void structAtomicLoad() {
  struct foo f = __c11_atomic_load(&bigAtomic, 5); // expected-error {{atomic load requires runtime support that is not available for this target}}
  struct bar b;
  __atomic_load(&smallThing, &b, 5);

  __atomic_load(&bigThing, &f, 5);
}
static inline void
atomic_daccum (double *p, const double val)
{
#if defined(ATOMIC_FP_FE_EMUL)
  double pv, upd;
  int done = 0;
  do {
    __atomic_load ((int64_t*)p, (int64_t*)&pv, __ATOMIC_ACQUIRE);
    if (__atomic_compare_exchange ((int64_t*)p, (int64_t*)&pv, (int64_t*)&NAN_EMPTY, 1, __ATOMIC_ACQ_REL, __ATOMIC_ACQUIRE)) {
      upd = pv + val;
      __atomic_store ((int64_t*)p, (int64_t*)&upd, __ATOMIC_RELEASE);
      done = 1;
    } else
      MM_PAUSE();
  } while (!done);
#elif defined(ATOMIC_FP_OPTIMISTIC)
  double pv, upd;
  __atomic_load ((int64_t*)p, (int64_t*)&pv, __ATOMIC_ACQUIRE);
  do {
    upd = pv + val;
    if (__atomic_compare_exchange ((int64_t*)p, (int64_t*)&pv, (int64_t*)&upd, 1, __ATOMIC_ACQ_REL, __ATOMIC_ACQUIRE))
      break;
    else
      MM_PAUSE();
  } while (1);
#else
  OMP(omp atomic) *p += val;
#endif
}
Esempio n. 3
0
 T unsafe_load() const noexcept {
     T result;
     __atomic_load(reinterpret_cast<const uint64_t*>(&mElement), reinterpret_cast<uint64_t*>(&result),
             std::memory_order_seq_cst);
     __atomic_load(reinterpret_cast<const uint64_t*>(&mElement) + 1, reinterpret_cast<uint64_t*>(&result) + 1,
             std::memory_order_seq_cst);
     return result;
 }
Esempio n. 4
0
int
main ()
{
  v = 0;
  count = 0;

  if (__atomic_load_n (&v, __ATOMIC_RELAXED) != count++) 
    abort(); 
  else 
    v++;

  if (__atomic_load_n (&v, __ATOMIC_ACQUIRE) != count++) 
    abort(); 
  else 
    v++;

  if (__atomic_load_n (&v, __ATOMIC_CONSUME) != count++) 
    abort(); 
  else 
    v++;

  if (__atomic_load_n (&v, __ATOMIC_SEQ_CST) != count++) 
    abort(); 
  else 
    v++;

  /* Now test the generic variants.  */

  __atomic_load (&v, &count, __ATOMIC_RELAXED);
  if (count != v)
    abort(); 
  else 
    v++;

  __atomic_load (&v, &count, __ATOMIC_ACQUIRE);
  if (count != v)
    abort(); 
  else 
    v++;

  __atomic_load (&v, &count, __ATOMIC_CONSUME);
  if (count != v)
    abort(); 
  else 
    v++;

  __atomic_load (&v, &count, __ATOMIC_SEQ_CST);
  if (count != v)
    abort(); 
  else 
    v++;


  return 0;
}
uint64_t usecTimestamp(void)
{
  uint32_t high0;
  __atomic_load(&usecTimerHighCount, &high0, __ATOMIC_SEQ_CST);
  uint32_t low = TIM7->CNT;
  uint32_t high;
  __atomic_load(&usecTimerHighCount, &high, __ATOMIC_SEQ_CST);

  // There was no increment in between
  if (high == high0)
  {
    return (((uint64_t)high) << 16) + low;
  }
  // There was an increment, but we don't expect another one soon
  return (((uint64_t)high) << 16) + TIM7->CNT;
}
Esempio n. 6
0
/* Test for consistency on sizes 1, 2, 4, 8, 16 and 32.  */
int
main ()
{
  test_struct c;

  __atomic_store (&a, &zero, __ATOMIC_RELAXED);
  if (memcmp (&a, &zero, size))
    abort ();

  __atomic_exchange (&a, &ones, &c, __ATOMIC_SEQ_CST);
  if (memcmp (&c, &zero, size))
    abort ();
  if (memcmp (&a, &ones, size))
    abort ();

  __atomic_load (&a, &b, __ATOMIC_RELAXED);
  if (memcmp (&b, &ones, size))
    abort ();

  if (!__atomic_compare_exchange (&a, &b, &zero, false, __ATOMIC_SEQ_CST, __ATOMIC_ACQUIRE))
    abort();
  if (memcmp (&a, &zero, size))
    abort ();

  if (__atomic_compare_exchange (&a, &b, &ones, false, __ATOMIC_SEQ_CST, __ATOMIC_ACQUIRE))
    abort();
  if (memcmp (&b, &zero, size))
    abort ();

  return 0;
}
Esempio n. 7
0
void test1(void) {
  (void)__atomic_load(&c1, &c2, memory_order_seq_cst);
  (void)__atomic_store(&c1, &c2, memory_order_seq_cst);
  (void)__atomic_load(&s1, &s2, memory_order_seq_cst);
  (void)__atomic_store(&s1, &s2, memory_order_seq_cst);
  (void)__atomic_load(&i1, &i2, memory_order_seq_cst);
  (void)__atomic_store(&i1, &i2, memory_order_seq_cst);
  (void)__atomic_load(&ll1, &ll2, memory_order_seq_cst);
  (void)__atomic_store(&ll1, &ll2, memory_order_seq_cst);
  (void)__atomic_load(&a1, &a2, memory_order_seq_cst);
  (void)__atomic_store(&a1, &a2, memory_order_seq_cst);

// ARM-LABEL: define{{.*}} void @test1
// ARM: = call{{.*}} zeroext i8 @__atomic_load_1(i8* @c1
// ARM: call{{.*}} void @__atomic_store_1(i8* @c1, i8 zeroext
// ARM: = call{{.*}} zeroext i16 @__atomic_load_2(i8* bitcast (i16* @s1 to i8*)
// ARM: call{{.*}} void @__atomic_store_2(i8* bitcast (i16* @s1 to i8*), i16 zeroext
// ARM: = call{{.*}} i32 @__atomic_load_4(i8* bitcast (i32* @i1 to i8*)
// ARM: call{{.*}} void @__atomic_store_4(i8* bitcast (i32* @i1 to i8*), i32
// ARM: = call{{.*}} i64 @__atomic_load_8(i8* bitcast (i64* @ll1 to i8*)
// ARM: call{{.*}} void @__atomic_store_8(i8* bitcast (i64* @ll1 to i8*), i64
// ARM: call{{.*}} void @__atomic_load(i32 100, i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a1, i32 0, i32 0), i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a2, i32 0, i32 0)
// ARM: call{{.*}} void @__atomic_store(i32 100, i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a1, i32 0, i32 0), i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a2, i32 0, i32 0)

// PPC32-LABEL: define void @test1
// PPC32: = load atomic i8, i8* @c1 seq_cst
// PPC32: store atomic i8 {{.*}}, i8* @c1 seq_cst
// PPC32: = load atomic i16, i16* @s1 seq_cst
// PPC32: store atomic i16 {{.*}}, i16* @s1 seq_cst
// PPC32: = load atomic i32, i32* @i1 seq_cst
// PPC32: store atomic i32 {{.*}}, i32* @i1 seq_cst
// PPC32: = call i64 @__atomic_load_8(i8* bitcast (i64* @ll1 to i8*)
// PPC32: call void @__atomic_store_8(i8* bitcast (i64* @ll1 to i8*), i64
// PPC32: call void @__atomic_load(i32 100, i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a1, i32 0, i32 0), i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a2, i32 0, i32 0)
// PPC32: call void @__atomic_store(i32 100, i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a1, i32 0, i32 0), i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a2, i32 0, i32 0)

// PPC64-LABEL: define void @test1
// PPC64: = load atomic i8, i8* @c1 seq_cst
// PPC64: store atomic i8 {{.*}}, i8* @c1 seq_cst
// PPC64: = load atomic i16, i16* @s1 seq_cst
// PPC64: store atomic i16 {{.*}}, i16* @s1 seq_cst
// PPC64: = load atomic i32, i32* @i1 seq_cst
// PPC64: store atomic i32 {{.*}}, i32* @i1 seq_cst
// PPC64: = load atomic i64, i64* @ll1 seq_cst
// PPC64: store atomic i64 {{.*}}, i64* @ll1 seq_cst
// PPC64: call void @__atomic_load(i64 100, i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a1, i32 0, i32 0), i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a2, i32 0, i32 0)
// PPC64: call void @__atomic_store(i64 100, i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a1, i32 0, i32 0), i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a2, i32 0, i32 0)

// MIPS32-LABEL: define void @test1
// MIPS32: = load atomic i8, i8* @c1 seq_cst
// MIPS32: store atomic i8 {{.*}}, i8* @c1 seq_cst
// MIPS32: = load atomic i16, i16* @s1 seq_cst
// MIPS32: store atomic i16 {{.*}}, i16* @s1 seq_cst
// MIPS32: = load atomic i32, i32* @i1 seq_cst
// MIPS32: store atomic i32 {{.*}}, i32* @i1 seq_cst
// MIPS32: call i64 @__atomic_load_8(i8* bitcast (i64* @ll1 to i8*)
// MIPS32: call void @__atomic_store_8(i8* bitcast (i64* @ll1 to i8*), i64
// MIPS32: call void @__atomic_load(i32 signext 100, i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a1, i32 0, i32 0), i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a2, i32 0, i32 0)
// MIPS32: call void @__atomic_store(i32 signext 100, i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a1, i32 0, i32 0), i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a2, i32 0, i32 0)

// MIPS64-LABEL: define void @test1
// MIPS64: = load atomic i8, i8* @c1 seq_cst
// MIPS64: store atomic i8 {{.*}}, i8* @c1 seq_cst
// MIPS64: = load atomic i16, i16* @s1 seq_cst
// MIPS64: store atomic i16 {{.*}}, i16* @s1 seq_cst
// MIPS64: = load atomic i32, i32* @i1 seq_cst
// MIPS64: store atomic i32 {{.*}}, i32* @i1 seq_cst
// MIPS64: = load atomic i64, i64* @ll1 seq_cst
// MIPS64: store atomic i64 {{.*}}, i64* @ll1 seq_cst
// MIPS64: call void @__atomic_load(i64 zeroext 100, i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a1, i32 0, i32 0)
// MIPS64: call void @__atomic_store(i64 zeroext 100, i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a1, i32 0, i32 0), i8* getelementptr inbounds ([100 x i8], [100 x i8]* @a2, i32 0, i32 0)
}
LOGGING_BUFFER_STATUS static inline _readBufferStatus() {
    LOGGING_BUFFER_STATUS status;
    __atomic_load(&buffer_status, &status, __ATOMIC_SEQ_CST);
    return status;
}
inline void*    OrderAccess::load_ptr_acquire(const volatile void* p)
{ void* data; __atomic_load((void* const volatile *)p, &data, __ATOMIC_ACQUIRE); return data; }
inline intptr_t OrderAccess::load_ptr_acquire(volatile intptr_t*   p)
{ intptr_t data; __atomic_load(p, &data, __ATOMIC_ACQUIRE); return data; }
inline jdouble  OrderAccess::load_acquire(volatile jdouble* p)
{ jdouble data; __atomic_load(p, &data, __ATOMIC_ACQUIRE); return data; }
inline jfloat   OrderAccess::load_acquire(volatile jfloat*  p)
{ jfloat data; __atomic_load(p, &data, __ATOMIC_ACQUIRE); return data; }
inline julong   OrderAccess::load_acquire(volatile julong*  p)
{ julong data; __atomic_load(p, &data, __ATOMIC_ACQUIRE); return data; }
Esempio n. 14
-14
void test_presence(void)
{
  // CHECK-LABEL: @test_presence
  // CHECK: atomicrmw add i32* {{.*}} seq_cst
  __atomic_fetch_add(&i, 1, memory_order_seq_cst);
  // CHECK: atomicrmw sub i32* {{.*}} seq_cst
  __atomic_fetch_sub(&i, 1, memory_order_seq_cst);
  // CHECK: load atomic i32, i32* {{.*}} seq_cst
  int r;
  __atomic_load(&i, &r, memory_order_seq_cst);
  // CHECK: store atomic i32 {{.*}} seq_cst
  r = 0;
  __atomic_store(&i, &r, memory_order_seq_cst);

  // CHECK: __atomic_fetch_add_8
  __atomic_fetch_add(&l, 1, memory_order_seq_cst);
  // CHECK: __atomic_fetch_sub_8
  __atomic_fetch_sub(&l, 1, memory_order_seq_cst);
  // CHECK: __atomic_load_8
  long long rl;
  __atomic_load(&l, &rl, memory_order_seq_cst);
  // CHECK: __atomic_store_8
  rl = 0;
  __atomic_store(&l, &rl, memory_order_seq_cst);
}