Esempio n. 1
0
void
DruckerPragerModel<EvalT, Traits>::ResidualJacobian(std::vector<ScalarT> & X,
  std::vector<ScalarT> & R, std::vector<ScalarT> & dRdX,
  const ScalarT ptr, const ScalarT qtr, const ScalarT eqN,
  const ScalarT mu, const ScalarT kappa)
{
  std::vector<DFadType> Rfad(4);
  std::vector<DFadType> Xfad(4);
  // initialize DFadType local unknown vector Xfad
  // Note that since Xfad is a temporary variable
  // that gets changed within local iterations
  // when we initialize Xfad, we only pass in the values of X,
  // NOT the system sensitivity information
  std::vector<ScalarT> Xval(4);
  for (std::size_t i = 0; i < 4; ++i) {
    Xval[i] = Sacado::ScalarValue<ScalarT>::eval(X[i]);
    Xfad[i] = DFadType(4, i, Xval[i]);
  }

  DFadType pFad = Xfad[0];
  DFadType qFad = Xfad[1];
  DFadType alphaFad = Xfad[2];
  DFadType deqFad = Xfad[3];

  DFadType betaFad = alphaFad - b0_;  
  
  // check this
  DFadType eqFad = eqN + deqFad; // (eqFad + deqFad??)
  
  // have to break down 3.0 * mu * deqFad;
  // other wise there wil be compiling error
  DFadType dq = deqFad;
  dq = mu * dq;
  dq = 3.0 * dq;
  
  // local system of equations
  Rfad[0] = pFad - ptr + kappa * betaFad * deqFad;
  Rfad[1] = qFad - qtr + dq;
  Rfad[2] = alphaFad 
    - (a0_ + a1_ * eqFad * std::exp(a2_ * pFad - a3_ * eqFad));
  Rfad[3] = qFad + alphaFad * pFad - Cf_;   

  // get ScalarT Residual
  for (int i = 0; i < 4; i++)
    R[i] = Rfad[i].val();

  // get local Jacobian
  for (int i = 0; i < 4; i++)
    for (int j = 0; j < 4; j++)
      dRdX[i + 4 * j] = Rfad[i].dx(j);      

}// end of ResidualJacobian
  void Constraint<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Apply(const Matrix& P, Matrix& Projected) const {
    // We check only row maps. Column may be different.
    TEUCHOS_TEST_FOR_EXCEPTION(!P.getRowMap()->isSameAs(*Projected.getRowMap()), Exceptions::Incompatible,
                               "Row maps are incompatible");
    const size_t NSDim   = X_->getNumVectors();
    const size_t numRows = P.getNodeNumRows();

    const Map& colMap  = *P.getColMap();
    const Map& PColMap = *Projected.getColMap();

    Projected.resumeFill();

    Teuchos::ArrayView<const LO> indices, pindices;
    Teuchos::ArrayView<const SC> values,  pvalues;
    Teuchos::Array<SC> valuesAll(colMap.getNodeNumElements()), newValues;

    LO invalid = Teuchos::OrdinalTraits<LO>::invalid();
    LO oneLO   = Teuchos::OrdinalTraits<LO>::one();
    SC zero    = Teuchos::ScalarTraits<SC> ::zero();
    SC one     = Teuchos::ScalarTraits<SC> ::one();

    std::vector<const SC*> Xval(NSDim);
    for (size_t j = 0; j < NSDim; j++)
      Xval[j] = X_->getData(j).get();

    for (size_t i = 0; i < numRows; i++) {
      P        .getLocalRowView(i,  indices,  values);
      Projected.getLocalRowView(i, pindices, pvalues);

      size_t nnz  = indices.size();     // number of nonzeros in the supplied matrix
      size_t pnnz = pindices.size();    // number of nonzeros in the constrained matrix

      newValues.resize(pnnz);

      // Step 1: fix stencil
      // Projected *must* already have the correct stencil

      // Step 2: copy correct stencil values
      // The algorithm is very similar to the one used in the calculation of
      // Frobenius dot product, see src/Transfers/Energy-Minimization/Solvers/MueLu_CGSolver_def.hpp

      // NOTE: using extra array allows us to skip the search among indices
      for (size_t j = 0; j < nnz; j++)
        valuesAll[indices[j]] = values[j];
      for (size_t j = 0; j < pnnz; j++) {
        LO ind = colMap.getLocalElement(PColMap.getGlobalElement(pindices[j])); // FIXME: we could do that before the full loop just once
        if (ind != invalid)
          // index indices[j] is part of template, copy corresponding value
          newValues[j] = valuesAll[ind];
        else
          newValues[j] = zero;
      }
      for (size_t j = 0; j < nnz; j++)
        valuesAll[indices[j]] = zero;

      // Step 3: project to the space
      Teuchos::SerialDenseMatrix<LO,SC>& XXtInv = XXtInv_[i];

      Teuchos::SerialDenseMatrix<LO,SC> locX(NSDim, pnnz, false);
      for (size_t j = 0; j < pnnz; j++)
        for (size_t k = 0; k < NSDim; k++)
          locX(k,j) = Xval[k][pindices[j]];

      Teuchos::SerialDenseVector<LO,SC> val(pnnz, false), val1(NSDim, false), val2(NSDim, false);
      for (size_t j = 0; j < pnnz; j++)
        val[j] = newValues[j];

      Teuchos::BLAS<LO,SC> blas;
      // val1 = locX * val;
      blas.GEMV(Teuchos::NO_TRANS, NSDim, pnnz,
                one, locX.values(), locX.stride(),
                val.values(), oneLO,
                zero, val1.values(), oneLO);
      // val2 = XXtInv * val1
      blas.GEMV(Teuchos::NO_TRANS, NSDim, NSDim,
                one, XXtInv.values(), XXtInv.stride(),
                val1.values(), oneLO,
                zero,   val2.values(), oneLO);
      // val = X^T * val2
      blas.GEMV(Teuchos::CONJ_TRANS, NSDim, pnnz,
                one, locX.values(), locX.stride(),
                val2.values(), oneLO,
                zero,  val.values(), oneLO);

      for (size_t j = 0; j < pnnz; j++)
        newValues[j] -= val[j];

      Projected.replaceLocalValues(i, pindices, newValues);
    }

    Projected.fillComplete(Projected.getDomainMap(), Projected.getRangeMap()); //FIXME: maps needed?
  }
  void Constraint<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Setup(const MultiVector& B, const MultiVector& Bc, RCP<const CrsGraph> Ppattern) {
    const size_t NSDim = Bc.getNumVectors();

    Ppattern_ = Ppattern;

    size_t numRows = Ppattern_->getNodeNumRows();
    XXtInv_.resize(numRows);

    RCP<const Import> importer = Ppattern_->getImporter();

    X_ = MultiVectorFactory::Build(Ppattern_->getColMap(), NSDim);
    if (!importer.is_null())
      X_->doImport(Bc, *importer, Xpetra::INSERT);
    else
      *X_ = Bc;

    std::vector<const SC*> Xval(NSDim);
    for (size_t j = 0; j < NSDim; j++)
      Xval[j] = X_->getData(j).get();

    SC zero = Teuchos::ScalarTraits<SC>::zero();
    SC one  = Teuchos::ScalarTraits<SC>::one();

    Teuchos::BLAS  <LO,SC> blas;
    Teuchos::LAPACK<LO,SC> lapack;
    LO lwork = 3*NSDim;
    ArrayRCP<LO> IPIV(NSDim);
    ArrayRCP<SC> WORK(lwork);

    for (size_t i = 0; i < numRows; i++) {
      Teuchos::ArrayView<const LO> indices;
      Ppattern_->getLocalRowView(i, indices);

      size_t nnz = indices.size();

      XXtInv_[i] = Teuchos::SerialDenseMatrix<LO,SC>(NSDim, NSDim, false/*zeroOut*/);
      Teuchos::SerialDenseMatrix<LO,SC>& XXtInv = XXtInv_[i];

      if (NSDim == 1) {
        SC d = zero;
        for (size_t j = 0; j < nnz; j++)
          d += Xval[0][indices[j]] * Xval[0][indices[j]];
        XXtInv(0,0) = one/d;

      } else {
        Teuchos::SerialDenseMatrix<LO,SC> locX(NSDim, nnz, false/*zeroOut*/);
        for (size_t j = 0; j < nnz; j++)
          for (size_t k = 0; k < NSDim; k++)
            locX(k,j) = Xval[k][indices[j]];

        // XXtInv_ = (locX*locX^T)^{-1}
        blas.GEMM(Teuchos::NO_TRANS, Teuchos::CONJ_TRANS, NSDim, NSDim, nnz,
                   one,   locX.values(),   locX.stride(),
                          locX.values(),   locX.stride(),
                  zero, XXtInv.values(), XXtInv.stride());

        LO info;
        // Compute LU factorization using partial pivoting with row exchanges
        lapack.GETRF(NSDim, NSDim, XXtInv.values(), XXtInv.stride(), IPIV.get(), &info);
        // Use the computed factorization to compute the inverse
        lapack.GETRI(NSDim, XXtInv.values(), XXtInv.stride(), IPIV.get(), WORK.get(), lwork, &info);
      }
    }
  }
void ElastoViscoplasticModel<EvalT, Traits>::
computeState(typename Traits::EvalData workset,
    std::map<std::string, Teuchos::RCP<PHX::MDField<ScalarT> > > dep_fields,
    std::map<std::string, Teuchos::RCP<PHX::MDField<ScalarT> > > eval_fields)
{
  std::string cauchy_string = (*field_name_map_)["Cauchy_Stress"];
  std::string Fp_string = (*field_name_map_)["Fp"];
  std::string eqps_string = (*field_name_map_)["eqps"];
  std::string eps_ss_string = (*field_name_map_)["eps_ss"];
  std::string kappa_string = (*field_name_map_)["isotropic_hardening"];
  std::string source_string = (*field_name_map_)["Mechanical_Source"];
  std::string F_string = (*field_name_map_)["F"];
  std::string J_string = (*field_name_map_)["J"];

  // extract dependent MDFields
  PHX::MDField<ScalarT> def_grad_field = *dep_fields[F_string];
  PHX::MDField<ScalarT> J = *dep_fields[J_string];
  PHX::MDField<ScalarT> poissons_ratio = *dep_fields["Poissons Ratio"];
  PHX::MDField<ScalarT> elastic_modulus = *dep_fields["Elastic Modulus"];
  PHX::MDField<ScalarT> yield_strength = *dep_fields["Yield Strength"];
  PHX::MDField<ScalarT> hardening_modulus = *dep_fields["Hardening Modulus"];
  PHX::MDField<ScalarT> recovery_modulus = *dep_fields["Recovery Modulus"];
  PHX::MDField<ScalarT> flow_exp = *dep_fields["Flow Rule Exponent"];
  PHX::MDField<ScalarT> flow_coeff = *dep_fields["Flow Rule Coefficient"];
  PHX::MDField<ScalarT> delta_time = *dep_fields["Delta Time"];

  // extract evaluated MDFields
  PHX::MDField<ScalarT> stress_field = *eval_fields[cauchy_string];
  PHX::MDField<ScalarT> Fp_field = *eval_fields[Fp_string];
  PHX::MDField<ScalarT> eqps_field = *eval_fields[eqps_string];
  PHX::MDField<ScalarT> eps_ss_field = *eval_fields[eps_ss_string];
  PHX::MDField<ScalarT> kappa_field = *eval_fields[kappa_string];
  PHX::MDField<ScalarT> source_field;
  if (have_temperature_) {
    source_field = *eval_fields[source_string];
  }

  // get State Variables
  Albany::MDArray Fp_field_old     = (*workset.stateArrayPtr)[Fp_string + "_old"];
  Albany::MDArray eqps_field_old   = (*workset.stateArrayPtr)[eqps_string + "_old"];
  Albany::MDArray eps_ss_field_old = (*workset.stateArrayPtr)[eps_ss_string + "_old"];
  Albany::MDArray kappa_field_old  = (*workset.stateArrayPtr)[kappa_string + "_old"];

  // define constants
  RealType sq23(std::sqrt(2. / 3.));
  RealType sq32(std::sqrt(3. / 2.));

  // pre-define some tensors that will be re-used below
  Intrepid::Tensor<ScalarT> F(num_dims_), be(num_dims_);
  Intrepid::Tensor<ScalarT> s(num_dims_), sigma(num_dims_);
  Intrepid::Tensor<ScalarT> N(num_dims_), A(num_dims_);
  Intrepid::Tensor<ScalarT> expA(num_dims_), Fpnew(num_dims_);
  Intrepid::Tensor<ScalarT> I(Intrepid::eye<ScalarT>(num_dims_));
  Intrepid::Tensor<ScalarT> Fpn(num_dims_), Cpinv(num_dims_), Fpinv(num_dims_);

  for (std::size_t cell(0); cell < workset.numCells; ++cell) {
    for (std::size_t pt(0); pt < num_pts_; ++pt) {
      ScalarT bulk = elastic_modulus(cell, pt)
          / (3. * (1. - 2. * poissons_ratio(cell, pt)));
      ScalarT mu = elastic_modulus(cell, pt) / (2. * (1. + poissons_ratio(cell, pt)));
      ScalarT Y = yield_strength(cell, pt);
      ScalarT Jm23 = std::pow(J(cell, pt), -2. / 3.);

      // assign local state variables
      //
      //ScalarT kappa = kappa_field(cell,pt);
      ScalarT kappa_old = kappa_field_old(cell,pt);
      ScalarT eps_ss = eps_ss_field(cell,pt);
      ScalarT eps_ss_old = eps_ss_field_old(cell,pt);
      ScalarT eqps_old = eqps_field_old(cell,pt);

      // fill local tensors
      //
      F.fill(&def_grad_field(cell, pt, 0, 0));
      for (std::size_t i(0); i < num_dims_; ++i) {
        for (std::size_t j(0); j < num_dims_; ++j) {
          Fpn(i, j) = ScalarT(Fp_field_old(cell, pt, i, j));
        }
      }

      // compute trial state
      // compute the Kirchhoff stress in the current configuration
      //
      Cpinv = Intrepid::inverse(Fpn) * Intrepid::transpose(Intrepid::inverse(Fpn));
      be = Jm23 * F * Cpinv * Intrepid::transpose(F);
      s = mu * Intrepid::dev(be);
      ScalarT smag = Intrepid::norm(s);
      ScalarT mubar = Intrepid::trace(be) * mu / (num_dims_);
      
      // check yield condition
      //
      ScalarT Phi = sq32 * smag - ( Y + kappa_old );

      std::cout << "======== Phi: " << Phi << std::endl;
      std::cout << "======== eps: " << std::numeric_limits<RealType>::epsilon() << std::endl;

      if (Phi > std::numeric_limits<RealType>::epsilon()) {

        // return mapping algorithm
        //
        bool converged = false;
        int iter = 0;
        RealType max_norm = std::numeric_limits<RealType>::min();

        // hardening and recovery parameters
        //
        ScalarT H = hardening_modulus(cell, pt);
        ScalarT Rd = recovery_modulus(cell, pt);

        // flow rule temperature dependent parameters
        //
        ScalarT f = flow_coeff(cell,pt);
        ScalarT n = flow_exp(cell,pt);

        // This solver deals with Sacado type info
        //
        LocalNonlinearSolver<EvalT, Traits> solver;

        // create some vectors to store solver data
        //
        std::vector<ScalarT> R(2);
        std::vector<ScalarT> dRdX(4);
        std::vector<ScalarT> X(2);

        // initial guess
        X[0] = 0.0;
        X[1] = eps_ss_old;

        // create a copy of be as a Fad
        Intrepid::Tensor<Fad> beF(num_dims_);
        for (std::size_t i = 0; i < num_dims_; ++i) {
          for (std::size_t j = 0; j < num_dims_; ++j) {
            beF(i, j) = be(i, j);
          }
        }
        Fad two_mubarF = 2.0 * Intrepid::trace(beF) * mu / (num_dims_);
        //Fad sq32F = std::sqrt(3.0/2.0);
        // FIXME this seems to be necessary to get PhiF to compile below
        // need to look into this more, it appears to be a conflict
        // between the Intrepid::norm and FadType operations
        //
        Fad smagF = smag;

        while (!converged) {

          // set up data types
          //
          std::vector<Fad> XFad(2);
          std::vector<Fad> RFad(2);
          std::vector<ScalarT> Xval(2);
          for (std::size_t i = 0; i < 2; ++i) {
            Xval[i] = Sacado::ScalarValue<ScalarT>::eval(X[i]);
            XFad[i] = Fad(2, i, Xval[i]);
          }

          // get solution vars
          //
          Fad dgamF = XFad[0];
          Fad eps_ssF = XFad[1];

          // compute yield function
          //
          Fad eqps_rateF = 0.0;
          if (delta_time(0) > 0) eqps_rateF = sq23 * dgamF / delta_time(0);
          Fad rate_termF = 1.0 + std::asinh( std::pow(eqps_rateF / f, n));
          Fad kappaF = two_mubarF * eps_ssF;
          Fad PhiF = sq32 * (smagF - two_mubarF * dgamF) - ( Y + kappaF ) * rate_termF;

          // compute the hardening residual
          //
          Fad eps_resF = eps_ssF - eps_ss_old - (H - Rd*eps_ssF) * dgamF;

          // for convenience put the residuals into a container
          //
          RFad[0] = PhiF;
          RFad[1] = eps_resF;

          // extract the values of the residuals
          //
          for (int i = 0; i < 2; ++i)
            R[i] = RFad[i].val();

          // extract the sensitivities of the residuals
          //
          for (int i = 0; i < 2; ++i)
            for (int j = 0; j < 2; ++j)
              dRdX[i + 2 * j] = RFad[i].dx(j);

          // this call invokes the solver and updates the solution in X
          //
          solver.solve(dRdX, X, R);

          // compute the norm of the residual
          //
          RealType R0 = Sacado::ScalarValue<ScalarT>::eval(R[0]); 
          RealType R1 = Sacado::ScalarValue<ScalarT>::eval(R[1]);
          RealType norm_res = std::sqrt(R0*R0 + R1*R1);
          max_norm = std::max(norm_res, max_norm);
            
          // check against too many inerations
          //
          TEUCHOS_TEST_FOR_EXCEPTION(iter == 30, std::runtime_error,
                                     std::endl <<
                                     "Error in ElastoViscoplastic return mapping\n" <<
                                     "iter count = " << iter << "\n" << std::endl);

          // check for a sufficiently small residual
          //
          std::cout << "======== norm_res : " << norm_res << std::endl;
          if ( (norm_res/max_norm < 1.e-12) || (norm_res < 1.e-12) )
            converged = true;

          // increment the iteratio counter
          //
          iter++;
        }

        solver.computeFadInfo(dRdX, X, R);
        ScalarT dgam = X[0];
        ScalarT eps_ss = X[1];
        ScalarT kappa = 2.0 * mubar * eps_ss;

        std::cout << "======== dgam : " << dgam << std::endl;
        std::cout << "======== e_ss : " << eps_ss << std::endl;
        std::cout << "======== kapp : " << kappa << std::endl;

        // plastic direction
        N = (1 / smag) * s;

        // update s
        s -= 2 * mubar * dgam * N;

        // update state variables
        eps_ss_field(cell, pt) = eps_ss;
        eqps_field(cell,pt) = eqps_old + sq23 * dgam;
        kappa_field(cell,pt) = kappa;

        // mechanical source
        // FIXME this is not correct, just a placeholder
        //
        if (have_temperature_ && delta_time(0) > 0) {
          source_field(cell, pt) = (sq23 * dgam / delta_time(0))
            * (Y + kappa) / (density_ * heat_capacity_);
        }

        // exponential map to get Fpnew
        //
        A = dgam * N;
        expA = Intrepid::exp(A);
        Fpnew = expA * Fpn;
        for (std::size_t i(0); i < num_dims_; ++i) {
          for (std::size_t j(0); j < num_dims_; ++j) {
            Fp_field(cell, pt, i, j) = Fpnew(i, j);
          }
        }
      } else {
        // we are not yielding, variables do not evolve
        //
        eps_ss_field(cell, pt) = eps_ss_old;
        eqps_field(cell,pt) = eqps_old;
        kappa_field(cell,pt) = kappa_old;
        if (have_temperature_) source_field(cell, pt) = 0.0;
        for (std::size_t i(0); i < num_dims_; ++i) {
          for (std::size_t j(0); j < num_dims_; ++j) {
            Fp_field(cell, pt, i, j) = Fpn(i, j);
          }
        }
      }

      // compute pressure
      ScalarT p = 0.5 * bulk * (J(cell, pt) - 1. / (J(cell, pt)));

      // compute stress
      sigma = p * I + s / J(cell, pt);
      for (std::size_t i(0); i < num_dims_; ++i) {
        for (std::size_t j(0); j < num_dims_; ++j) {
          stress_field(cell, pt, i, j) = sigma(i, j);
        }
      }
    }
  }

  if (have_temperature_) {
    for (std::size_t cell(0); cell < workset.numCells; ++cell) {
      for (std::size_t pt(0); pt < num_pts_; ++pt) {
        F.fill(&def_grad_field(cell,pt,0,0));
        ScalarT J = Intrepid::det(F);
        sigma.fill(&stress_field(cell,pt,0,0));
        sigma -= 3.0 * expansion_coeff_ * (1.0 + 1.0 / (J*J))
          * (temperature_(cell,pt) - ref_temperature_) * I;
        for (std::size_t i = 0; i < num_dims_; ++i) {
          for (std::size_t j = 0; j < num_dims_; ++j) {
            stress_field(cell, pt, i, j) = sigma(i, j);
          }
        }
      }
    }
  }
}