static Per_CPU_Control *_Thread_Wait_for_join(
  Thread_Control  *executing,
  Per_CPU_Control *cpu_self
)
{
#if defined(RTEMS_POSIX_API)
  ISR_lock_Context lock_context;

  _Thread_State_acquire( executing, &lock_context );

  if (
    _Thread_Is_joinable( executing )
      && _Thread_queue_Is_empty( &executing->Join_queue.Queue )
  ) {
    _Thread_Set_state_locked( executing, STATES_WAITING_FOR_JOIN_AT_EXIT );
    _Thread_State_release( executing, &lock_context );
    _Thread_Dispatch_enable( cpu_self );

    /* Let other threads run */

    cpu_self = _Thread_Dispatch_disable();
  } else {
    _Thread_State_release( executing, &lock_context );
  }
#endif

  return cpu_self;
}
Esempio n. 2
0
bool _Thread_Start(
  Thread_Control                 *the_thread,
  const Thread_Entry_information *entry,
  ISR_lock_Context               *lock_context
)
{
  Per_CPU_Control *cpu_self;

  _Thread_State_acquire_critical( the_thread, lock_context );

  if ( !_States_Is_dormant( the_thread->current_state ) ) {
    _Thread_State_release( the_thread, lock_context );
    return false;
  }

  the_thread->Start.Entry = *entry;
  _Thread_Load_environment( the_thread );
  _Thread_Clear_state_locked( the_thread, STATES_ALL_SET );

  cpu_self = _Thread_Dispatch_disable_critical( lock_context );
  _Thread_State_release( the_thread, lock_context );

  _User_extensions_Thread_start( the_thread );

  _Thread_Dispatch_enable( cpu_self );
  return true;
}
static int _POSIX_Threads_Join( pthread_t thread, void **value_ptr )
{
  Thread_Control       *the_thread;
  Thread_queue_Context  queue_context;
  Per_CPU_Control      *cpu_self;
  Thread_Control       *executing;
  void                 *value;

  _Thread_queue_Context_initialize( &queue_context );
  _Thread_queue_Context_set_expected_level( &queue_context, 1 );
  the_thread = _Thread_Get( thread, &queue_context.Lock_context );

  if ( the_thread == NULL ) {
    return ESRCH;
  }

  cpu_self = _Per_CPU_Get();
  executing = _Per_CPU_Get_executing( cpu_self );

  if ( executing == the_thread ) {
    _ISR_lock_ISR_enable( &queue_context.Lock_context );
    return EDEADLK;
  }

  _Thread_State_acquire_critical( the_thread, &queue_context.Lock_context );

  if ( !_Thread_Is_joinable( the_thread ) ) {
    _Thread_State_release( the_thread, &queue_context.Lock_context );
    return EINVAL;
  }

  if ( _States_Is_waiting_for_join_at_exit( the_thread->current_state ) ) {
    value = the_thread->Life.exit_value;
    _Thread_Clear_state_locked( the_thread, STATES_WAITING_FOR_JOIN_AT_EXIT );
    _Thread_Dispatch_disable_with_CPU( cpu_self, &queue_context.Lock_context );
    _Thread_State_release( the_thread, &queue_context.Lock_context );
    _Thread_Dispatch_enable( cpu_self );
  } else {
    _Thread_Join(
      the_thread,
      STATES_INTERRUPTIBLE_BY_SIGNAL | STATES_WAITING_FOR_JOIN,
      executing,
      &queue_context
    );

    if ( _POSIX_Get_error_after_wait( executing ) != 0 ) {
      _Assert( _POSIX_Get_error_after_wait( executing ) == EINTR );
      return EINTR;
    }

    value = executing->Wait.return_argument;
  }

  if ( value_ptr != NULL ) {
    *value_ptr = value;
  }

  return 0;
}
static void _Thread_Remove_life_change_request( Thread_Control *the_thread )
{
  ISR_lock_Context lock_context;
  uint32_t         pending_requests;

  _Thread_State_acquire( the_thread, &lock_context );

  pending_requests = the_thread->Life.pending_life_change_requests;
  the_thread->Life.pending_life_change_requests = pending_requests - 1;

  if ( pending_requests == 1 ) {
    /*
     * Do not remove states used for thread queues to avoid race conditions on
     * SMP configurations.  We could interrupt an extract operation on another
     * processor disregarding the thread wait flags.  Rely on
     * _Thread_queue_Extract_with_proxy() for removal of these states.
     */
    _Thread_Clear_state_locked(
      the_thread,
      STATES_LIFE_IS_CHANGING | STATES_SUSPENDED
        | ( STATES_BLOCKED & ~STATES_LOCALLY_BLOCKED )
    );
  }

  _Thread_State_release( the_thread, &lock_context );
}
Esempio n. 5
0
States_Control _Thread_Set_state(
  Thread_Control *the_thread,
  States_Control  state
)
{
  ISR_lock_Context lock_context;
  States_Control   previous_state;
  States_Control   next_state;

  _Assert( state != 0 );

  _Thread_State_acquire( the_thread, &lock_context );

  previous_state = the_thread->current_state;
  next_state = _States_Set( state, previous_state);
  the_thread->current_state = next_state;

  if ( _States_Is_ready( previous_state ) ) {
    _Scheduler_Block( the_thread );
  }

  _Thread_State_release( the_thread, &lock_context );

  return previous_state;
}
void _Thread_Exit(
  Thread_Control    *executing,
  Thread_Life_state  set,
  void              *exit_value
)
{
  ISR_lock_Context lock_context;

  _Assert(
    _Watchdog_Get_state( &executing->Timer.Watchdog ) == WATCHDOG_INACTIVE
  );
  _Assert(
    executing->current_state == STATES_READY
      || executing->current_state == STATES_SUSPENDED
  );

  _Thread_State_acquire( executing, &lock_context );
  _Thread_Set_exit_value( executing, exit_value );
  _Thread_Change_life_locked(
    executing,
    0,
    set,
    THREAD_LIFE_PROTECTED | THREAD_LIFE_CHANGE_DEFERRED
  );
  _Thread_State_release( executing, &lock_context );
}
Esempio n. 7
0
void _Signal_Action_handler(
  Thread_Control   *executing,
  Thread_Action    *action,
  ISR_lock_Context *lock_context
)
{
  RTEMS_API_Control *api;
  ASR_Information   *asr;
  rtems_signal_set   signal_set;
  Modes_Control      prev_mode;

  (void) action;

  /*
   *  Signal Processing
   */

  api = executing->API_Extensions[ THREAD_API_RTEMS ];
  asr = &api->Signal;
  signal_set = _ASR_Get_posted_signals( asr );

  _Thread_State_release( executing, lock_context );

  if ( signal_set == 0 ) {
    return;
  }

  asr->nest_level += 1;
  rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );

  (*asr->handler)( signal_set );

  asr->nest_level -= 1;
  rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
}
void _Thread_Cancel(
  Thread_Control *the_thread,
  Thread_Control *executing,
  void           *exit_value
)
{
  ISR_lock_Context   lock_context;
  Thread_Life_state  previous;
  Per_CPU_Control   *cpu_self;
  Priority_Control   priority;

  _Assert( the_thread != executing );

  _Thread_State_acquire( the_thread, &lock_context );

  _Thread_Set_exit_value( the_thread, exit_value );
  previous = _Thread_Change_life_locked(
    the_thread,
    0,
    THREAD_LIFE_TERMINATING,
    0
  );

  cpu_self = _Thread_Dispatch_disable_critical( &lock_context );
  priority = _Thread_Get_priority( executing );

  if ( _States_Is_dormant( the_thread->current_state ) ) {
    _Thread_State_release( the_thread, &lock_context );
    _Thread_Make_zombie( the_thread );
  } else if ( _Thread_Is_life_change_allowed( previous ) ) {
    _Thread_Add_life_change_request( the_thread );
    _Thread_State_release( the_thread, &lock_context );

    _Thread_Finalize_life_change( the_thread, priority );
  } else {
    _Thread_Add_life_change_request( the_thread );
    _Thread_Clear_state_locked( the_thread, STATES_SUSPENDED );
    _Thread_State_release( the_thread, &lock_context );

    _Thread_Raise_real_priority( the_thread, priority );
    _Thread_Remove_life_change_request( the_thread );
  }

  _Thread_Dispatch_enable( cpu_self );
}
rtems_status_code rtems_task_set_priority(
  rtems_id             id,
  rtems_task_priority  new_priority,
  rtems_task_priority *old_priority_p
)
{
  Thread_Control          *the_thread;
  ISR_lock_Context         lock_context;
  const Scheduler_Control *scheduler;
  Priority_Control         old_priority;
  rtems_status_code        status;

  if ( old_priority_p == NULL ) {
    return RTEMS_INVALID_ADDRESS;
  }

  the_thread = _Thread_Get( id, &lock_context );

  if ( the_thread == NULL ) {
#if defined(RTEMS_MULTIPROCESSING)
    return _RTEMS_tasks_MP_Set_priority( id, new_priority, old_priority_p );
#else
    return RTEMS_INVALID_ID;
#endif
  }

  if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
    RTEMS_tasks_Set_priority_context  context;
    Per_CPU_Control                  *cpu_self;

    cpu_self = _Thread_Dispatch_disable_critical( &lock_context );
    _ISR_lock_ISR_enable( &lock_context );

    context.new_priority = new_priority;
    _Thread_Change_priority(
      the_thread,
      0,
      &context,
      _RTEMS_tasks_Set_priority_filter,
      false
    );

    _Thread_Dispatch_enable( cpu_self );
    scheduler = context.scheduler;
    old_priority = context.old_priority;
    status = context.status;
  } else {
    _Thread_State_acquire_critical( the_thread, &lock_context );
    scheduler = _Scheduler_Get_own( the_thread );
    old_priority = _Thread_Get_priority( the_thread );
    _Thread_State_release( the_thread, &lock_context );
    status = RTEMS_SUCCESSFUL;
  }

  *old_priority_p = _RTEMS_Priority_From_core( scheduler, old_priority );
  return status;
}
bool _Thread_Restart_other(
  Thread_Control                 *the_thread,
  const Thread_Entry_information *entry,
  ISR_lock_Context               *lock_context
)
{
  Thread_Life_state  previous;
  Per_CPU_Control   *cpu_self;

  _Thread_State_acquire_critical( the_thread, lock_context );

  if ( _States_Is_dormant( the_thread->current_state ) ) {
    _Thread_State_release( the_thread, lock_context );
    return false;
  }

  the_thread->Start.Entry = *entry;
  previous = _Thread_Change_life_locked(
    the_thread,
    0,
    THREAD_LIFE_RESTARTING,
    0
  );

  cpu_self = _Thread_Dispatch_disable_critical( lock_context );

  if ( _Thread_Is_life_change_allowed( previous ) ) {
    _Thread_Add_life_change_request( the_thread );
    _Thread_State_release( the_thread, lock_context );

    _Thread_Finalize_life_change(
      the_thread,
      the_thread->Start.initial_priority
    );
  } else {
    _Thread_Clear_state_locked( the_thread, STATES_SUSPENDED );
    _Thread_State_release( the_thread, lock_context );
  }

  _Thread_Dispatch_enable( cpu_self );
  return true;
}
Esempio n. 11
0
void _Thread_Restart_self(
  Thread_Control                 *executing,
  const Thread_Entry_information *entry,
  ISR_lock_Context               *lock_context
)
{
  Per_CPU_Control      *cpu_self;
  Thread_queue_Context  queue_context;

  _Assert(
    _Watchdog_Get_state( &executing->Timer.Watchdog ) == WATCHDOG_INACTIVE
  );
  _Assert(
    executing->current_state == STATES_READY
      || executing->current_state == STATES_SUSPENDED
  );

  _Thread_queue_Context_initialize( &queue_context );
  _Thread_queue_Context_clear_priority_updates( &queue_context );
  _Thread_State_acquire_critical( executing, lock_context );

  executing->Start.Entry = *entry;
  _Thread_Change_life_locked(
    executing,
    0,
    THREAD_LIFE_RESTARTING,
    THREAD_LIFE_PROTECTED | THREAD_LIFE_CHANGE_DEFERRED
  );

  cpu_self = _Thread_Dispatch_disable_critical( lock_context );
  _Thread_State_release( executing, lock_context );

  _Thread_Wait_acquire_default( executing, lock_context );
  _Thread_Priority_change(
    executing,
    &executing->Real_priority,
    executing->Start.initial_priority,
    false,
    &queue_context
  );
  _Thread_Wait_release_default( executing, lock_context );

  _Thread_Priority_update( &queue_context );
  _Thread_Dispatch_enable( cpu_self );
  RTEMS_UNREACHABLE();
}
Esempio n. 12
0
static void CPU_usage_Per_thread_handler(
  Thread_Control *the_thread
)
{
  const Scheduler_Control *scheduler;
  ISR_lock_Context         state_lock_context;
  ISR_lock_Context         scheduler_lock_context;

  _Thread_State_acquire( the_thread, &state_lock_context );
  scheduler = _Scheduler_Get( the_thread );
  _Scheduler_Acquire_critical( scheduler, &scheduler_lock_context );

  _Timestamp_Set_to_zero( &the_thread->cpu_time_used );

  _Scheduler_Release_critical( scheduler, &scheduler_lock_context );
  _Thread_State_release( the_thread, &state_lock_context );
}
Esempio n. 13
0
static bool _POSIX_signals_Unblock_thread_done(
  Thread_Control    *the_thread,
  POSIX_API_Control *api,
  bool               status
)
{
  ISR_lock_Context lock_context;

  _Thread_State_acquire( the_thread, &lock_context );
  _Thread_Add_post_switch_action(
    the_thread,
    &api->Signal_action,
    _POSIX_signals_Action_handler
  );
  _Thread_State_release( the_thread, &lock_context );

  return status;
}
Thread_Life_state _Thread_Change_life(
  Thread_Life_state clear,
  Thread_Life_state set,
  Thread_Life_state ignore
)
{
  ISR_lock_Context   lock_context;
  Thread_Control    *executing;
  Per_CPU_Control   *cpu_self;
  Thread_Life_state  previous;

  executing = _Thread_State_acquire_for_executing( &lock_context );

  previous = _Thread_Change_life_locked( executing, clear, set, ignore );

  cpu_self = _Thread_Dispatch_disable_critical( &lock_context );
  _Thread_State_release( executing, &lock_context );
  _Thread_Dispatch_enable( cpu_self );

  return previous;
}
void _Thread_Restart_self(
  Thread_Control                 *executing,
  const Thread_Entry_information *entry,
  ISR_lock_Context               *lock_context
)
{
  Per_CPU_Control  *cpu_self;
  Priority_Control  unused;

  _Assert(
    _Watchdog_Get_state( &executing->Timer.Watchdog ) == WATCHDOG_INACTIVE
  );
  _Assert(
    executing->current_state == STATES_READY
      || executing->current_state == STATES_SUSPENDED
  );

  _Thread_State_acquire_critical( executing, lock_context );

  executing->Start.Entry = *entry;
  _Thread_Change_life_locked(
    executing,
    0,
    THREAD_LIFE_RESTARTING,
    THREAD_LIFE_PROTECTED | THREAD_LIFE_CHANGE_DEFERRED
  );

  cpu_self = _Thread_Dispatch_disable_critical( lock_context );
  _Thread_State_release( executing, lock_context );

  _Thread_Set_priority(
    executing,
    executing->Start.initial_priority,
    &unused,
    true
  );

  _Thread_Dispatch_enable( cpu_self );
  RTEMS_UNREACHABLE();
}
Esempio n. 16
0
rtems_status_code rtems_signal_catch(
  rtems_asr_entry   asr_handler,
  rtems_mode        mode_set
)
{
  Thread_Control     *executing;
  RTEMS_API_Control  *api;
  ASR_Information    *asr;
  ISR_lock_Context    lock_context;

  executing = _Thread_State_acquire_for_executing( &lock_context );
  api = executing->API_Extensions[ THREAD_API_RTEMS ];
  asr = &api->Signal;

  if ( !_ASR_Is_null_handler( asr_handler ) ) {
    asr->mode_set = mode_set;
    asr->handler = asr_handler;
  } else {
    _ASR_Initialize( asr );
  }

  _Thread_State_release( executing, &lock_context );
  return RTEMS_SUCCESSFUL;
}
Esempio n. 17
0
void _Thread_Change_priority(
  Thread_Control                *the_thread,
  Priority_Control               new_priority,
  void                          *arg,
  Thread_Change_priority_filter  filter,
  bool                           prepend_it
)
{
  ISR_lock_Context  lock_context;
  ISR_lock_Control *lock;

  lock = _Thread_Lock_acquire( the_thread, &lock_context );

  /*
   * For simplicity set the priority restore hint unconditionally since this is
   * an average case optimization.  Otherwise complicated atomic operations
   * would be necessary.  Synchronize with a potential read of the resource
   * count in the filter function.  See also _CORE_mutex_Surrender(),
   * _Thread_Set_priority_filter() and _Thread_Restore_priority_filter().
   */
  the_thread->priority_restore_hint = true;
  _Atomic_Fence( ATOMIC_ORDER_ACQ_REL );

  /*
   *  Do not bother recomputing all the priority related information if
   *  we are not REALLY changing priority.
   */
  if ( ( *filter )( the_thread, &new_priority, arg ) ) {
    uint32_t my_generation;

    my_generation = the_thread->priority_generation + 1;
    the_thread->current_priority = new_priority;
    the_thread->priority_generation = my_generation;

    ( *the_thread->Wait.operations->priority_change )(
      the_thread,
      new_priority,
      the_thread->Wait.queue
    );

    _Thread_Lock_release( lock, &lock_context );

    _Thread_State_acquire( the_thread, &lock_context );

    if ( the_thread->priority_generation == my_generation ) {
      if ( _States_Is_ready( the_thread->current_state ) ) {
        _Scheduler_Change_priority(
          the_thread,
          new_priority,
          prepend_it
        );
      } else {
        _Scheduler_Update_priority( the_thread, new_priority );
      }
    }

    _Thread_State_release( the_thread, &lock_context );
  } else {
    _Thread_Lock_release( lock, &lock_context );
  }
}
Esempio n. 18
0
static void _POSIX_signals_Action_handler(
  Thread_Control   *executing,
  Thread_Action    *action,
  ISR_lock_Context *lock_context
)
{
  POSIX_API_Control *api;
  int                signo;
  uint32_t           hold_errno;

  (void) action;
  _Thread_State_release( executing, lock_context );

  api = executing->API_Extensions[ THREAD_API_POSIX ];

  /*
   *  We need to ensure that if the signal handler executes a call
   *  which overwrites the unblocking status, we restore it.
   */
  hold_errno = executing->Wait.return_code;

  /*
   * api may be NULL in case of a thread close in progress
   */
  if ( !api )
    return;

  /*
   *  In case the executing thread is blocked or about to block on something
   *  that uses the thread wait information, then this is a kernel bug.
   */
  _Assert(
    ( _Thread_Wait_flags_get( executing )
      & ( THREAD_WAIT_STATE_BLOCKED | THREAD_WAIT_STATE_INTEND_TO_BLOCK ) ) == 0
  );

  /*
   *  If we invoke any user code, there is the possibility that
   *  a new signal has been posted that we should process so we
   *  restart the loop if a signal handler was invoked.
   *
   *  The first thing done is to check there are any signals to be
   *  processed at all.  No point in doing this loop otherwise.
   */
  while (1) {
    Thread_queue_Context queue_context;

    _Thread_queue_Context_initialize( &queue_context );
    _POSIX_signals_Acquire( &queue_context );
      if ( !(api->signals_unblocked &
            (api->signals_pending | _POSIX_signals_Pending)) ) {
       _POSIX_signals_Release( &queue_context );
       break;
     }
    _POSIX_signals_Release( &queue_context );

    for ( signo = SIGRTMIN ; signo <= SIGRTMAX ; signo++ ) {
      _POSIX_signals_Check_signal( api, signo, false );
      _POSIX_signals_Check_signal( api, signo, true );
    }
    /* Unfortunately - nothing like __SIGFIRSTNOTRT in newlib signal .h */

    for ( signo = SIGHUP ; signo <= __SIGLASTNOTRT ; signo++ ) {
      _POSIX_signals_Check_signal( api, signo, false );
      _POSIX_signals_Check_signal( api, signo, true );
    }
  }

  executing->Wait.return_code = hold_errno;
}
Esempio n. 19
0
int pthread_setschedparam(
  pthread_t           thread,
  int                 policy,
  struct sched_param *param
)
{
  Thread_Control                      *the_thread;
  Per_CPU_Control                     *cpu_self;
  POSIX_API_Control                   *api;
  Thread_CPU_budget_algorithms         budget_algorithm;
  Thread_CPU_budget_algorithm_callout  budget_callout;
  int                                  eno;
  Priority_Control                     unused;
  ISR_lock_Context                     lock_context;
  Priority_Control                     new_priority;

  /*
   *  Check all the parameters
   */

  if ( param == NULL ) {
    return EINVAL;
  }

  eno = _POSIX_Thread_Translate_sched_param(
    policy,
    param,
    &budget_algorithm,
    &budget_callout
  );
  if ( eno != 0 ) {
    return eno;
  }

  the_thread = _Thread_Get_interrupt_disable( thread, &lock_context );

  if ( the_thread == NULL ) {
    return ESRCH;
  }

  /*
   *  Actually change the scheduling policy and parameters
   */

  cpu_self = _Thread_Dispatch_disable_critical( &lock_context );
  _Thread_State_acquire_critical( the_thread, &lock_context );

  api = the_thread->API_Extensions[ THREAD_API_POSIX ];

  if ( api->schedpolicy == SCHED_SPORADIC ) {
    _Watchdog_Per_CPU_remove_relative( &api->Sporadic_timer );
  }

  api->schedpolicy = policy;
  api->schedparam  = *param;
  api->Attributes.schedpolicy = policy;
  api->Attributes.schedparam  = *param;

  the_thread->budget_algorithm = budget_algorithm;
  the_thread->budget_callout   = budget_callout;

  switch ( policy ) {
    case SCHED_OTHER:
    case SCHED_FIFO:
    case SCHED_RR:
      the_thread->cpu_time_budget =
        rtems_configuration_get_ticks_per_timeslice();
      new_priority = _POSIX_Priority_To_core( api->schedparam.sched_priority );
      break;

    case SCHED_SPORADIC:
      api->ss_high_priority = api->schedparam.sched_priority;
      break;
  }

  _Thread_State_release( the_thread, &lock_context );

  switch ( policy ) {
    case SCHED_OTHER:
    case SCHED_FIFO:
    case SCHED_RR:
      _Thread_Set_priority( the_thread, new_priority, &unused, true );
      break;

    case SCHED_SPORADIC:
      _POSIX_Threads_Sporadic_budget_TSR( &api->Sporadic_timer );
      break;
  }

  _Thread_Dispatch_enable( cpu_self );
  return 0;
}
void _Thread_Life_action_handler(
  Thread_Control   *executing,
  Thread_Action    *action,
  ISR_lock_Context *lock_context
)
{
  Thread_Life_state  previous_life_state;
  Per_CPU_Control   *cpu_self;

  (void) action;

  previous_life_state = executing->Life.state;
  executing->Life.state = previous_life_state | THREAD_LIFE_PROTECTED;

  _Thread_State_release( executing, lock_context );

  if ( _Thread_Is_life_terminating( previous_life_state ) ) {
    _User_extensions_Thread_terminate( executing );
  } else {
    _Assert( _Thread_Is_life_restarting( previous_life_state ) );

    _User_extensions_Thread_restart( executing );
  }

  cpu_self = _Thread_Dispatch_disable();

  if ( _Thread_Is_life_terminating( previous_life_state ) ) {
    cpu_self = _Thread_Wait_for_join( executing, cpu_self );

    _Thread_Make_zombie( executing );

    /* FIXME: Workaround for https://devel.rtems.org/ticket/2751 */
    cpu_self->dispatch_necessary = true;

    _Assert( cpu_self->heir != executing );
    _Thread_Dispatch_enable( cpu_self );
    RTEMS_UNREACHABLE();
  }

  _Assert( _Thread_Is_life_restarting( previous_life_state ) );

  _Thread_State_acquire( executing, lock_context );

  _Thread_Change_life_locked(
    executing,
    THREAD_LIFE_PROTECTED | THREAD_LIFE_RESTARTING,
    0,
    0
  );

  _Thread_State_release( executing, lock_context );

  _Assert(
    _Watchdog_Get_state( &executing->Timer.Watchdog ) == WATCHDOG_INACTIVE
  );
  _Assert(
    executing->current_state == STATES_READY
      || executing->current_state == STATES_SUSPENDED
  );

  _User_extensions_Destroy_iterators( executing );
  _Thread_Load_environment( executing );

#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
  if ( executing->fp_context != NULL ) {
    _Context_Restore_fp( &executing->fp_context );
  }
#endif

  _Context_Restart_self( &executing->Registers );
  RTEMS_UNREACHABLE();
}