta <- z'*r       */
    KSPCheckDot(ksp,beta);
  }

  /* Dingwen */
  /* Checksum Initialization */
  ierr = VecXDot(C1,X,&CKSX1);CHKERRQ(ierr);						/* Compute the initial checksum1(X) */ 
  ierr = VecXDot(C1,W,&CKSW1);CHKERRQ(ierr);						/* Compute the initial checksum1(W) */
  ierr = VecXDot(C1,R,&CKSR1);CHKERRQ(ierr);						/* Compute the initial checksum1(R) */
  ierr = VecXDot(C1,Z,&CKSZ1);CHKERRQ(ierr);						/* Compute the initial checksum1(Z) */
  ierr = VecXDot(C2,X,&CKSX2);CHKERRQ(ierr);						/* Compute the initial checksum2(X) */ 
  ierr = VecXDot(C2,W,&CKSW2);CHKERRQ(ierr);						/* Compute the initial checksum2(W) */
  ierr = VecXDot(C2,R,&CKSR2);CHKERRQ(ierr);						/* Compute the initial checksum2(R) */
  ierr = VecXDot(C2,Z,&CKSZ2);CHKERRQ(ierr);						/* Compute the initial checksum2(Z) */
  ierr = KSP_MatMultTranspose(ksp,Amat,C1,CKSAmat1);CHKERRQ(ierr);
  ierr = VecAXPY(CKSAmat1,-d1,C1);CHKERRQ(ierr);
  ierr = VecAXPY(CKSAmat1,-d2,C2);CHKERRQ(ierr);					/* Compute the initial checksum1(A) */ 
  ierr = KSP_MatMultTranspose(ksp,Amat,C2,CKSAmat2);CHKERRQ(ierr);
  ierr = VecAXPY(CKSAmat2,-d2,C1);CHKERRQ(ierr);
  ierr = VecAXPY(CKSAmat2,-d1,C2);CHKERRQ(ierr);					/* Compute the initial checksum2(A) */ 
  itv_c = 2;
  itv_d = 10;
  /* Dingwen */
  
  i = 0;
  do {
	  /* Dingwen */
	  if ((i>0) && (i%itv_d == 0))
	  {
		  ierr = VecXDot(C1,X,&sumX1);CHKERRQ(ierr);
		  ierr = VecXDot(C1,R,&sumR1);CHKERRQ(ierr);
		  if ((PetscAbsScalar(sumX1-CKSX1) > 1.0e-6) || (PetscAbsScalar(sumR1-CKSR1) > 1.0e-6))
		  {
			  /* Rollback and Recovery */
			  if (rank==0) printf ("Recovery start...\n");
			  if (rank==0) printf ("Rollback from iteration-%d to iteration-%d\n",i,CKPi);
			  betaold = CKPbetaold;										/* Recovery scalar betaold by checkpoint*/
			  i = CKPi;													/* Recovery integer i by checkpoint */
			  ierr = VecCopy(CKPP,P);CHKERRQ(ierr);						/* Recovery vector P from checkpoint */
			  ierr = VecXDot(C1,P,&CKSP1);CHKERRQ(ierr);				/* Recovery checksum1(P) by P */	
			  ierr = VecXDot(C2,P,&CKSP2);CHKERRQ(ierr);				/* Recovery checksum2(P) by P */			  
			  ierr = KSP_MatMult(ksp,Amat,P,W);CHKERRQ(ierr);			/* Recovery vector W by P */
			  ierr = VecXDot(P,W,&dpi);CHKERRQ(ierr);					/* Recovery scalar dpi by P and W */
			  ierr = VecCopy(CKPX,X);CHKERRQ(ierr);						/* Recovery vector X from checkpoint */
			  ierr = VecXDot(C1,X,&CKSX1);CHKERRQ(ierr);				/* Recovery checksum1(X) by X */
			  ierr = VecXDot(C2,X,&CKSX2);CHKERRQ(ierr);				/* Recovery checksum2(X) by X */ 			  
			  ierr = KSP_MatMult(ksp,Amat,X,R);CHKERRQ(ierr);			/* Recovery vector R by X */
			  ierr = VecAYPX(R,-1.0,B);CHKERRQ(ierr);
			  ierr = VecXDot(C1,R,&CKSR1);CHKERRQ(ierr);				/* Recovery checksum1(R) by R */
			  ierr = VecXDot(C2,R,&CKSR2);CHKERRQ(ierr);				/* Recovery checksum2(R) by R */
			  ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);				/* Recovery vector Z by R */
			  ierr = VecXDot(C1,Z,&CKSZ1);CHKERRQ(ierr);					/* Recovery checksum1(Z) by Z */
			  ierr = VecXDot(C2,Z,&CKSZ2);CHKERRQ(ierr);					/* Recovery checksum2(Z) by Z */
			  ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);					/* Recovery scalar beta by Z and R */
			  if (rank==0) printf ("Recovery end.\n");
		}
		else if (i%(itv_c*itv_d) == 0)
		{
			if (rank==0) printf ("Checkpoint iteration-%d\n",i);
			ierr = VecCopy(X,CKPX);CHKERRQ(ierr);
			ierr = VecCopy(P,CKPP);CHKERRQ(ierr);
			CKPbetaold = betaold;
			CKPi = i;
		}
	}
	  ksp->its = i+1;
	  if (beta == 0.0) {
      ksp->reason = KSP_CONVERGED_ATOL;
      ierr        = PetscInfo(ksp,"converged due to beta = 0\n");CHKERRQ(ierr);
      break;
#if !defined(PETSC_USE_COMPLEX)
    } else if ((i > 0) && (beta*betaold < 0.0)) {
      ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
      ierr        = PetscInfo(ksp,"diverging due to indefinite preconditioner\n");CHKERRQ(ierr);
      break;
#endif
    }
    if (!i) {
      ierr = VecCopy(Z,P);CHKERRQ(ierr);         /*     p <- z          */
      b    = 0.0;
	  /* Dingwen */
	  ierr = VecXDot(C1,P, &CKSP1);CHKERRQ(ierr);  				/* Compute the initial checksum1(P) */
	  ierr = VecXDot(C2,P, &CKSP2);CHKERRQ(ierr);  				/* Compute the initial checksum2(P) */
	  /* Dingwen */
    } else {
      b = beta/betaold;
      if (eigs) {
        if (ksp->max_it != stored_max_it) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Can not change maxit AND calculate eigenvalues");
        e[i] = PetscSqrtReal(PetscAbsScalar(b))/a;
      }
      ierr = VecAYPX(P,b,Z);CHKERRQ(ierr);    /*     p <- z + b* p   */	  
	  /* Dingwen */
	  CKSP1 = CKSZ1 + b*CKSP1;										/* Update checksum1(P) = checksum1(Z) + b*checksum1(P); */
	  CKSP2 = CKSZ2 + b*CKSP2;										/* Update checksum2(P) = checksum2(Z) + b*checksum2(P); */
	  /* Dingwen */
    }
    dpiold = dpi;
    if (!cg->singlereduction || !i) {
      ierr = KSP_MatMult(ksp,Amat,P,W);CHKERRQ(ierr);          /*     w <- Ap         */	/* MVM */
      ierr = VecXDot(P,W,&dpi);CHKERRQ(ierr);                  /*     dpi <- p'w     */	  
	  
	  /* Dingwen */
	  ierr = VecXDot(CKSAmat1, P, &CKSW1);CHKERRQ(ierr);
	  CKSW1 = CKSW1 + d1*CKSP1 + d2*CKSP2;									/* Update checksum1(W) = checksum1(A)P + d1*checksum1(P) + d2*checksum2(P); */
	  ierr = VecXDot(CKSAmat2, P, &CKSW2);CHKERRQ(ierr);
	  CKSW2 = CKSW2 + d2*CKSP1 + d1*CKSP2;									/* Update checksum2(W) = checksum2(A)P + d2*checksum1(P) + d1*checksum2(P); */
	  
	  if((i==41)&&(flag2))
	  {
		  pos = 100;
		  v		= 1000;
		  ierr	= VecSetValue(W,pos,v,INSERT_VALUES);CHKERRQ(ierr);
		  VecAssemblyBegin(W);
		  VecAssemblyEnd(W);
		  if (rank==0) printf ("Inject an error in %d-th element of vector W after MVM W=AP at iteration-%d\n", pos,i);
		  flag2	= PETSC_FALSE;
	  }
	    
	  PetscScalar delta1,delta2;			  
	  PetscScalar sumW1,sumW2;
	  ierr = VecXDot(C1,W,&sumW1);CHKERRQ(ierr);
	  ierr = VecXDot(C2,W,&sumW2);CHKERRQ(ierr);
	  delta1 = sumW1 - CKSW1;
	  delta2 = sumW2 - CKSW2;
	  if (PetscAbsScalar(delta1) >	1.0e-6)
	  {
		  VecScatterCreateToAll(W,&ctx,&W_SEQ);
		  VecScatterBegin(ctx,W,W_SEQ,INSERT_VALUES,SCATTER_FORWARD);
		  VecScatterEnd(ctx,W,W_SEQ,INSERT_VALUES,SCATTER_FORWARD);
		  VecGetArray(W_SEQ,&_W);
		  pos	= rint(delta2/delta1);
		  v = _W[pos];
		  v = v - delta1;
		  ierr	= VecSetValues(W,1,&pos,&v,INSERT_VALUES);CHKERRQ(ierr);
		  if (rank==0) printf ("Correct an error of %d-th elements of vector W after MVM W=AP at iteration-%d\n", pos, i);
		}
	  
    } else {
      ierr = VecAYPX(W,beta/betaold,S);CHKERRQ(ierr);                  /*     w <- Ap         */
      dpi  = delta - beta*beta*dpiold/(betaold*betaold);             /*     dpi <- p'w     */
	  /* Dingwen */
	  CKSW1 = beta/betaold*CKSW1 + CKSS1;							/* Update checksum1(W) = checksum1(S) + beta/betaold*checksum1(W); */
	  CKSW2 = beta/betaold*CKSW2 + CKSS2;							/* Update checksum2(W) = checksum2(S) + beta/betaold*checksum2(W); */
	  /* Dingwen */
	}
    betaold = beta;
    KSPCheckDot(ksp,beta);

    if ((dpi == 0.0) || ((i > 0) && (PetscRealPart(dpi*dpiold) <= 0.0))) {
      ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
      ierr        = PetscInfo(ksp,"diverging due to indefinite or negative definite matrix\n");CHKERRQ(ierr);
      break;
    }
    a = beta/dpi;                                 /*     a = beta/p'w   */
    if (eigs) d[i] = PetscSqrtReal(PetscAbsScalar(b))*e[i] + 1.0/a;
    ierr = VecAXPY(X,a,P);CHKERRQ(ierr);          /*     x <- x + ap     */
	/* Dingwen */
	CKSX1 = CKSX1 + a*CKSP1;									/* Update checksum1(X) = checksum1(X) + a*checksum1(P); */
	CKSX2 = CKSX2 + a*CKSP2;									/* Update checksum2(X) = checksum2(X) + a*checksum2(P); */
	/* Dingwen */
    
	ierr = VecAXPY(R,-a,W);CHKERRQ(ierr);                      /*     r <- r - aw    */

	/* Dingwen */
	CKSR1 = CKSR1 - a*CKSW1;									/* Update checksum1(R) = checksum1(R) - a*checksum1(W); */
	CKSR2 = CKSR2 - a*CKSW2;									/* Update checksum2(R) = checksum2(R) - a*checksum2(W); */
	/* Dingwen */
	
	if (ksp->normtype == KSP_NORM_PRECONDITIONED && ksp->chknorm < i+2) {      
	  ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*     z <- Br         */
	  
	  /* Dingwen */
	  ierr = VecXDot(C1,Z, &CKSZ1);CHKERRQ(ierr);				/* Update checksum1(Z) */
	  ierr = VecXDot(C2,Z, &CKSZ2);CHKERRQ(ierr);				/* Update checksum2(Z) */
	  /* Dingwen */
	  
	  if (cg->singlereduction) {
        ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);			/* MVM */
		/* Dingwen */
		ierr = VecXDot(CKSAmat1, Z, &CKSS1);CHKERRQ(ierr);
		CKSS1 = CKSS1 + d1*CKSZ1 + d2*CKSZ2;									/* Update checksum1(S) = checksum1(A)Z + d1*chekcsum1(Z) + d2*checksum2(Z); */
		ierr = VecXDot(CKSAmat2, Z, &CKSS2);CHKERRQ(ierr);
		CKSS2 = CKSS2 + d2*CKSZ1 + d1*CKSZ2;									/* Update checksum2(S) = checksum2(A)Z + d2*chekcsum1(Z) + d1*checksum2(Z); */

		/* Dingwen */
      }
      ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr);              /*    dp <- z'*z       */
    } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED && ksp->chknorm < i+2) {
      ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr);              /*    dp <- r'*r       */
    } else if (ksp->normtype == KSP_NORM_NATURAL) {
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*     z <- Br         */
 	  
	  /* Dingwen */
	  ierr = VecXDot(C1,Z, &CKSZ1);CHKERRQ(ierr);				/* Update checksum1(Z) */
	  ierr = VecXDot(C2,Z, &CKSZ2);CHKERRQ(ierr);				/* Update checksum2(Z) */	  
	  /* Dingwen */
	  
	  if (cg->singlereduction) {
        PetscScalar tmp[2];
        Vec         vecs[2];
        vecs[0] = S; vecs[1] = R;
        ierr    = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
        ierr  = VecMDot(Z,2,vecs,tmp);CHKERRQ(ierr);
        delta = tmp[0]; beta = tmp[1];
      } else {
        ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);     /*  beta <- r'*z       */
      }
      KSPCheckDot(ksp,beta);
      dp = PetscSqrtReal(PetscAbsScalar(beta));
    } else {
      dp = 0.0;
    }
	  
    ksp->rnorm = dp;
    CHKERRQ(ierr);KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
    ierr = KSPMonitor(ksp,i+1,dp);CHKERRQ(ierr);
    ierr = (*ksp->converged)(ksp,i+1,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
    if (ksp->reason) break;

    if ((ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) || (ksp->chknorm >= i+2)) {
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
	  
	  /* Dingwen */
	  ierr = VecXDot(C1,Z, &CKSZ1);CHKERRQ(ierr);				/* Update checksum1(Z) */
	  ierr = VecXDot(C2,Z, &CKSZ2);CHKERRQ(ierr);				/* Update checksum2(Z) */ 
	  /* Dingwen */
      
	  if (cg->singlereduction) {
        ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
      }
    }
		  
    if ((ksp->normtype != KSP_NORM_NATURAL) || (ksp->chknorm >= i+2)) {
      if (cg->singlereduction) {
        PetscScalar tmp[2];
        Vec         vecs[2];
        vecs[0] = S; vecs[1] = R;
        ierr  = VecMDot(Z,2,vecs,tmp);CHKERRQ(ierr);
        delta = tmp[0]; beta = tmp[1];
      } else {
        ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);        /*  beta <- z'*r       */
      }
      KSPCheckDot(ksp,beta);
    }
	
    i++;
	
	/* Dingwen */
	/* Inject error */
	if ((i==50)&&(flag1))
	{
		pos		= 1000;
		v	 	= -1;
		ierr	= VecSetValues(X,1,&pos,&v,INSERT_VALUES);CHKERRQ(ierr);
		ierr	= VecAssemblyBegin(X);CHKERRQ(ierr);
		ierr	= VecAssemblyEnd(X);CHKERRQ(ierr);  
		flag1	= PETSC_FALSE;
		if (rank==0)printf ("Inject an error in vector X at the end of iteration-%d\n", i-1);
	}
	/* Dingwen */
	
  } while (i<ksp->max_it);
  /* Dingwen */
  ierr = VecXDot(C1,X,&sumX1);CHKERRQ(ierr);
  ierr = VecXDot(C1,R,&sumR1);CHKERRQ(ierr);
  ierr = VecXDot(C2,X,&sumX2);CHKERRQ(ierr);
  ierr = VecXDot(C2,R,&sumR2);CHKERRQ(ierr);
  if (rank==0)
  {
	  printf ("sum1 of X = %f\n", sumX1);
	  printf ("checksum1(X) = %f\n", CKSX1);
	  printf ("sum2 of X = %f\n", sumX2);
	  printf ("checksum2(X) = %f\n", CKSX2);
	  printf ("sum1 of R = %f\n", sumR1);
	  printf ("checksum1(R) = %f\n", CKSR1);
	  printf ("sum2 of R = %f\n", sumR2);
	  printf ("checksum2(R) = %f\n", CKSR2);
  }
  VecDestroy(&W_SEQ);
  VecScatterDestroy(&ctx);	
  /* Dingwen */
  if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
  if (eigs) cg->ned = ksp->its;
  PetscFunctionReturn(0);
}
Esempio n. 4
0
PetscErrorCode KSPSolve_FCG(KSP ksp)
{
  PetscErrorCode ierr;
  PetscInt       i,k,idx,mi;
  KSP_FCG        *fcg = (KSP_FCG*)ksp->data;
  PetscScalar    alpha=0.0,beta = 0.0,dpi,s;
  PetscReal      dp=0.0;
  Vec            B,R,Z,X,Pcurr,Ccurr;
  Mat            Amat,Pmat;
  PetscInt       eigs = ksp->calc_sings; /* Variables for eigen estimation - START*/
  PetscInt       stored_max_it = ksp->max_it;
  PetscScalar    alphaold = 0,betaold = 1.0,*e = 0,*d = 0;/* Variables for eigen estimation  - FINISH */

  PetscFunctionBegin;

#define VecXDot(x,y,a) (((fcg->type) == (KSP_CG_HERMITIAN)) ? VecDot(x,y,a) : VecTDot(x,y,a))
#define VecXMDot(a,b,c,d) (((fcg->type) == (KSP_CG_HERMITIAN)) ? VecMDot(a,b,c,d) : VecMTDot(a,b,c,d))

  X             = ksp->vec_sol;
  B             = ksp->vec_rhs;
  R             = ksp->work[0];
  Z             = ksp->work[1];

  ierr = PCGetOperators(ksp->pc,&Amat,&Pmat);CHKERRQ(ierr);
  if (eigs) {e = fcg->e; d = fcg->d; e[0] = 0.0; }
  /* Compute initial residual needed for convergence check*/
  ksp->its = 0;
  if (!ksp->guess_zero) {
    ierr = KSP_MatMult(ksp,Amat,X,R);CHKERRQ(ierr);
    ierr = VecAYPX(R,-1.0,B);CHKERRQ(ierr);                    /*   r <- b - Ax     */
  } else {
    ierr = VecCopy(B,R);CHKERRQ(ierr);                         /*   r <- b (x is 0) */
  }
  switch (ksp->normtype) {
    case KSP_NORM_PRECONDITIONED:
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*   z <- Br         */
      ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr);              /*   dp <- dqrt(z'*z) = sqrt(e'*A'*B'*B*A*e)     */
      break;
    case KSP_NORM_UNPRECONDITIONED:
      ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr);              /*   dp <- sqrt(r'*r) = sqrt(e'*A'*A*e)     */
      break;
    case KSP_NORM_NATURAL:
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*   z <- Br         */
      ierr = VecXDot(R,Z,&s);CHKERRQ(ierr);
      dp = PetscSqrtReal(PetscAbsScalar(s));                   /*   dp <- sqrt(r'*z) = sqrt(e'*A'*B*A*e)  */
      break;
    case KSP_NORM_NONE:
      dp = 0.0;
      break;
    default: SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"%s",KSPNormTypes[ksp->normtype]);
  }

  /* Initial Convergence Check */
  ierr       = KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
  ierr       = KSPMonitor(ksp,0,dp);CHKERRQ(ierr);
  ksp->rnorm = dp;
  if (ksp->normtype == KSP_NORM_NONE) {
    ierr = KSPConvergedSkip(ksp,0,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
  } else {
    ierr = (*ksp->converged)(ksp,0,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
  }
  if (ksp->reason) PetscFunctionReturn(0);

  /* Apply PC if not already done for convergence check */
  if(ksp->normtype == KSP_NORM_UNPRECONDITIONED || ksp->normtype == KSP_NORM_NONE){
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*   z <- Br         */
  }

  i = 0;
  do {
    ksp->its = i+1;

    /*  If needbe, allocate a new chunk of vectors in P and C */
    ierr = KSPAllocateVectors_FCG(ksp,i+1,fcg->vecb);CHKERRQ(ierr);

    /* Note that we wrap around and start clobbering old vectors */
    idx = i % (fcg->mmax+1);
    Pcurr = fcg->Pvecs[idx];
    Ccurr = fcg->Cvecs[idx];

    /* Compute a new column of P (Currently does not support modified G-S or iterative refinement)*/
    switch(fcg->truncstrat){
      case KSP_FCG_TRUNC_TYPE_NOTAY :
        mi = PetscMax(1,i%(fcg->mmax+1));
        break;
      case KSP_FCG_TRUNC_TYPE_STANDARD :
        mi = fcg->mmax;
        break;
      default:
        SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Unrecognized FCG Truncation Strategy");CHKERRQ(ierr);
    }
    ierr = VecCopy(Z,Pcurr);CHKERRQ(ierr);

    {
      PetscInt l,ndots;

      l = PetscMax(0,i-mi);
      ndots = i-l;
      if (ndots){
        PetscInt    j;
        Vec         *Pold,  *Cold;
        PetscScalar *dots;

        ierr = PetscMalloc3(ndots,&dots,ndots,&Cold,ndots,&Pold);CHKERRQ(ierr);
        for(k=l,j=0;j<ndots;++k,++j){
          idx = k % (fcg->mmax+1);
          Cold[j] = fcg->Cvecs[idx];
          Pold[j] = fcg->Pvecs[idx];
        }
        ierr = VecXMDot(Z,ndots,Cold,dots);CHKERRQ(ierr);
        for(k=0;k<ndots;++k){
          dots[k] = -dots[k];
        }
        ierr = VecMAXPY(Pcurr,ndots,dots,Pold);CHKERRQ(ierr);
        ierr = PetscFree3(dots,Cold,Pold);CHKERRQ(ierr);
      }
    }

    /* Update X and R */
    betaold = beta;
    ierr = VecXDot(Pcurr,R,&beta);CHKERRQ(ierr);                 /*  beta <- pi'*r       */
    ierr = KSP_MatMult(ksp,Amat,Pcurr,Ccurr);CHKERRQ(ierr);      /*  w <- A*pi (stored in ci)   */
    ierr = VecXDot(Pcurr,Ccurr,&dpi);CHKERRQ(ierr);              /*  dpi <- pi'*w        */
    alphaold = alpha;
    alpha = beta / dpi;                                          /*  alpha <- beta/dpi    */
    ierr = VecAXPY(X,alpha,Pcurr);CHKERRQ(ierr);                 /*  x <- x + alpha * pi  */
    ierr = VecAXPY(R,-alpha,Ccurr);CHKERRQ(ierr);                /*  r <- r - alpha * wi  */

    /* Compute norm for convergence check */
    switch (ksp->normtype) {
      case KSP_NORM_PRECONDITIONED:
        ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*   z <- Br             */
        ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr);              /*   dp <- sqrt(z'*z) = sqrt(e'*A'*B'*B*A*e)  */
        break;
      case KSP_NORM_UNPRECONDITIONED:
        ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr);              /*   dp <- sqrt(r'*r) = sqrt(e'*A'*A*e)   */
        break;
      case KSP_NORM_NATURAL:
        ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*   z <- Br             */
        ierr = VecXDot(R,Z,&s);CHKERRQ(ierr);
        dp = PetscSqrtReal(PetscAbsScalar(s));                   /*   dp <- sqrt(r'*z) = sqrt(e'*A'*B*A*e)  */
        break;
      case KSP_NORM_NONE:
        dp = 0.0;
        break;
      default: SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"%s",KSPNormTypes[ksp->normtype]);
    }

    /* Check for convergence */
    ksp->rnorm = dp;
    KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
    ierr = KSPMonitor(ksp,i+1,dp);CHKERRQ(ierr);
    ierr = (*ksp->converged)(ksp,i+1,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
    if (ksp->reason) break;

    /* Apply PC if not already done for convergence check */
    if(ksp->normtype == KSP_NORM_UNPRECONDITIONED || ksp->normtype == KSP_NORM_NONE){
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*   z <- Br         */
    }

    /* Compute current C (which is W/dpi) */
    ierr = VecScale(Ccurr,1.0/dpi);CHKERRQ(ierr);              /*   w <- ci/dpi   */

    if (eigs) {
      if (i > 0) {
        if (ksp->max_it != stored_max_it) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Can not change maxit AND calculate eigenvalues");
        e[i] = PetscSqrtReal(PetscAbsScalar(beta/betaold))/alphaold;
        d[i] = PetscSqrtReal(PetscAbsScalar(beta/betaold))*e[i] + 1.0/alpha;
      } else {
        d[i] = PetscSqrtReal(PetscAbsScalar(beta))*e[i] + 1.0/alpha;
      }
    }
    ++i;
  } while (i<ksp->max_it);
  if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
  if (eigs) fcg->ned = ksp->its-1;
  PetscFunctionReturn(0);
}
Esempio n. 5
0
PetscErrorCode  KSPSolve_CG(KSP ksp)
{
  PetscErrorCode ierr;
  PetscInt       i,stored_max_it,eigs;
  PetscScalar    dpi = 0.0,a = 1.0,beta,betaold = 1.0,b = 0,*e = 0,*d = 0,delta,dpiold;
  PetscReal      dp = 0.0;
  Vec            X,B,Z,R,P,S,W;
  KSP_CG         *cg;
  Mat            Amat,Pmat;
  MatStructure   pflag;
  PetscTruth     diagonalscale;

  PetscFunctionBegin;
  ierr    = PCDiagonalScale(ksp->pc,&diagonalscale);CHKERRQ(ierr);
  if (diagonalscale) SETERRQ1(PETSC_ERR_SUP,"Krylov method %s does not support diagonal scaling",((PetscObject)ksp)->type_name);

  cg            = (KSP_CG*)ksp->data;
  eigs          = ksp->calc_sings;
  stored_max_it = ksp->max_it;
  X             = ksp->vec_sol;
  B             = ksp->vec_rhs;
  R             = ksp->work[0];
  Z             = ksp->work[1];
  P             = ksp->work[2];
  if (cg->singlereduction) {
    S           = ksp->work[3]; 
    W           = ksp->work[4];
  } else {
    S           = 0;            /* unused */
    W           = Z;
  } 

#if !defined(PETSC_USE_COMPLEX)
#define VecXDot(x,y,a) VecDot(x,y,a)
#else
#define VecXDot(x,y,a) (((cg->type) == (KSP_CG_HERMITIAN)) ? VecDot(x,y,a) : VecTDot(x,y,a))
#endif

  if (eigs) {e = cg->e; d = cg->d; e[0] = 0.0; }
  ierr = PCGetOperators(ksp->pc,&Amat,&Pmat,&pflag);CHKERRQ(ierr);

  ksp->its = 0;
  if (!ksp->guess_zero) {
    ierr = KSP_MatMult(ksp,Amat,X,R);CHKERRQ(ierr);            /*     r <- b - Ax     */
    ierr = VecAYPX(R,-1.0,B);CHKERRQ(ierr);
  } else { 
    ierr = VecCopy(B,R);CHKERRQ(ierr);                         /*     r <- b (x is 0) */
  }

  if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
    ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr);                /*    dp <- z'*z = e'*A'*B'*B*A'*e'     */
  } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED) {
    ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr);                /*    dp <- r'*r = e'*A'*A*e            */
  } else if (ksp->normtype == KSP_NORM_NATURAL) {
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
    if (cg->singlereduction) {
      ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);  
      ierr = VecXDot(Z,S,&delta);CHKERRQ(ierr);
    }
    ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);                     /*  beta <- z'*r       */
    if PetscIsInfOrNanScalar(beta) SETERRQ(PETSC_ERR_FP,"Infinite or not-a-number generated in dot product");
    dp = sqrt(PetscAbsScalar(beta));                           /*    dp <- r'*z = r'*B*r = e'*A'*B*A*e */
  } else dp = 0.0;
Esempio n. 6
0
PetscErrorCode  KSPSolve_CGNE(KSP ksp)
{
  PetscErrorCode ierr;
  PetscInt       i,stored_max_it,eigs;
  PetscScalar    dpi,a = 1.0,beta,betaold = 1.0,b = 0,*e = 0,*d = 0;
  PetscReal      dp = 0.0;
  Vec            X,B,Z,R,P,T;
  KSP_CG         *cg;
  Mat            Amat,Pmat;
  PetscBool      diagonalscale,transpose_pc;

  PetscFunctionBegin;
  ierr = PCGetDiagonalScale(ksp->pc,&diagonalscale);CHKERRQ(ierr);
  if (diagonalscale) SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Krylov method %s does not support diagonal scaling",((PetscObject)ksp)->type_name);
  ierr = PCApplyTransposeExists(ksp->pc,&transpose_pc);CHKERRQ(ierr);

  cg            = (KSP_CG*)ksp->data;
  eigs          = ksp->calc_sings;
  stored_max_it = ksp->max_it;
  X             = ksp->vec_sol;
  B             = ksp->vec_rhs;
  R             = ksp->work[0];
  Z             = ksp->work[1];
  P             = ksp->work[2];
  T             = ksp->work[3];

#define VecXDot(x,y,a) (((cg->type) == (KSP_CG_HERMITIAN)) ? VecDot(x,y,a) : VecTDot(x,y,a))

  if (eigs) {e = cg->e; d = cg->d; e[0] = 0.0; }
  ierr = PCGetOperators(ksp->pc,&Amat,&Pmat);CHKERRQ(ierr);

  ksp->its = 0;
  ierr     = MatMultTranspose(Amat,B,T);CHKERRQ(ierr);
  if (!ksp->guess_zero) {
    ierr = KSP_MatMult(ksp,Amat,X,P);CHKERRQ(ierr);
    ierr = KSP_MatMultTranspose(ksp,Amat,P,R);CHKERRQ(ierr);
    ierr = VecAYPX(R,-1.0,T);CHKERRQ(ierr);
  } else {
    ierr = VecCopy(T,R);CHKERRQ(ierr);              /*     r <- b (x is 0) */
  }
  ierr = KSP_PCApply(ksp,R,T);CHKERRQ(ierr);
  if (transpose_pc) {
    ierr = KSP_PCApplyTranspose(ksp,T,Z);CHKERRQ(ierr);
  } else {
    ierr = KSP_PCApply(ksp,T,Z);CHKERRQ(ierr);
  }

  if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
    ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr); /*    dp <- z'*z       */
  } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED) {
    ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr); /*    dp <- r'*r       */
  } else if (ksp->normtype == KSP_NORM_NATURAL) {
    ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);
    dp   = PetscSqrtReal(PetscAbsScalar(beta));
  } else dp = 0.0;
  ierr       = KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
  ierr       = KSPMonitor(ksp,0,dp);CHKERRQ(ierr);
  ksp->rnorm = dp;
  ierr       = (*ksp->converged)(ksp,0,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr); /* test for convergence */
  if (ksp->reason) PetscFunctionReturn(0);

  i = 0;
  do {
    ksp->its = i+1;
    ierr     = VecXDot(Z,R,&beta);CHKERRQ(ierr); /*     beta <- r'z     */
    if (beta == 0.0) {
      ksp->reason = KSP_CONVERGED_ATOL;
      ierr        = PetscInfo(ksp,"converged due to beta = 0\n");CHKERRQ(ierr);
      break;
#if !defined(PETSC_USE_COMPLEX)
    } else if (beta < 0.0) {
      ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
      ierr        = PetscInfo(ksp,"diverging due to indefinite preconditioner\n");CHKERRQ(ierr);
      break;
#endif
    }
    if (!i) {
      ierr = VecCopy(Z,P);CHKERRQ(ierr);          /*     p <- z          */
      b    = 0.0;
    } else {
      b = beta/betaold;
      if (eigs) {
        if (ksp->max_it != stored_max_it) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Can not change maxit AND calculate eigenvalues");
        e[i] = PetscSqrtReal(PetscAbsScalar(b))/a;
      }
      ierr = VecAYPX(P,b,Z);CHKERRQ(ierr);     /*     p <- z + b* p   */
    }
    betaold = beta;
    ierr    = MatMult(Amat,P,T);CHKERRQ(ierr);
    ierr    = MatMultTranspose(Amat,T,Z);CHKERRQ(ierr);
    ierr    = VecXDot(P,Z,&dpi);CHKERRQ(ierr);    /*     dpi <- z'p      */
    a       = beta/dpi;                            /*     a = beta/p'z    */
    if (eigs) d[i] = PetscSqrtReal(PetscAbsScalar(b))*e[i] + 1.0/a;
    ierr = VecAXPY(X,a,P);CHKERRQ(ierr);           /*     x <- x + ap     */
    ierr = VecAXPY(R,-a,Z);CHKERRQ(ierr);                       /*     r <- r - az     */
    if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
      ierr = KSP_PCApply(ksp,R,T);CHKERRQ(ierr);
      if (transpose_pc) {
        ierr = KSP_PCApplyTranspose(ksp,T,Z);CHKERRQ(ierr);
      } else {
        ierr = KSP_PCApply(ksp,T,Z);CHKERRQ(ierr);
      }
      ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr);              /*    dp <- z'*z       */
    } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED) {
      ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr);
    } else if (ksp->normtype == KSP_NORM_NATURAL) {
      dp = PetscSqrtReal(PetscAbsScalar(beta));
    } else {
      dp = 0.0;
    }
    ksp->rnorm = dp;
    ierr = KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
    ierr = KSPMonitor(ksp,i+1,dp);CHKERRQ(ierr);
    ierr = (*ksp->converged)(ksp,i+1,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
    if (ksp->reason) break;
    if (ksp->normtype != KSP_NORM_PRECONDITIONED) {
      if (transpose_pc) {
        ierr = KSP_PCApplyTranspose(ksp,T,Z);CHKERRQ(ierr);
      } else {
        ierr = KSP_PCApply(ksp,T,Z);CHKERRQ(ierr);
      }
    }
    i++;
  } while (i<ksp->max_it);
  if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
  PetscFunctionReturn(0);
}