Esempio n. 1
0
static void HE16_SSE41(uint8_t* dst) {     // horizontal
  int j;
  const __m128i kShuffle3 = _mm_set1_epi8(3);
  for (j = 16; j > 0; --j) {
    const __m128i in = _mm_cvtsi32_si128(WebPMemToUint32(dst - 4));
    const __m128i values = _mm_shuffle_epi8(in, kShuffle3);
    _mm_storeu_si128((__m128i*)dst, values);
    dst += BPS;
  }
}
Esempio n. 2
0
static void RescalerImportRowShrink_SSE2(WebPRescaler* const wrk,
                                         const uint8_t* src) {
  const int x_sub = wrk->x_sub;
  int accum = 0;
  const __m128i zero = _mm_setzero_si128();
  const __m128i mult0 = _mm_set1_epi16(x_sub);
  const __m128i mult1 = _mm_set1_epi32(wrk->fx_scale);
  const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER);
  __m128i sum = zero;
  rescaler_t* frow = wrk->frow;
  const rescaler_t* const frow_end = wrk->frow + 4 * wrk->dst_width;

  if (wrk->num_channels != 4 || wrk->x_add > (x_sub << 7)) {
    WebPRescalerImportRowShrink_C(wrk, src);
    return;
  }
  assert(!WebPRescalerInputDone(wrk));
  assert(!wrk->x_expand);

  for (; frow < frow_end; frow += 4) {
    __m128i base = zero;
    accum += wrk->x_add;
    while (accum > 0) {
      const __m128i A = _mm_cvtsi32_si128(WebPMemToUint32(src));
      src += 4;
      base = _mm_unpacklo_epi8(A, zero);
      // To avoid overflow, we need: base * x_add / x_sub < 32768
      // => x_add < x_sub << 7. That's a 1/128 reduction ratio limit.
      sum = _mm_add_epi16(sum, base);
      accum -= x_sub;
    }
    {    // Emit next horizontal pixel.
      const __m128i mult = _mm_set1_epi16(-accum);
      const __m128i frac0 = _mm_mullo_epi16(base, mult);  // 16b x 16b -> 32b
      const __m128i frac1 = _mm_mulhi_epu16(base, mult);
      const __m128i frac = _mm_unpacklo_epi16(frac0, frac1);  // frac is 32b
      const __m128i A0 = _mm_mullo_epi16(sum, mult0);
      const __m128i A1 = _mm_mulhi_epu16(sum, mult0);
      const __m128i B0 = _mm_unpacklo_epi16(A0, A1);      // sum * x_sub
      const __m128i frow_out = _mm_sub_epi32(B0, frac);   // sum * x_sub - frac
      const __m128i D0 = _mm_srli_epi64(frac, 32);
      const __m128i D1 = _mm_mul_epu32(frac, mult1);      // 32b x 16b -> 64b
      const __m128i D2 = _mm_mul_epu32(D0, mult1);
      const __m128i E1 = _mm_add_epi64(D1, rounder);
      const __m128i E2 = _mm_add_epi64(D2, rounder);
      const __m128i F1 = _mm_shuffle_epi32(E1, 1 | (3 << 2));
      const __m128i F2 = _mm_shuffle_epi32(E2, 1 | (3 << 2));
      const __m128i G = _mm_unpacklo_epi32(F1, F2);
      sum = _mm_packs_epi32(G, zero);
      _mm_storeu_si128((__m128i*)frow, frow_out);
    }
  }
  assert(accum == 0);
}
Esempio n. 3
0
void VP8LDoFillBitWindow(VP8LBitReader* const br) {
  assert(br->bit_pos_ >= VP8L_WBITS);
  // TODO(jzern): given the fixed read size it may be possible to force
  //              alignment in this block.
#if defined(VP8L_USE_UNALIGNED_LOAD)
  if (br->pos_ + sizeof(br->val_) < br->len_) {
    br->val_ >>= VP8L_WBITS;
    br->bit_pos_ -= VP8L_WBITS;
    // The expression below needs a little-endian arch to work correctly.
    // This gives a large speedup for decoding speed.
    br->val_ |= (vp8l_val_t)WebPMemToUint32(br->buf_ + br->pos_) <<
                (VP8L_LBITS - VP8L_WBITS);
    br->pos_ += VP8L_LOG8_WBITS;
    return;
  }