__complex__ float __kernel_casinhf (__complex__ float x, int adj) { __complex__ float res; float rx, ix; __complex__ float y; /* Avoid cancellation by reducing to the first quadrant. */ rx = fabsf (__real__ x); ix = fabsf (__imag__ x); if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON) { /* For large x in the first quadrant, x + csqrt (1 + x * x) is sufficiently close to 2 * x to make no significant difference to the result; avoid possible overflow from the squaring and addition. */ __real__ y = rx; __imag__ y = ix; if (adj) { float t = __real__ y; __real__ y = __copysignf (__imag__ y, __imag__ x); __imag__ y = t; } res = __clogf (y); __real__ res += (float) M_LN2; } else { __real__ y = (rx - ix) * (rx + ix) + 1.0; __imag__ y = 2.0 * rx * ix; y = __csqrtf (y); __real__ y += rx; __imag__ y += ix; if (adj) { float t = __real__ y; __real__ y = __copysignf (__imag__ y, __imag__ x); __imag__ y = t; } res = __clogf (y); } /* Give results the correct sign for the original argument. */ __real__ res = __copysignf (__real__ res, __real__ x); __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x)); return res; }
__complex__ float __casinhf (__complex__ float x) { __complex__ float res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (rcls <= FP_INFINITE || icls <= FP_INFINITE) { if (icls == FP_INFINITE) { __real__ res = __copysignf (HUGE_VALF, __real__ x); if (rcls == FP_NAN) __imag__ res = __nanf (""); else __imag__ res = __copysignf (rcls >= FP_ZERO ? M_PI_2 : M_PI_4, __imag__ x); } else if (rcls <= FP_INFINITE) { __real__ res = __real__ x; if ((rcls == FP_INFINITE && icls >= FP_ZERO) || (rcls == FP_NAN && icls == FP_ZERO)) __imag__ res = __copysignf (0.0, __imag__ x); else __imag__ res = __nanf (""); } else { __real__ res = __nanf (""); __imag__ res = __nanf (""); } } else if (rcls == FP_ZERO && icls == FP_ZERO) { res = x; } else { __complex__ float y; __real__ y = (__real__ x - __imag__ x) * (__real__ x + __imag__ x) + 1.0; __imag__ y = 2.0 * __real__ x * __imag__ x; y = __csqrtf (y); __real__ y += __real__ x; __imag__ y += __imag__ x; res = __clogf (y); } return res; }
__complex__ float __catanhf (__complex__ float x) { __complex__ float res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls <= FP_INFINITE || icls <= FP_INFINITE, 0)) { if (icls == FP_INFINITE) { __real__ res = __copysignf (0.0, __real__ x); __imag__ res = __copysignf (M_PI_2, __imag__ x); } else if (rcls == FP_INFINITE || rcls == FP_ZERO) { __real__ res = __copysignf (0.0, __real__ x); if (icls >= FP_ZERO) __imag__ res = __copysignf (M_PI_2, __imag__ x); else __imag__ res = __nanf (""); } else { __real__ res = __nanf (""); __imag__ res = __nanf (""); } } else if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0)) { res = x; } else { float i2 = __imag__ x * __imag__ x; float num = 1.0 + __real__ x; num = i2 + num * num; float den = 1.0 - __real__ x; den = i2 + den * den; __real__ res = 0.25 * (__ieee754_logf (num) - __ieee754_logf (den)); den = 1 - __real__ x * __real__ x - i2; __imag__ res = 0.5 * __ieee754_atan2f (2.0 * __imag__ x, den); } return res; }
float __asinhf(float x) { float w; int32_t hx,ix; GET_FLOAT_WORD(hx,x); ix = hx&0x7fffffff; if(__builtin_expect(ix< 0x38000000, 0)) { /* |x|<2**-14 */ math_check_force_underflow (x); if(huge+x>one) return x; /* return x inexact except 0 */ } if(__builtin_expect(ix>0x47000000, 0)) { /* |x| > 2**14 */ if(ix>=0x7f800000) return x+x; /* x is inf or NaN */ w = __ieee754_logf(fabsf(x))+ln2; } else { float xa = fabsf(x); if (ix>0x40000000) { /* 2**14 > |x| > 2.0 */ w = __ieee754_logf(2.0f*xa+one/(__ieee754_sqrtf(xa*xa+one)+xa)); } else { /* 2.0 > |x| > 2**-14 */ float t = xa*xa; w =__log1pf(xa+t/(one+__ieee754_sqrtf(one+t))); } } return __copysignf(w, x); }
float __ieee754_atanhf (float x) { float xa = fabsf (x); float t; if (isless (xa, 0.5f)) { if (__builtin_expect (xa < 0x1.0p-28f, 0)) { math_force_eval (huge + x); return x; } t = xa + xa; t = 0.5f * __log1pf (t + t * xa / (1.0f - xa)); } else if (__builtin_expect (isless (xa, 1.0f), 1)) t = 0.5f * __log1pf ((xa + xa) / (1.0f - xa)); else { if (isgreater (xa, 1.0f)) return (x - x) / (x - x); return x / 0.0f; } return __copysignf (t, x); }
float __ieee754_atanhf (float x) { float xa = fabsf (x); float t; if (isless (xa, 0.5f)) { if (__glibc_unlikely (xa < 0x1.0p-28f)) { math_force_eval (huge + x); if (fabsf (x) < FLT_MIN) { float force_underflow = x * x; math_force_eval (force_underflow); } return x; } t = xa + xa; t = 0.5f * __log1pf (t + t * xa / (1.0f - xa)); } else if (__glibc_likely (isless (xa, 1.0f))) t = 0.5f * __log1pf ((xa + xa) / (1.0f - xa)); else { if (isgreater (xa, 1.0f)) return (x - x) / (x - x); return x / 0.0f; } return __copysignf (t, x); }
__complex__ float __clog10f (__complex__ float x) { __complex__ float result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (rcls == FP_ZERO && icls == FP_ZERO) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? M_PI : 0.0; __imag__ result = __copysignf (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1.0 / fabsf (__real__ x); } else if (rcls != FP_NAN && icls != FP_NAN) { /* Neither real nor imaginary part is NaN. */ __real__ result = __ieee754_log10f (__ieee754_hypotf (__real__ x, __imag__ x)); __imag__ result = M_LOG10E * __ieee754_atan2f (__imag__ x, __real__ x); } else { __imag__ result = __nanf (""); if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = HUGE_VALF; else __real__ result = __nanf (""); } return result; }
__complex__ float __ctanf (__complex__ float x) { __complex__ float res; if (!isfinite (__real__ x) || !isfinite (__imag__ x)) { if (__isinff (__imag__ x)) { __real__ res = __copysignf (0.0, __real__ x); __imag__ res = __copysignf (1.0, __imag__ x); } else if (__real__ x == 0.0) { res = x; } else { __real__ res = __nanf (""); __imag__ res = __nanf (""); #ifdef FE_INVALID if (__isinff (__real__ x)) feraiseexcept (FE_INVALID); #endif } } else { float sin2rx, cos2rx; float den; __sincosf (2.0 * __real__ x, &sin2rx, &cos2rx); den = cos2rx + __ieee754_coshf (2.0 * __imag__ x); __real__ res = sin2rx / den; __imag__ res = __ieee754_sinhf (2.0 * __imag__ x) / den; } return res; }
__complex__ float __clog10f (__complex__ float x) { __complex__ float result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0)) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? M_PI : 0.0; __imag__ result = __copysignf (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1.0 / fabsf (__real__ x); } else if (__builtin_expect (rcls != FP_NAN && icls != FP_NAN, 1)) { /* Neither real nor imaginary part is NaN. */ float d; int scale = 0; if (fabsf (__real__ x) > FLT_MAX / 2.0f || fabsf (__imag__ x) > FLT_MAX / 2.0f) { scale = -1; __real__ x = __scalbnf (__real__ x, scale); __imag__ x = __scalbnf (__imag__ x, scale); } else if (fabsf (__real__ x) < FLT_MIN && fabsf (__imag__ x) < FLT_MIN) { scale = FLT_MANT_DIG; __real__ x = __scalbnf (__real__ x, scale); __imag__ x = __scalbnf (__imag__ x, scale); } d = __ieee754_hypotf (__real__ x, __imag__ x); __real__ result = __ieee754_log10f (d) - scale * M_LOG10_2f; __imag__ result = M_LOG10E * __ieee754_atan2f (__imag__ x, __real__ x); } else { __imag__ result = __nanf (""); if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = HUGE_VALF; else __real__ result = __nanf (""); } return result; }
__complex__ float __cprojf (__complex__ float x) { if (__isinf_nsf (__real__ x) || __isinf_nsf (__imag__ x)) { __complex__ float res; __real__ res = INFINITY; __imag__ res = __copysignf (0.0, __imag__ x); return res; } return x; }
__complex__ float __cprojf (__complex__ float x) { if (isnan (__real__ x) && isnan (__imag__ x)) return x; else if (!isfinite (__real__ x) || !isfinite (__imag__ x)) { __complex__ float res; __real__ res = INFINITY; __imag__ res = __copysignf (0.0, __imag__ x); return res; } return x; }
__complex__ float __casinf (__complex__ float x) { __complex__ float res; if (isnan (__real__ x) || isnan (__imag__ x)) { if (__real__ x == 0.0) { res = x; } else if (isinf (__real__ x) || isinf (__imag__ x)) { __real__ res = __nanf (""); __imag__ res = __copysignf (HUGE_VALF, __imag__ x); } else { __real__ res = __nanf (""); __imag__ res = __nanf (""); } } else { __complex__ float y; __real__ y = -__imag__ x; __imag__ y = __real__ x; y = __casinhf (y); __real__ res = __imag__ y; __imag__ res = -__real__ y; } return res; }
__complex__ float __cacoshf (__complex__ float x) { __complex__ float res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (rcls <= FP_INFINITE || icls <= FP_INFINITE) { if (icls == FP_INFINITE) { __real__ res = HUGE_VALF; if (rcls == FP_NAN) __imag__ res = __nanf (""); else __imag__ res = __copysignf ((rcls == FP_INFINITE ? (__real__ x < 0.0 ? M_PI - M_PI_4 : M_PI_4) : M_PI_2), __imag__ x); } else if (rcls == FP_INFINITE) { __real__ res = HUGE_VALF; if (icls >= FP_ZERO) __imag__ res = __copysignf (signbit (__real__ x) ? M_PI : 0.0, __imag__ x); else __imag__ res = __nanf (""); } else { __real__ res = __nanf (""); __imag__ res = __nanf (""); } } else if (rcls == FP_ZERO && icls == FP_ZERO) { __real__ res = 0.0; __imag__ res = __copysignf (M_PI_2, __imag__ x); } else { #if 1 __complex__ float y; __real__ y = (__real__ x - __imag__ x) * (__real__ x + __imag__ x) - 1.0; __imag__ y = 2.0 * __real__ x * __imag__ x; y = __csqrtf (y); if (__real__ x < 0.0) y = -y; __real__ y += __real__ x; __imag__ y += __imag__ x; res = __clogf (y); #else float re2 = __real__ x * __real__ x; float im2 = __imag__ x * __imag__ x; float sq = re2 - im2 - 1.0; float ro = __ieee754_sqrtf (sq * sq + 4 * re2 * im2); float a = __ieee754_sqrtf ((sq + ro) / 2.0); float b = __ieee754_sqrtf ((-sq + ro) / 2.0); __real__ res = 0.5 * __ieee754_logf (re2 + __real__ x * 2 * a + im2 + __imag__ x * 2 * b + ro); __imag__ res = __ieee754_atan2f (__imag__ x + b, __real__ x + a); #endif /* We have to use the positive branch. */ if (__real__ res < 0.0) res = -res; } return res; }
__complex__ float __csinhf (__complex__ float x) { __complex__ float retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); __real__ x = fabsf (__real__ x); if (rcls >= FP_ZERO) { /* Real part is finite. */ if (icls >= FP_ZERO) { /* Imaginary part is finite. */ float sinh_val = __ieee754_sinhf (__real__ x); float cosh_val = __ieee754_coshf (__real__ x); float sinix, cosix; __sincosf (__imag__ x, &sinix, &cosix); __real__ retval = sinh_val * cosix; __imag__ retval = cosh_val * sinix; if (negate) __real__ retval = -__real__ retval; } else { if (rcls == FP_ZERO) { /* Real part is 0.0. */ __real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0); __imag__ retval = __nanf ("") + __nanf (""); #ifdef FE_INVALID if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); #endif } else { __real__ retval = __nanf (""); __imag__ retval = __nanf (""); #ifdef FE_INVALID feraiseexcept (FE_INVALID); #endif } } } else if (rcls == FP_INFINITE) { /* Real part is infinite. */ if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = negate ? -HUGE_VALF : HUGE_VALF; __imag__ retval = __imag__ x; } else if (icls > FP_ZERO) { /* Imaginary part is finite. */ float sinix, cosix; __sincosf (__imag__ x, &sinix, &cosix); __real__ retval = __copysignf (HUGE_VALF, cosix); __imag__ retval = __copysignf (HUGE_VALF, sinix); if (negate) __real__ retval = -__real__ retval; } else { /* The addition raises the invalid exception. */ __real__ retval = HUGE_VALF; __imag__ retval = __nanf ("") + __nanf (""); #ifdef FE_INVALID if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); #endif } } else { __real__ retval = __nanf (""); __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanf (""); } return retval; }
__complex__ float __csinhf (__complex__ float x) { __complex__ float retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); __real__ x = fabsf (__real__ x); if (__builtin_expect (rcls >= FP_ZERO, 1)) { /* Real part is finite. */ if (__builtin_expect (icls >= FP_ZERO, 1)) { /* Imaginary part is finite. */ const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2); float sinix, cosix; if (__builtin_expect (icls != FP_SUBNORMAL, 1)) { __sincosf (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0f; } if (fabsf (__real__ x) > t) { float exp_t = __ieee754_expf (t); float rx = fabsf (__real__ x); if (signbit (__real__ x)) cosix = -cosix; rx -= t; sinix *= exp_t / 2.0f; cosix *= exp_t / 2.0f; if (rx > t) { rx -= t; sinix *= exp_t; cosix *= exp_t; } if (rx > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = FLT_MAX * cosix; __imag__ retval = FLT_MAX * sinix; } else { float exp_val = __ieee754_expf (rx); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } } else { __real__ retval = __ieee754_sinhf (__real__ x) * cosix; __imag__ retval = __ieee754_coshf (__real__ x) * sinix; } if (negate) __real__ retval = -__real__ retval; if (fabsf (__real__ retval) < FLT_MIN) { volatile float force_underflow = __real__ retval * __real__ retval; (void) force_underflow; } if (fabsf (__imag__ retval) < FLT_MIN) { volatile float force_underflow = __imag__ retval * __imag__ retval; (void) force_underflow; } } else { if (rcls == FP_ZERO) { /* Real part is 0.0. */ __real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0); __imag__ retval = __nanf ("") + __nanf (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = __nanf (""); __imag__ retval = __nanf (""); feraiseexcept (FE_INVALID); } } } else if (__builtin_expect (rcls == FP_INFINITE, 1)) { /* Real part is infinite. */ if (__builtin_expect (icls > FP_ZERO, 1)) { /* Imaginary part is finite. */ float sinix, cosix; if (__builtin_expect (icls != FP_SUBNORMAL, 1)) { __sincosf (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0f; } __real__ retval = __copysignf (HUGE_VALF, cosix); __imag__ retval = __copysignf (HUGE_VALF, sinix); if (negate) __real__ retval = -__real__ retval; } else if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = negate ? -HUGE_VALF : HUGE_VALF; __imag__ retval = __imag__ x; } else { /* The addition raises the invalid exception. */ __real__ retval = HUGE_VALF; __imag__ retval = __nanf ("") + __nanf (""); #ifdef FE_INVALID if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); #endif } } else { __real__ retval = __nanf (""); __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanf (""); } return retval; }
__complex__ float __clog10f (__complex__ float x) { __complex__ float result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? M_PI_LOG10Ef : 0.0; __imag__ result = __copysignf (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1.0 / fabsf (__real__ x); } else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN)) { /* Neither real nor imaginary part is NaN. */ float absx = fabsf (__real__ x), absy = fabsf (__imag__ x); int scale = 0; if (absx < absy) { float t = absx; absx = absy; absy = t; } if (absx > FLT_MAX / 2.0f) { scale = -1; absx = __scalbnf (absx, scale); absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f); } else if (absx < FLT_MIN && absy < FLT_MIN) { scale = FLT_MANT_DIG; absx = __scalbnf (absx, scale); absy = __scalbnf (absy, scale); } if (absx == 1.0f && scale == 0) { float absy2 = absy * absy; if (absy2 <= FLT_MIN * 2.0f * (float) M_LN10) { float force_underflow = absy2 * absy2; __real__ result = absy2 * ((float) M_LOG10E / 2.0f); math_force_eval (force_underflow); } else __real__ result = __log1pf (absy2) * ((float) M_LOG10E / 2.0f); } else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0) { float d2m1 = (absx - 1.0f) * (absx + 1.0f); if (absy >= FLT_EPSILON) d2m1 += absy * absy; __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f); } else if (absx < 1.0f && absx >= 0.75f && absy < FLT_EPSILON / 2.0f && scale == 0) { float d2m1 = (absx - 1.0f) * (absx + 1.0f); __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f); } else if (absx < 1.0f && (absx >= 0.75f || absy >= 0.5f) && scale == 0) { float d2m1 = __x2y2m1f (absx, absy); __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f); } else { float d = __ieee754_hypotf (absx, absy); __real__ result = __ieee754_log10f (d) - scale * M_LOG10_2f; } __imag__ result = M_LOG10E * __ieee754_atan2f (__imag__ x, __real__ x); } else { __imag__ result = __nanf (""); if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = HUGE_VALF; else __real__ result = __nanf (""); } return result; }
__complex__ float __ctanf (__complex__ float x) { __complex__ float res; if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x))) { if (isinf (__imag__ x)) { if (isfinite (__real__ x) && fabsf (__real__ x) > 1.0f) { float sinrx, cosrx; __sincosf (__real__ x, &sinrx, &cosrx); __real__ res = __copysignf (0.0f, sinrx * cosrx); } else __real__ res = __copysignf (0.0, __real__ x); __imag__ res = __copysignf (1.0, __imag__ x); } else if (__real__ x == 0.0) { res = x; } else { __real__ res = __nanf (""); __imag__ res = __nanf (""); if (isinf (__real__ x)) feraiseexcept (FE_INVALID); } } else { float sinrx, cosrx; float den; const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2 / 2); /* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y)) = (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */ if (__glibc_likely (fabsf (__real__ x) > FLT_MIN)) { __sincosf (__real__ x, &sinrx, &cosrx); } else { sinrx = __real__ x; cosrx = 1.0f; } if (fabsf (__imag__ x) > t) { /* Avoid intermediate overflow when the real part of the result may be subnormal. Ignoring negligible terms, the imaginary part is +/- 1, the real part is sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */ float exp_2t = __ieee754_expf (2 * t); __imag__ res = __copysignf (1.0, __imag__ x); __real__ res = 4 * sinrx * cosrx; __imag__ x = fabsf (__imag__ x); __imag__ x -= t; __real__ res /= exp_2t; if (__imag__ x > t) { /* Underflow (original imaginary part of x has absolute value > 2t). */ __real__ res /= exp_2t; } else __real__ res /= __ieee754_expf (2 * __imag__ x); } else { float sinhix, coshix; if (fabsf (__imag__ x) > FLT_MIN) { sinhix = __ieee754_sinhf (__imag__ x); coshix = __ieee754_coshf (__imag__ x); } else { sinhix = __imag__ x; coshix = 1.0f; } if (fabsf (sinhix) > fabsf (cosrx) * FLT_EPSILON) den = cosrx * cosrx + sinhix * sinhix; else den = cosrx * cosrx; __real__ res = sinrx * cosrx / den; __imag__ res = sinhix * coshix / den; } math_check_force_underflow_complex (res); } return res; }
__complex__ float __catanf (__complex__ float x) { __complex__ float res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE)) { if (rcls == FP_INFINITE) { __real__ res = __copysignf (M_PI_2, __real__ x); __imag__ res = __copysignf (0.0, __imag__ x); } else if (icls == FP_INFINITE) { if (rcls >= FP_ZERO) __real__ res = __copysignf (M_PI_2, __real__ x); else __real__ res = __nanf (""); __imag__ res = __copysignf (0.0, __imag__ x); } else if (icls == FP_ZERO || icls == FP_INFINITE) { __real__ res = __nanf (""); __imag__ res = __copysignf (0.0, __imag__ x); } else { __real__ res = __nanf (""); __imag__ res = __nanf (""); } } else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) { res = x; } else { if (fabsf (__real__ x) >= 16.0f / FLT_EPSILON || fabsf (__imag__ x) >= 16.0f / FLT_EPSILON) { __real__ res = __copysignf ((float) M_PI_2, __real__ x); if (fabsf (__real__ x) <= 1.0f) __imag__ res = 1.0f / __imag__ x; else if (fabsf (__imag__ x) <= 1.0f) __imag__ res = __imag__ x / __real__ x / __real__ x; else { float h = __ieee754_hypotf (__real__ x / 2.0f, __imag__ x / 2.0f); __imag__ res = __imag__ x / h / h / 4.0f; } } else { float den, absx, absy; absx = fabsf (__real__ x); absy = fabsf (__imag__ x); if (absx < absy) { float t = absx; absx = absy; absy = t; } if (absy < FLT_EPSILON / 2.0f) { den = (1.0f - absx) * (1.0f + absx); if (den == -0.0f) den = 0.0f; } else if (absx >= 1.0f) den = (1.0f - absx) * (1.0f + absx) - absy * absy; else if (absx >= 0.75f || absy >= 0.5f) den = -__x2y2m1f (absx, absy); else den = (1.0f - absx) * (1.0f + absx) - absy * absy; __real__ res = 0.5f * __ieee754_atan2f (2.0f * __real__ x, den); if (fabsf (__imag__ x) == 1.0f && fabsf (__real__ x) < FLT_EPSILON * FLT_EPSILON) __imag__ res = (__copysignf (0.5f, __imag__ x) * ((float) M_LN2 - __ieee754_logf (fabsf (__real__ x)))); else { float r2 = 0.0f, num, f; if (fabsf (__real__ x) >= FLT_EPSILON * FLT_EPSILON) r2 = __real__ x * __real__ x; num = __imag__ x + 1.0f; num = r2 + num * num; den = __imag__ x - 1.0f; den = r2 + den * den; f = num / den; if (f < 0.5f) __imag__ res = 0.25f * __ieee754_logf (f); else { num = 4.0f * __imag__ x; __imag__ res = 0.25f * __log1pf (num / den); } } } if (fabsf (__real__ res) < FLT_MIN) { volatile float force_underflow = __real__ res * __real__ res; (void) force_underflow; } if (fabsf (__imag__ res) < FLT_MIN) { volatile float force_underflow = __imag__ res * __imag__ res; (void) force_underflow; } } return res; }
__complex__ float __cexpf (__complex__ float x) { __complex__ float retval; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2); float sinix, cosix; if (__glibc_likely (icls != FP_SUBNORMAL)) { __sincosf (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0f; } if (__real__ x > t) { float exp_t = __ieee754_expf (t); __real__ x -= t; sinix *= exp_t; cosix *= exp_t; if (__real__ x > t) { __real__ x -= t; sinix *= exp_t; cosix *= exp_t; } } if (__real__ x > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = FLT_MAX * cosix; __imag__ retval = FLT_MAX * sinix; } else { float exp_val = __ieee754_expf (__real__ x); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } if (fabsf (__real__ retval) < FLT_MIN) { volatile float force_underflow = __real__ retval * __real__ retval; (void) force_underflow; } if (fabsf (__imag__ retval) < FLT_MIN) { volatile float force_underflow = __imag__ retval * __imag__ retval; (void) force_underflow; } } else { /* If the imaginary part is +-inf or NaN and the real part is not +-inf the result is NaN + iNaN. */ __real__ retval = __nanf (""); __imag__ retval = __nanf (""); feraiseexcept (FE_INVALID); } } else if (__glibc_likely (rcls == FP_INFINITE)) { /* Real part is infinite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ float value = signbit (__real__ x) ? 0.0 : HUGE_VALF; if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = value; __imag__ retval = __imag__ x; } else { float sinix, cosix; if (__glibc_likely (icls != FP_SUBNORMAL)) { __sincosf (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0f; } __real__ retval = __copysignf (value, cosix); __imag__ retval = __copysignf (value, sinix); } } else if (signbit (__real__ x) == 0) { __real__ retval = HUGE_VALF; __imag__ retval = __nanf (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = 0.0; __imag__ retval = __copysignf (0.0, __imag__ x); } } else { /* If the real part is NaN the result is NaN + iNaN unless the imaginary part is zero. */ __real__ retval = __nanf (""); if (icls == FP_ZERO) __imag__ retval = __imag__ x; else { __imag__ retval = __nanf (""); if (rcls != FP_NAN || icls != FP_NAN) feraiseexcept (FE_INVALID); } } return retval; }
__complex__ float __ccoshf (__complex__ float x) { __complex__ float retval; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2); float sinix, cosix; if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN)) { __sincosf (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0f; } if (fabsf (__real__ x) > t) { float exp_t = __ieee754_expf (t); float rx = fabsf (__real__ x); if (signbit (__real__ x)) sinix = -sinix; rx -= t; sinix *= exp_t / 2.0f; cosix *= exp_t / 2.0f; if (rx > t) { rx -= t; sinix *= exp_t; cosix *= exp_t; } if (rx > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = FLT_MAX * cosix; __imag__ retval = FLT_MAX * sinix; } else { float exp_val = __ieee754_expf (rx); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } } else { __real__ retval = __ieee754_coshf (__real__ x) * cosix; __imag__ retval = __ieee754_sinhf (__real__ x) * sinix; } math_check_force_underflow_complex (retval); } else { __imag__ retval = __real__ x == 0.0 ? 0.0 : __nanf (""); __real__ retval = __nanf (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else if (rcls == FP_INFINITE) { /* Real part is infinite. */ if (__glibc_likely (icls > FP_ZERO)) { /* Imaginary part is finite. */ float sinix, cosix; if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN)) { __sincosf (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0f; } __real__ retval = __copysignf (HUGE_VALF, cosix); __imag__ retval = (__copysignf (HUGE_VALF, sinix) * __copysignf (1.0, __real__ x)); } else if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = HUGE_VALF; __imag__ retval = __imag__ x * __copysignf (1.0, __real__ x); } else { /* The addition raises the invalid exception. */ __real__ retval = HUGE_VALF; __imag__ retval = __nanf ("") + __nanf (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else { __real__ retval = __nanf (""); __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanf (""); } return retval; }
__complex__ float __csqrtf (__complex__ float x) { __complex__ float res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls <= FP_INFINITE || icls <= FP_INFINITE, 0)) { if (icls == FP_INFINITE) { __real__ res = HUGE_VALF; __imag__ res = __imag__ x; } else if (rcls == FP_INFINITE) { if (__real__ x < 0.0) { __real__ res = icls == FP_NAN ? __nanf ("") : 0; __imag__ res = __copysignf (HUGE_VALF, __imag__ x); } else { __real__ res = __real__ x; __imag__ res = (icls == FP_NAN ? __nanf ("") : __copysignf (0.0, __imag__ x)); } } else { __real__ res = __nanf (""); __imag__ res = __nanf (""); } } else { if (__builtin_expect (icls == FP_ZERO, 0)) { if (__real__ x < 0.0) { __real__ res = 0.0; __imag__ res = __copysignf (__ieee754_sqrtf (-__real__ x), __imag__ x); } else { __real__ res = fabsf (__ieee754_sqrtf (__real__ x)); __imag__ res = __copysignf (0.0, __imag__ x); } } else if (__builtin_expect (rcls == FP_ZERO, 0)) { float r; if (fabsf (__imag__ x) >= 2.0f * FLT_MIN) r = __ieee754_sqrtf (0.5f * fabsf (__imag__ x)); else r = 0.5f * __ieee754_sqrtf (2.0f * fabsf (__imag__ x)); __real__ res = r; __imag__ res = __copysignf (r, __imag__ x); } else { float d, r, s; int scale = 0; if (fabsf (__real__ x) > FLT_MAX / 4.0f) { scale = 1; __real__ x = __scalbnf (__real__ x, -2 * scale); __imag__ x = __scalbnf (__imag__ x, -2 * scale); } else if (fabsf (__imag__ x) > FLT_MAX / 4.0f) { scale = 1; if (fabsf (__real__ x) >= 4.0f * FLT_MIN) __real__ x = __scalbnf (__real__ x, -2 * scale); else __real__ x = 0.0f; __imag__ x = __scalbnf (__imag__ x, -2 * scale); } else if (fabsf (__real__ x) < FLT_MIN && fabsf (__imag__ x) < FLT_MIN) { scale = -(FLT_MANT_DIG / 2); __real__ x = __scalbnf (__real__ x, -2 * scale); __imag__ x = __scalbnf (__imag__ x, -2 * scale); } d = __ieee754_hypotf (__real__ x, __imag__ x); /* Use the identity 2 Re res Im res = Im x to avoid cancellation error in d +/- Re x. */ if (__real__ x > 0) { r = __ieee754_sqrtf (0.5f * (d + __real__ x)); s = 0.5f * (__imag__ x / r); } else { s = __ieee754_sqrtf (0.5f * (d - __real__ x)); r = fabsf (0.5f * (__imag__ x / s)); } if (scale) { r = __scalbnf (r, scale); s = __scalbnf (s, scale); } __real__ res = r; __imag__ res = __copysignf (s, __imag__ x); } } return res; }
__complex__ float __ctanhf (__complex__ float x) { __complex__ float res; if (__builtin_expect (!isfinite (__real__ x) || !isfinite (__imag__ x), 0)) { if (__isinf_nsf (__real__ x)) { __real__ res = __copysignf (1.0, __real__ x); __imag__ res = __copysignf (0.0, __imag__ x); } else if (__imag__ x == 0.0) { res = x; } else { __real__ res = __nanf (""); __imag__ res = __nanf (""); if (__isinf_nsf (__imag__ x)) feraiseexcept (FE_INVALID); } } else { float sinix, cosix; float den; const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2 / 2); /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y)) = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */ if (__builtin_expect (fpclassify(__imag__ x) != FP_SUBNORMAL, 1)) { __sincosf (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0f; } if (fabsf (__real__ x) > t) { /* Avoid intermediate overflow when the imaginary part of the result may be subnormal. Ignoring negligible terms, the real part is +/- 1, the imaginary part is sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */ float exp_2t = __ieee754_expf (2 * t); __real__ res = __copysignf (1.0, __real__ x); __imag__ res = 4 * sinix * cosix; __real__ x = fabsf (__real__ x); __real__ x -= t; __imag__ res /= exp_2t; if (__real__ x > t) { /* Underflow (original real part of x has absolute value > 2t). */ __imag__ res /= exp_2t; } else __imag__ res /= __ieee754_expf (2 * __real__ x); } else { float sinhrx, coshrx; if (fabsf (__real__ x) > FLT_MIN) { sinhrx = __ieee754_sinhf (__real__ x); coshrx = __ieee754_coshf (__real__ x); } else { sinhrx = __real__ x; coshrx = 1.0f; } if (fabsf (sinhrx) > fabsf (cosix) * FLT_EPSILON) den = sinhrx * sinhrx + cosix * cosix; else den = cosix * cosix; __real__ res = sinhrx * coshrx / den; __imag__ res = sinix * cosix / den; } } return res; }
__complex__ float __clogf (__complex__ float x) { __complex__ float result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0)) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? M_PI : 0.0; __imag__ result = __copysignf (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1.0 / fabsf (__real__ x); } else if (__builtin_expect (rcls != FP_NAN && icls != FP_NAN, 1)) { /* Neither real nor imaginary part is NaN. */ float absx = fabsf (__real__ x), absy = fabsf (__imag__ x); int scale = 0; if (absx < absy) { float t = absx; absx = absy; absy = t; } if (absx > FLT_MAX / 2.0f) { scale = -1; absx = __scalbnf (absx, scale); absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f); } else if (absx < FLT_MIN && absy < FLT_MIN) { scale = FLT_MANT_DIG; absx = __scalbnf (absx, scale); absy = __scalbnf (absy, scale); } if (absx == 1.0f && scale == 0) { float absy2 = absy * absy; if (absy2 <= FLT_MIN * 2.0f) { #if __FLT_EVAL_METHOD__ == 0 __real__ result = absy2 / 2.0f - absy2 * absy2 / 4.0f; #else volatile float force_underflow = absy2 * absy2 / 4.0f; __real__ result = absy2 / 2.0f - force_underflow; #endif } else __real__ result = __log1pf (absy2) / 2.0f; } else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0) { float d2m1 = (absx - 1.0f) * (absx + 1.0f); if (absy >= FLT_EPSILON) d2m1 += absy * absy; __real__ result = __log1pf (d2m1) / 2.0f; } else if (absx < 1.0f && absx >= 0.75f && absy < FLT_EPSILON / 2.0f && scale == 0) { float d2m1 = (absx - 1.0f) * (absx + 1.0f); __real__ result = __log1pf (d2m1) / 2.0f; } else if (absx < 1.0f && (absx >= 0.75f || absy >= 0.5f) && scale == 0) { float d2m1 = __x2y2m1f (absx, absy); __real__ result = __log1pf (d2m1) / 2.0f; } else { float d = __ieee754_hypotf (absx, absy); __real__ result = __ieee754_logf (d) - scale * (float) M_LN2; } __imag__ result = __ieee754_atan2f (__imag__ x, __real__ x); } else { __imag__ result = __nanf (""); if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = HUGE_VALF; else __real__ result = __nanf (""); } return result; }
__complex__ float __kernel_casinhf (__complex__ float x, int adj) { __complex__ float res; float rx, ix; __complex__ float y; /* Avoid cancellation by reducing to the first quadrant. */ rx = fabsf (__real__ x); ix = fabsf (__imag__ x); if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON) { /* For large x in the first quadrant, x + csqrt (1 + x * x) is sufficiently close to 2 * x to make no significant difference to the result; avoid possible overflow from the squaring and addition. */ __real__ y = rx; __imag__ y = ix; if (adj) { float t = __real__ y; __real__ y = __copysignf (__imag__ y, __imag__ x); __imag__ y = t; } res = __clogf (y); __real__ res += (float) M_LN2; } else if (rx >= 0.5f && ix < FLT_EPSILON / 8.0f) { float s = __ieee754_hypotf (1.0f, rx); __real__ res = __ieee754_logf (rx + s); if (adj) __imag__ res = __ieee754_atan2f (s, __imag__ x); else __imag__ res = __ieee754_atan2f (ix, s); } else if (rx < FLT_EPSILON / 8.0f && ix >= 1.5f) { float s = __ieee754_sqrtf ((ix + 1.0f) * (ix - 1.0f)); __real__ res = __ieee754_logf (ix + s); if (adj) __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); else __imag__ res = __ieee754_atan2f (s, rx); } else if (ix > 1.0f && ix < 1.5f && rx < 0.5f) { if (rx < FLT_EPSILON * FLT_EPSILON) { float ix2m1 = (ix + 1.0f) * (ix - 1.0f); float s = __ieee754_sqrtf (ix2m1); __real__ res = __log1pf (2.0f * (ix2m1 + ix * s)) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); else __imag__ res = __ieee754_atan2f (s, rx); } else { float ix2m1 = (ix + 1.0f) * (ix - 1.0f); float rx2 = rx * rx; float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); float d = __ieee754_sqrtf (ix2m1 * ix2m1 + f); float dp = d + ix2m1; float dm = f / dp; float r1 = __ieee754_sqrtf ((dm + rx2) / 2.0f); float r2 = rx * ix / r1; __real__ res = __log1pf (rx2 + dp + 2.0f * (rx * r1 + ix * r2)) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2, __imag__ x)); else __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); } } else if (ix == 1.0f && rx < 0.5f) { if (rx < FLT_EPSILON / 8.0f) { __real__ res = __log1pf (2.0f * (rx + __ieee754_sqrtf (rx))) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (__ieee754_sqrtf (rx), __copysignf (1.0f, __imag__ x)); else __imag__ res = __ieee754_atan2f (1.0f, __ieee754_sqrtf (rx)); } else { float d = rx * __ieee754_sqrtf (4.0f + rx * rx); float s1 = __ieee754_sqrtf ((d + rx * rx) / 2.0f); float s2 = __ieee754_sqrtf ((d - rx * rx) / 2.0f); __real__ res = __log1pf (rx * rx + d + 2.0f * (rx * s1 + s2)) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (rx + s1, __copysignf (1.0f + s2, __imag__ x)); else __imag__ res = __ieee754_atan2f (1.0f + s2, rx + s1); } } else if (ix < 1.0f && rx < 0.5f) { if (ix >= FLT_EPSILON) { if (rx < FLT_EPSILON * FLT_EPSILON) { float onemix2 = (1.0f + ix) * (1.0f - ix); float s = __ieee754_sqrtf (onemix2); __real__ res = __log1pf (2.0f * rx / s) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (s, __imag__ x); else __imag__ res = __ieee754_atan2f (ix, s); } else { float onemix2 = (1.0f + ix) * (1.0f - ix); float rx2 = rx * rx; float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); float d = __ieee754_sqrtf (onemix2 * onemix2 + f); float dp = d + onemix2; float dm = f / dp; float r1 = __ieee754_sqrtf ((dp + rx2) / 2.0f); float r2 = rx * ix / r1; __real__ res = __log1pf (rx2 + dm + 2.0f * (rx * r1 + ix * r2)) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2, __imag__ x)); else __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); } } else { float s = __ieee754_hypotf (1.0f, rx); __real__ res = __log1pf (2.0f * rx * (rx + s)) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (s, __imag__ x); else __imag__ res = __ieee754_atan2f (ix, s); } if (__real__ res < FLT_MIN) { volatile float force_underflow = __real__ res * __real__ res; (void) force_underflow; } } else { __real__ y = (rx - ix) * (rx + ix) + 1.0f; __imag__ y = 2.0f * rx * ix; y = __csqrtf (y); __real__ y += rx; __imag__ y += ix; if (adj) { float t = __real__ y; __real__ y = __copysignf (__imag__ y, __imag__ x); __imag__ y = t; } res = __clogf (y); } /* Give results the correct sign for the original argument. */ __real__ res = __copysignf (__real__ res, __real__ x); __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x)); return res; }
float __ieee754_gammaf_r (float x, int *signgamp) { int32_t hx; float ret; GET_FLOAT_WORD (hx, x); if (__glibc_unlikely ((hx & 0x7fffffff) == 0)) { /* Return value for x == 0 is Inf with divide by zero exception. */ *signgamp = 0; return 1.0 / x; } if (__builtin_expect (hx < 0, 0) && (u_int32_t) hx < 0xff800000 && __rintf (x) == x) { /* Return value for integer x < 0 is NaN with invalid exception. */ *signgamp = 0; return (x - x) / (x - x); } if (__glibc_unlikely (hx == 0xff800000)) { /* x == -Inf. According to ISO this is NaN. */ *signgamp = 0; return x - x; } if (__glibc_unlikely ((hx & 0x7f800000) == 0x7f800000)) { /* Positive infinity (return positive infinity) or NaN (return NaN). */ *signgamp = 0; return x + x; } if (x >= 36.0f) { /* Overflow. */ *signgamp = 0; ret = math_narrow_eval (FLT_MAX * FLT_MAX); return ret; } else { SET_RESTORE_ROUNDF (FE_TONEAREST); if (x > 0.0f) { *signgamp = 0; int exp2_adj; float tret = gammaf_positive (x, &exp2_adj); ret = __scalbnf (tret, exp2_adj); } else if (x >= -FLT_EPSILON / 4.0f) { *signgamp = 0; ret = 1.0f / x; } else { float tx = __truncf (x); *signgamp = (tx == 2.0f * __truncf (tx / 2.0f)) ? -1 : 1; if (x <= -42.0f) /* Underflow. */ ret = FLT_MIN * FLT_MIN; else { float frac = tx - x; if (frac > 0.5f) frac = 1.0f - frac; float sinpix = (frac <= 0.25f ? __sinf ((float) M_PI * frac) : __cosf ((float) M_PI * (0.5f - frac))); int exp2_adj; float tret = (float) M_PI / (-x * sinpix * gammaf_positive (-x, &exp2_adj)); ret = __scalbnf (tret, -exp2_adj); math_check_force_underflow_nonneg (ret); } } ret = math_narrow_eval (ret); } if (isinf (ret) && x != 0) { if (*signgamp < 0) { ret = math_narrow_eval (-__copysignf (FLT_MAX, ret) * FLT_MAX); ret = -ret; } else ret = math_narrow_eval (__copysignf (FLT_MAX, ret) * FLT_MAX); return ret; } else if (ret == 0) { if (*signgamp < 0) { ret = math_narrow_eval (-__copysignf (FLT_MIN, ret) * FLT_MIN); ret = -ret; } else ret = math_narrow_eval (__copysignf (FLT_MIN, ret) * FLT_MIN); return ret; } else return ret; }
__complex__ float __csqrtf (__complex__ float x) { __complex__ float res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (rcls <= FP_INFINITE || icls <= FP_INFINITE) { if (icls == FP_INFINITE) { __real__ res = HUGE_VALF; __imag__ res = __imag__ x; } else if (rcls == FP_INFINITE) { if (__real__ x < 0.0) { __real__ res = icls == FP_NAN ? __nanf ("") : 0; __imag__ res = __copysignf (HUGE_VALF, __imag__ x); } else { __real__ res = __real__ x; __imag__ res = (icls == FP_NAN ? __nanf ("") : __copysignf (0.0, __imag__ x)); } } else { __real__ res = __nanf (""); __imag__ res = __nanf (""); } } else { if (icls == FP_ZERO) { if (__real__ x < 0.0) { __real__ res = 0.0; __imag__ res = __copysignf (__ieee754_sqrtf (-__real__ x), __imag__ x); } else { __real__ res = fabsf (__ieee754_sqrtf (__real__ x)); __imag__ res = __copysignf (0.0, __imag__ x); } } else if (rcls == FP_ZERO) { float r = __ieee754_sqrtf (0.5 * fabsf (__imag__ x)); __real__ res = __copysignf (r, __imag__ x); __imag__ res = r; } else { float d, r, s; d = __ieee754_hypotf (__real__ x, __imag__ x); /* Use the identity 2 Re res Im res = Im x to avoid cancellation error in d +/- Re x. */ if (__real__ x > 0) { r = __ieee754_sqrtf (0.5f * d + 0.5f * __real__ x); s = (0.5f * __imag__ x) / r; } else { s = __ieee754_sqrtf (0.5f * d - 0.5f * __real__ x); r = fabsf ((0.5f * __imag__ x) / s); } __real__ res = r; __imag__ res = __copysignf (s, __imag__ x); } } return res; }