Esempio n. 1
0
 // Вывод треугольника
  void ShowTr( int p1,int p2,int p3 ){
		int Triangle[6] =
		  { XC(W[p1-1]), YC(W[p1-1]),
				XC(W[p2-1]), YC(W[p2-1]),
				XC(W[p3-1]), YC(W[p3-1]) };
		fillpoly(sizeof(Triangle)/sizeof(pointtype),Triangle);
  };
Esempio n. 2
0
 // Выводим числа
  void ShowNamb(){
		char st[2] = "1";
		for (int i=0;i<DimNods;i++){
		  st[0]=Mask[i];
		  outtextxy( XC(W[i])-10,YC(W[i])-8,st);
		};
  };
Esempio n. 3
0
 // Выводим ребра
  void ShowLoops( int Ind ){
		int i,j;
		for (i=0;i<DimLoops;i++)
		  for (j=0;j<2;j++)
				switch (Ind) {
				  case 0: Loops[i][j]=LT3[i][j]; break;
				  case 1: Loops[i][j]=LC3[i][j]; break;
				  case 2: Loops[i][j]=LO3[i][j]; break;
				  case 3: Loops[i][j]=LT4[i][j]; break;
				  case 4: Loops[i][j]=LO4[i][j]; break;
				  case 5: Loops[i][j]=LL4[i][j]; break;
				  case 6: Loops[i][j]=LC4[i][j]; break;
				  case 7: Loops[i][j]=LC5[i][j]; break;
				  case 8: Loops[i][j]=LC6[i][j]; break;
				  case 9: Loops[i][j]=LI3[i][j]; break;
		   };
		for (i=0;i<DimLoops;i++)
		  line( XC(W[Loops[i][0]-1]),YC(W[Loops[i][0]-1]),
				XC(W[Loops[i][1]-1]),YC(W[Loops[i][1]-1]));
  };
Esempio n. 4
0
File: pv3if.c Progetto: rolk/ug
void pVGRID(float *xyz)
{
  MULTIGRID *mg;
  ELEMENT *e;
  VERTEX *v;
  int i;

  mg = GetCurrentMultigrid();
  ClearVertexMarkers(mg);
  SURFACE_LOOP_BEGIN(mg, e)
  for (i = 0; i < CORNERS_OF_ELEM(e); i++) {
    v = MYVERTEX(CORNER(e, i));
    if (USED(v)) continue;
    SETUSED(v, 1);
    *xyz++ = XC(v);
    *xyz++ = YC(v);
    *xyz++ = ZC(v);
  }
  SURFACE_LOOP_END
}
Esempio n. 5
0
 // Вывод четырехугольника
  void ShowSq( int p1,int p2,int p3,int p4 ){
		int Square[8] =
		  { XC(W[p1-1]), YC(W[p1-1]), XC(W[p2-1]), YC(W[p2-1]),
				XC(W[p3-1]), YC(W[p3-1]), XC(W[p4-1]), YC(W[p4-1]) };
		fillpoly(sizeof(Square)/sizeof(pointtype),Square);
  };
Esempio n. 6
0
bool UnitTests::WeightedDataMatrixMothur()
{
	std::vector< std::vector<double> > dissMatrix;

	// weighted Bray-Curtis
	DiversityCalculator BC("../unit-tests/DataMatrixMothur.env", "", "Bray-Curtis", 1000, true, false, false, false, false);
	BC.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 0.8))
		return false;
	if(!Compare(dissMatrix[2][0], 0.6))
		return false;
	if(!Compare(dissMatrix[2][1], 0.8))
		return false;

	// weighted Canberra
	DiversityCalculator Canberra("../unit-tests/DataMatrixMothur.env", "", "Canberra", 1000, true, false, false, false, false);
	Canberra.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 6.35152))
		return false;
	if(!Compare(dissMatrix[2][0], 8.11111))
		return false;
	if(!Compare(dissMatrix[2][1], 5.92063))
		return false;

	// weighted Gower
	DiversityCalculator Gower("../unit-tests/DataMatrixMothur.env", "", "Gower", 1000, true, false, false, false, false);
	Gower.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 6.58333))
		return false;
	if(!Compare(dissMatrix[2][0], 7.88889))
		return false;
	if(!Compare(dissMatrix[2][1], 5.52778))
		return false;

	// weighted Hellinger
	DiversityCalculator Hellinger("../unit-tests/DataMatrixMothur.env", "", "Hellinger", 1000, true, false, false, false, false);
	Hellinger.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 1.13904))
		return false;
	if(!Compare(dissMatrix[2][0], 1.05146))
		return false;
	if(!Compare(dissMatrix[2][1], 1.17079))
		return false;

	// weighted Manhattan
	DiversityCalculator Manhattan("../unit-tests/DataMatrixMothur.env", "", "Manhattan", 1000, true, false, false, false, false);
	Manhattan.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 1.6))
		return false;
	if(!Compare(dissMatrix[2][0], 1.2))
		return false;
	if(!Compare(dissMatrix[2][1], 1.6))
		return false;

	// weighted Morisita-Horn
	DiversityCalculator MH("../unit-tests/DataMatrixMothur.env", "", "Morisita-Horn", 1000, true, false, false, false, false);
	MH.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 0.873239))
		return false;
	if(!Compare(dissMatrix[2][0], 0.333333))
		return false;
	if(!Compare(dissMatrix[2][1], 0.859155))
		return false;

	// weighted Soergel
	DiversityCalculator Soergel("../unit-tests/DataMatrixMothur.env", "", "Soergel", 1000, true, false, false, false, false);
	Soergel.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 0.88888901))
		return false;
	if(!Compare(dissMatrix[2][0], 0.75))
		return false;
	if(!Compare(dissMatrix[2][1], 0.88888901))
		return false;

	// weighted species profile
	/*
	DiversityCalculator SP("../unit-tests/DataMatrixMothur.env", "", "Species profile", 1000, true, false, false, false, false);
	SP.Dissimilarity("../unit-tests/temp.diss");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 0.78740102))
		return false;
	if(!Compare(dissMatrix[2][0], 0.44721401))
		return false;
	if(!Compare(dissMatrix[2][1], 0.78102499))
		return false;
	*/

	// weighted Chi-squared
	// Note: EBD uses a slightly different form of the Chi-squared measure as suggested in Numerical Ecology by Legendre adn Legendre
	// Nonetheless, it is easy to verify this using mothur. Simply divide by sqrt(N), N is the total number of sequences.
	DiversityCalculator ChiSquared("../unit-tests/DataMatrixMothur.env", "", "Chi-squared", 1000, true, false, false, false, false);
	ChiSquared.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 1.0973200))
		return false;
	if(!Compare(dissMatrix[2][0], 0.96513098))
		return false;
	if(!Compare(dissMatrix[2][1], 1.1147900))
		return false;

	// weighted Euclidean
	DiversityCalculator Euclidean("../unit-tests/DataMatrixMothur.env", "", "Euclidean", 1000, true, false, false, false, false);
	Euclidean.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 0.78740102))
		return false;
	if(!Compare(dissMatrix[2][0], 0.44721401))
		return false;
	if(!Compare(dissMatrix[2][1], 0.78102499))
		return false;

	// weighted Kulczynski
	DiversityCalculator Kulczynski("../unit-tests/DataMatrixMothur.env", "", "Kulczynski", 1000, true, false, false, false, false);
	Kulczynski.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 0.8))
		return false;
	if(!Compare(dissMatrix[2][0], 0.6))
		return false;
	if(!Compare(dissMatrix[2][1], 0.8))
		return false;

	// weighted Pearson
	DiversityCalculator uPearson("../unit-tests/DataMatrixMothur.env", "", "Pearson", 1000, true, false, false, false, false);
	uPearson.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 1.22089))
		return false;
	if(!Compare(dissMatrix[2][0], 0.5))
		return false;
	if(!Compare(dissMatrix[2][1], 1.2008))
		return false;

	// weighted Yue-Clayton
	DiversityCalculator YC("../unit-tests/DataMatrixMothur.env", "", "YueClayton", 1000, true, false, false, false, false);
	YC.Dissimilarity("../unit-tests/temp", "UPGMA");

	ReadDissMatrix("../unit-tests/temp.diss", dissMatrix);
	if(!Compare(dissMatrix[1][0], 0.93233103))
		return false;
	if(!Compare(dissMatrix[2][0], 0.5))
		return false;
	if(!Compare(dissMatrix[2][1], 0.92424202))
		return false;

	return true;
}
Esempio n. 7
0
File: tecplot.c Progetto: rolk/ug
static INT TecplotCommand (INT argc, char **argv)
{
  INT i,j,k,v;                                  /* counters etc.							*/
  INT counter;                      /* for formatting output                    */
  char item[1024],it[256];      /* item buffers                             */
  INT ic=0;                     /* item length                              */
  VECTOR *vc;                                           /* a vector pointer							*/
  ELEMENT *el;                                  /* an element pointer						*/

  MULTIGRID *mg;                                /* our multigrid							*/
  char filename[NAMESIZE];      /* file name for output file				*/
  PFILE *pf;                    /* the output file pointer                  */


  INT nv;                                               /* number of variables (eval functions)		*/
  EVALUES *ev[MAXVARIABLES];            /* pointers to eval function descriptors	*/
  char ev_name[MAXVARIABLES][NAMESIZE];         /* names for eval functions     */
  char s[NAMESIZE];                             /* name of eval proc						*/
  char zonename[NAMESIZE+7] = "";               /* name for zone (initialized to
                                                                                empty string)						*/
  INT numNodes;                                 /* number of data points					*/
  INT numElements;                              /* number of elements						*/
  INT gnumNodes;                /* number of data points globally           */
  INT gnumElements;             /* number of elements globallay             */
  PreprocessingProcPtr pre;             /* pointer to prepare function				*/
  ElementEvalProcPtr eval;              /* pointer to evaluation function			*/
  DOUBLE *CornersCoord[MAX_CORNERS_OF_ELEM];       /* pointers to coordinates    */
  DOUBLE LocalCoord[DIM];               /* is one of the corners local coordinates	*/
  DOUBLE local[DIM];                            /* local coordinate in DOUBLE				*/
  DOUBLE value;                                 /* returned by user eval proc				*/
  INT oe,on;

  INT saveGeometry;                             /* save geometry flag						*/


  /* get current multigrid */
  mg = GetCurrentMultigrid();
  if (mg==NULL)
  {
    PrintErrorMessage('W',"tecplot","no multigrid open\n");
    return (OKCODE);
  }

  /* scan options */
  nv = 0; saveGeometry = 0;
  for(i=1; i<argc; i++)
  {
    switch(argv[i][0])
    {
    case 'e' :            /* read eval proc */
      if (nv>=MAXVARIABLES)
      {
        PrintErrorMessage('E',"tecplot","too many variables specified\n");
        break;
      }
      sscanf(argv[i],"e %s", s);
      ev[nv] = GetElementValueEvalProc(s);
      if (ev[nv]==NULL)
      {
        PrintErrorMessageF('E',"tecplot","could not find eval proc %s\n",s);
        break;
      }
      if (sscanf(argv[i+1],"s %s", s) == 1)
      {
        strcpy(ev_name[nv],s);
        i++;
      }
      else
        strcpy(ev_name[nv],ev[nv]->v.name);
      nv++;
      break;

    case 'z' :
      sscanf(argv[i],"z %s", zonename+3);
      memcpy(zonename, "T=\"", 3);
      memcpy(zonename+strlen(zonename), "\", \0", 4);
      break;

    case 'g' :
      sscanf(argv[i],"g %d", &saveGeometry);
      if (saveGeometry<0) saveGeometry=0;
      if (saveGeometry>1) saveGeometry=1;
      break;
    }
  }
  if (nv==0) UserWrite("tecplot: no variables given, printing mesh data only\n");

  /* get file name and open output file */
  if (sscanf(argv[0],expandfmt(CONCAT3(" tecplot %",NAMELENSTR,"[ -~]")),filename)!=1)
  {
    PrintErrorMessage('E',"tecplot","could not read name of logfile");
    return(PARAMERRORCODE);
  }
  pf = pfile_open(filename);
  if (pf==NULL) return(PARAMERRORCODE);

  /********************************/
  /* TITLE                                              */
  /********************************/

  ic = 0;
  sprintf(it,"TITLE = \"UG TECPLOT OUTPUT\"\n");
  strcpy(item+ic,it); ic+=strlen(it);
  sprintf(it,"VARIABLES = \"X\", \"Y\"");
  strcpy(item+ic,it); ic+=strlen(it);
  if (DIM==3) {
    sprintf(it,", \"Z\"");
    strcpy(item+ic,it); ic+=strlen(it);
  }
  for (i=0; i<nv; i++) {
    sprintf(it,", \"%s\"",ev[i]->v.name);
    strcpy(item+ic,it); ic+=strlen(it);
  }
  sprintf(it,"\n");
  strcpy(item+ic,it); ic+=strlen(it);
  pfile_master_puts(pf,item); ic=0;

  /********************************/
  /* compute sizes				*/
  /********************************/

  /* clear VCFLAG on all levels */
  for (k=0; k<=TOPLEVEL(mg); k++)
    for (vc=FIRSTVECTOR(GRID_ON_LEVEL(mg,k)); vc!=NULL; vc=SUCCVC(vc))
      SETVCFLAG(vc,0);

  /* run thru all levels of elements and set index */
  numNodes = numElements = 0;
  for (k=0; k<=TOPLEVEL(mg); k++)
    for (el=FIRSTELEMENT(GRID_ON_LEVEL(mg,k)); el!=NULL; el=SUCCE(el))
    {
      if (!EstimateHere(el)) continue;                          /* process finest level elements only */
      numElements++;                                            /* increase element counter */
      for (i=0; i<CORNERS_OF_ELEM(el); i++)
      {
        vc = NVECTOR(CORNER(el,i));
        if (VCFLAG(vc)) continue;                       /* we have this one already */

        VINDEX(vc) = ++numNodes;                        /* number of data points, begins with 1 ! */
        SETVCFLAG(vc,1);                                        /* tag vector as visited */
      }
    }

        #ifdef ModelP
  gnumNodes = TPL_GlobalSumINT(numNodes);
  gnumElements = TPL_GlobalSumINT(numElements);
  on=get_offset(numNodes);
  oe=get_offset(numElements);

  /* clear VCFLAG on all levels */
  for (k=0; k<=TOPLEVEL(mg); k++)
    for (vc=FIRSTVECTOR(GRID_ON_LEVEL(mg,k)); vc!=NULL; vc=SUCCVC(vc))
      SETVCFLAG(vc,0);

  /* number in unique way */
  for (k=0; k<=TOPLEVEL(mg); k++)
    for (el=FIRSTELEMENT(GRID_ON_LEVEL(mg,k)); el!=NULL; el=SUCCE(el))
    {
      if (!EstimateHere(el)) continue;                          /* process finest level elements only */
      for (i=0; i<CORNERS_OF_ELEM(el); i++)
      {
        vc = NVECTOR(CORNER(el,i));
        if (VCFLAG(vc)) continue;                       /* we have this one already */

        VINDEX(vc) += on;                                       /* add offset */
        SETVCFLAG(vc,1);                                        /* tag vector as visited */
      }
    }
    #else
  gnumNodes = numNodes;
  gnumElements = numElements;
  oe=on=0;
    #endif


  /********************************/
  /* write ZONE data				*/
  /* uses FEPOINT for data		*/
  /* uses QUADRILATERAL in 2D		*/
  /* and BRICK in 3D				*/
  /********************************/

  /* write zone record header */
  if (DIM==2) sprintf(it,"ZONE %sN=%d, E=%d, F=FEPOINT, ET=QUADRILATERAL\n", zonename, gnumNodes,gnumElements);
  if (DIM==3) sprintf(it,"ZONE %sN=%d, E=%d, F=FEPOINT, ET=BRICK\n", zonename, gnumNodes,gnumElements);
  strcpy(item+ic,it); ic+=strlen(it);
  pfile_master_puts(pf,item); ic=0;

  /* write data in FEPOINT format, i.e. all variables of a node per line*/

  for (k=0; k<=TOPLEVEL(mg); k++)
    for (vc=FIRSTVECTOR(GRID_ON_LEVEL(mg,k)); vc!=NULL; vc=SUCCVC(vc))
      SETVCFLAG(vc,0);           /* clear all flags */

  counter=0;
  for (k=0; k<=TOPLEVEL(mg); k++)
    for (el=FIRSTELEMENT(GRID_ON_LEVEL(mg,k)); el!=NULL; el=SUCCE(el))
    {
      if (!EstimateHere(el)) continue;                  /* process finest level elements only */

      for (i=0; i<CORNERS_OF_ELEM(el); i++)
        CornersCoord[i] = CVECT(MYVERTEX(CORNER(el,i)));                        /* x,y,z of corners */

      for (i=0; i<CORNERS_OF_ELEM(el); i++)
      {
        vc = NVECTOR(CORNER(el,i));
        if (VCFLAG(vc)) continue;                       /* we have this one alre ady */
        SETVCFLAG(vc,1);                                /* tag vector as visited */

        sprintf(it,"%g",(double)XC(MYVERTEX(CORNER(el,i))));
        strcpy(item+ic,it); ic+=strlen(it);
        sprintf(it," %g",(double)YC(MYVERTEX(CORNER(el,i))));
        strcpy(item+ic,it); ic+=strlen(it);
        if (DIM == 3)
        {
          sprintf(it," %g",(double)ZC(MYVERTEX(CORNER(el,i))));
          strcpy(item+ic,it); ic+=strlen(it);
        }

        /* now all the user variables */

        /* get local coordinate of corner */
        LocalCornerCoordinates(DIM,TAG(el),i,local);
        for (j=0; j<DIM; j++) LocalCoord[j] = local[j];

        for (v=0; v<nv; v++)
        {
          pre =  ev[v]->PreprocessProc;
          eval = ev[v]->EvalProc;

          /* execute prepare function */
          /* This is not really equivalent to
             the FEBLOCK-version sinc we call "pre" more
             often than there. D.Werner */

          if (pre!=NULL) pre(ev_name[v],mg);

          /* call eval function */
          value = eval(el,(const DOUBLE **)CornersCoord,LocalCoord);
          sprintf(it," %g",value);
          strcpy(item+ic,it); ic+=strlen(it);
        }
        sprintf(it,"\n");
        strcpy(item+ic,it); ic+=strlen(it);
        pfile_tagged_puts(pf,item,counter+on); ic=0;
        counter++;
      }
    }
  pfile_sync(pf);       /* end of segment */

  sprintf(it,"\n");
  strcpy(item+ic,it); ic+=strlen(it);
  pfile_master_puts(pf,item); ic=0;

  /* finally write the connectivity list */
  counter=0;
  for (k=0; k<=TOPLEVEL(mg); k++)
    for (el=FIRSTELEMENT(GRID_ON_LEVEL(mg,k)); el!=NULL; el=SUCCE(el))
    {
      if (!EstimateHere(el)) continue;           /* process finest level elements only */

      switch(DIM) {
      case 2 :
        switch(TAG(el)) {
        case TRIANGLE :
          sprintf(it,"%d %d %d %d\n",
                  VINDEX(NVECTOR(CORNER(el,0))),
                  VINDEX(NVECTOR(CORNER(el,1))),
                  VINDEX(NVECTOR(CORNER(el,2))),
                  VINDEX(NVECTOR(CORNER(el,2)))
                  );
          break;
        case QUADRILATERAL :
          sprintf(it,"%d %d %d %d\n",
                  VINDEX(NVECTOR(CORNER(el,0))),
                  VINDEX(NVECTOR(CORNER(el,1))),
                  VINDEX(NVECTOR(CORNER(el,2))),
                  VINDEX(NVECTOR(CORNER(el,3)))
                  );
          break;
        default :
          UserWriteF("tecplot: unknown 2D element type with tag(el) = %d detected. Aborting further processing of command tecplot\n", TAG(el));
          return CMDERRORCODE;
          break;
        }
        break;
      case 3 :
        switch(TAG(el)) {
        case HEXAHEDRON :
          sprintf(it,"%d %d %d %d "
                  "%d %d %d %d\n",
                  VINDEX(NVECTOR(CORNER(el,0))),
                  VINDEX(NVECTOR(CORNER(el,1))),
                  VINDEX(NVECTOR(CORNER(el,2))),
                  VINDEX(NVECTOR(CORNER(el,3))),
                  VINDEX(NVECTOR(CORNER(el,4))),
                  VINDEX(NVECTOR(CORNER(el,5))),
                  VINDEX(NVECTOR(CORNER(el,6))),
                  VINDEX(NVECTOR(CORNER(el,7)))
                  );
          break;
        case TETRAHEDRON :
          sprintf(it,"%d %d %d %d "
                  "%d %d %d %d\n",
                  VINDEX(NVECTOR(CORNER(el,0))),
                  VINDEX(NVECTOR(CORNER(el,1))),
                  VINDEX(NVECTOR(CORNER(el,2))),
                  VINDEX(NVECTOR(CORNER(el,2))),
                  VINDEX(NVECTOR(CORNER(el,3))),
                  VINDEX(NVECTOR(CORNER(el,3))),
                  VINDEX(NVECTOR(CORNER(el,3))),
                  VINDEX(NVECTOR(CORNER(el,3)))
                  );
          break;
        case PYRAMID :
          sprintf(it,"%d %d %d %d "
                  "%d %d %d %d\n",
                  VINDEX(NVECTOR(CORNER(el,0))),
                  VINDEX(NVECTOR(CORNER(el,1))),
                  VINDEX(NVECTOR(CORNER(el,2))),
                  VINDEX(NVECTOR(CORNER(el,3))),
                  VINDEX(NVECTOR(CORNER(el,4))),
                  VINDEX(NVECTOR(CORNER(el,4))),
                  VINDEX(NVECTOR(CORNER(el,4))),
                  VINDEX(NVECTOR(CORNER(el,4)))
                  );
          break;
        case PRISM :
          sprintf(it,"%d %d %d %d "
                  "%d %d %d %d\n",
                  VINDEX(NVECTOR(CORNER(el,0))),
                  VINDEX(NVECTOR(CORNER(el,1))),
                  VINDEX(NVECTOR(CORNER(el,2))),
                  VINDEX(NVECTOR(CORNER(el,2))),
                  VINDEX(NVECTOR(CORNER(el,3))),
                  VINDEX(NVECTOR(CORNER(el,4))),
                  VINDEX(NVECTOR(CORNER(el,5))),
                  VINDEX(NVECTOR(CORNER(el,5)))
                  );
          break;
        default :
          UserWriteF("tecplot: unknown 3D element type with tag(el) = %d detected. Aborting further processing of command tecplot\n", TAG(el));
          return CMDERRORCODE;
          break;
        }
        break;
      }
      strcpy(item+ic,it); ic+=strlen(it);
      pfile_tagged_puts(pf,item,counter+oe); ic=0;
      counter++;

    }

  pfile_sync(pf);       /* end of segment */

  /********************************/
  /* GEOMETRY                                   */
  /* we will do this later, since */
  /* domain interface will change */
  /********************************/

  pfile_close(pf);

  return(OKCODE);
}