static void invert_pointer_at (word *p) { word q = *p; Assert (Ecolor ((intnat) p) == 0); /* Use Ecolor (q) == 0 instead of Is_block (q) because q could be an inverted pointer for an infix header (with Ecolor == 2). */ if (Ecolor (q) == 0 && (Classify_addr (q) & In_heap)) { switch (Ecolor (Hd_val (q))) { case 0: case 3: /* Pointer or header: insert in inverted list. */ *p = Hd_val (q); Hd_val (q) = (header_t) p; break; case 1: /* Infix header: make inverted infix list. */ /* Double inversion: the last of the inverted infix list points to the next infix header in this block. The last of the last list contains the original block header. */ { /* This block as a value. */ value val = (value) q - Infix_offset_val (q); /* Get the block header. */ word *hp = (word *) Hp_val (val); while (Ecolor (*hp) == 0) hp = (word *) *hp; Assert (Ecolor (*hp) == 3); if (Tag_ehd (*hp) == Closure_tag) { /* This is the first infix found in this block. */ /* Save original header. */ *p = *hp; /* Link inverted infix list. */ Hd_val (q) = (header_t) ((word) p | 2); /* Change block header's tag to Infix_tag, and change its size to point to the infix list. */ *hp = Make_ehd (Wosize_bhsize (q - val), Infix_tag, 3); } else { Assert (Tag_ehd (*hp) == Infix_tag); /* Point the last of this infix list to the current first infix list of the block. */ *p = (word) &Field (val, Wosize_ehd (*hp)) | 1; /* Point the head of this infix list to the above. */ Hd_val (q) = (header_t) ((word) p | 2); /* Change block header's size to point to this infix list. */ *hp = Make_ehd (Wosize_bhsize (q - val), Infix_tag, 3); } } break; case 2: /* Inverted infix list: insert. */ *p = Hd_val (q); Hd_val (q) = (header_t) ((word) p | 2); break; } } }
static void do_compaction_r (CAML_R) { char *ch, *chend; Assert (caml_gc_phase == Phase_idle); caml_gc_message (0x10, "Compacting heap...\n", 0); #ifdef DEBUG caml_heap_check_r (ctx); #endif /* First pass: encode all noninfix headers. */ { ch = caml_heap_start; while (ch != NULL){ header_t *p = (header_t *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ header_t hd = Hd_hp (p); mlsize_t sz = Wosize_hd (hd); if (Is_blue_hd (hd)){ /* Free object. Give it a string tag. */ Hd_hp (p) = Make_ehd (sz, String_tag, 3); }else{ Assert (Is_white_hd (hd)); /* Live object. Keep its tag. */ Hd_hp (p) = Make_ehd (sz, Tag_hd (hd), 3); } p += Whsize_wosize (sz); } ch = Chunk_next (ch); } } /* Second pass: invert pointers. Link infix headers in each block in an inverted list of inverted lists. Don't forget roots and weak pointers. */ { /* Invert roots first because the threads library needs some heap data structures to find its roots. Fortunately, it doesn't need the headers (see above). */ caml_do_roots_r (ctx, invert_root_r); caml_final_do_weak_roots_r (ctx, invert_root_r); ch = caml_heap_start; while (ch != NULL){ word *p = (word *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ word q = *p; size_t sz, i; tag_t t; word *infixes; while (Ecolor (q) == 0) q = * (word *) q; sz = Whsize_ehd (q); t = Tag_ehd (q); if (t == Infix_tag){ /* Get the original header of this block. */ infixes = p + sz; q = *infixes; while (Ecolor (q) != 3) q = * (word *) (q & ~(uintnat)3); sz = Whsize_ehd (q); t = Tag_ehd (q); } if (t < No_scan_tag){ for (i = 1; i < sz; i++) invert_pointer_at_r (ctx, &(p[i])); } p += sz; } ch = Chunk_next (ch); } /* Invert weak pointers. */ { value *pp = &caml_weak_list_head; value p; word q; size_t sz, i; while (1){ p = *pp; if (p == (value) NULL) break; q = Hd_val (p); while (Ecolor (q) == 0) q = * (word *) q; sz = Wosize_ehd (q); for (i = 1; i < sz; i++){ if (Field (p,i) != caml_weak_none){ invert_pointer_at_r (ctx, (word *) &(Field (p,i))); } } invert_pointer_at_r (ctx, (word *) pp); pp = &Field (p, 0); } } } /* Third pass: reallocate virtually; revert pointers; decode headers. Rebuild infix headers. */ { init_compact_allocate_r (ctx); ch = caml_heap_start; while (ch != NULL){ word *p = (word *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ word q = *p; if (Ecolor (q) == 0 || Tag_ehd (q) == Infix_tag){ /* There were (normal or infix) pointers to this block. */ size_t sz; tag_t t; char *newadr; word *infixes = NULL; while (Ecolor (q) == 0) q = * (word *) q; sz = Whsize_ehd (q); t = Tag_ehd (q); if (t == Infix_tag){ /* Get the original header of this block. */ infixes = p + sz; q = *infixes; Assert (Ecolor (q) == 2); while (Ecolor (q) != 3) q = * (word *) (q & ~(uintnat)3); sz = Whsize_ehd (q); t = Tag_ehd (q); } newadr = compact_allocate_r (ctx, Bsize_wsize (sz)); q = *p; while (Ecolor (q) == 0){ word next = * (word *) q; * (word *) q = (word) Val_hp (newadr); q = next; } *p = Make_header (Wosize_whsize (sz), t, Caml_white); if (infixes != NULL){ /* Rebuild the infix headers and revert the infix pointers. */ while (Ecolor ((word) infixes) != 3){ infixes = (word *) ((word) infixes & ~(uintnat) 3); q = *infixes; while (Ecolor (q) == 2){ word next; q = (word) q & ~(uintnat) 3; next = * (word *) q; * (word *) q = (word) Val_hp ((word *) newadr + (infixes - p)); q = next; } Assert (Ecolor (q) == 1 || Ecolor (q) == 3); *infixes = Make_header (infixes - p, Infix_tag, Caml_white); infixes = (word *) q; } } p += sz; }else{ Assert (Ecolor (q) == 3); /* This is guaranteed only if caml_compact_heap was called after a nonincremental major GC: Assert (Tag_ehd (q) == String_tag); */ /* No pointers to the header and no infix header: the object was free. */ *p = Make_header (Wosize_ehd (q), Tag_ehd (q), Caml_blue); p += Whsize_ehd (q); } } ch = Chunk_next (ch); } } /* Fourth pass: reallocate and move objects. Use the exact same allocation algorithm as pass 3. */ { init_compact_allocate_r (ctx); ch = caml_heap_start; while (ch != NULL){ word *p = (word *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ word q = *p; if (Color_hd (q) == Caml_white){ size_t sz = Bhsize_hd (q); char *newadr = compact_allocate_r (ctx, sz); memmove (newadr, p, sz); p += Wsize_bsize (sz); }else{ Assert (Color_hd (q) == Caml_blue); p += Whsize_hd (q); } } ch = Chunk_next (ch); } } /* Shrink the heap if needed. */ { /* Find the amount of live data and the unshrinkable free space. */ asize_t live = 0; asize_t free = 0; asize_t wanted; ch = caml_heap_start; while (ch != NULL){ if (Chunk_alloc (ch) != 0){ live += Wsize_bsize (Chunk_alloc (ch)); free += Wsize_bsize (Chunk_size (ch) - Chunk_alloc (ch)); } ch = Chunk_next (ch); } /* Add up the empty chunks until there are enough, then remove the other empty chunks. */ wanted = caml_percent_free * (live / 100 + 1); ch = caml_heap_start; while (ch != NULL){ char *next_chunk = Chunk_next (ch); /* Chunk_next (ch) will be erased */ if (Chunk_alloc (ch) == 0){ if (free < wanted){ free += Wsize_bsize (Chunk_size (ch)); }else{ caml_shrink_heap_r (ctx, ch); } } ch = next_chunk; } } /* Rebuild the free list. */ { ch = caml_heap_start; caml_fl_reset_r (ctx); while (ch != NULL){ if (Chunk_size (ch) > Chunk_alloc (ch)){ caml_make_free_blocks_r (ctx, (value *) (ch + Chunk_alloc (ch)), Wsize_bsize (Chunk_size(ch)-Chunk_alloc(ch)), 1, Caml_white); } ch = Chunk_next (ch); } } ++ caml_stat_compactions; caml_gc_message (0x10, "done.\n", 0); }