static void tst_isqrt (unsigned long n, unsigned long r) { unsigned long i; i = __gmpfr_isqrt (n); if (i != r) { printf ("Error in __gmpfr_isqrt (%lu): got %lu instead of %lu\n", n, i, r); exit (1); } }
int mpfr_cos (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_prec_t K0, K, precy, m, k, l; int inexact, reduce = 0; mpfr_t r, s, xr, c; mpfr_exp_t exps, cancel = 0, expx; MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_GROUP_DECL (group); MPFR_LOG_FUNC ( ("x[%Pu]=%*.Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("y[%Pu]=%*.Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x) || MPFR_IS_INF (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else { MPFR_ASSERTD (MPFR_IS_ZERO (x)); return mpfr_set_ui (y, 1, rnd_mode); } } MPFR_SAVE_EXPO_MARK (expo); /* cos(x) = 1-x^2/2 + ..., so error < 2^(2*EXP(x)-1) */ expx = MPFR_GET_EXP (x); MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, -2 * expx, 1, 0, rnd_mode, expo, {}); /* Compute initial precision */ precy = MPFR_PREC (y); if (precy >= MPFR_SINCOS_THRESHOLD) { MPFR_SAVE_EXPO_FREE (expo); return mpfr_cos_fast (y, x, rnd_mode); } K0 = __gmpfr_isqrt (precy / 3); m = precy + 2 * MPFR_INT_CEIL_LOG2 (precy) + 2 * K0; if (expx >= 3) { reduce = 1; /* As expx + m - 1 will silently be converted into mpfr_prec_t in the mpfr_init2 call, the assert below may be useful to avoid undefined behavior. */ MPFR_ASSERTN (expx + m - 1 <= MPFR_PREC_MAX); mpfr_init2 (c, expx + m - 1); mpfr_init2 (xr, m); } MPFR_GROUP_INIT_2 (group, m, r, s); MPFR_ZIV_INIT (loop, m); for (;;) { /* If |x| >= 4, first reduce x cmod (2*Pi) into xr, using mpfr_remainder: let e = EXP(x) >= 3, and m the target precision: (1) c <- 2*Pi [precision e+m-1, nearest] (2) xr <- remainder (x, c) [precision m, nearest] We have |c - 2*Pi| <= 1/2ulp(c) = 2^(3-e-m) |xr - x - k c| <= 1/2ulp(xr) <= 2^(1-m) |k| <= |x|/(2*Pi) <= 2^(e-2) Thus |xr - x - 2kPi| <= |k| |c - 2Pi| + 2^(1-m) <= 2^(2-m). It follows |cos(xr) - cos(x)| <= 2^(2-m). */ if (reduce) { mpfr_const_pi (c, MPFR_RNDN); mpfr_mul_2ui (c, c, 1, MPFR_RNDN); /* 2Pi */ mpfr_remainder (xr, x, c, MPFR_RNDN); if (MPFR_IS_ZERO(xr)) goto ziv_next; /* now |xr| <= 4, thus r <= 16 below */ mpfr_mul (r, xr, xr, MPFR_RNDU); /* err <= 1 ulp */ } else mpfr_mul (r, x, x, MPFR_RNDU); /* err <= 1 ulp */ /* now |x| < 4 (or xr if reduce = 1), thus |r| <= 16 */ /* we need |r| < 1/2 for mpfr_cos2_aux, i.e., EXP(r) - 2K <= -1 */ K = K0 + 1 + MAX(0, MPFR_GET_EXP(r)) / 2; /* since K0 >= 0, if EXP(r) < 0, then K >= 1, thus EXP(r) - 2K <= -3; otherwise if EXP(r) >= 0, then K >= 1/2 + EXP(r)/2, thus EXP(r) - 2K <= -1 */ MPFR_SET_EXP (r, MPFR_GET_EXP (r) - 2 * K); /* Can't overflow! */ /* s <- 1 - r/2! + ... + (-1)^l r^l/(2l)! */ l = mpfr_cos2_aux (s, r); /* l is the error bound in ulps on s */ MPFR_SET_ONE (r); for (k = 0; k < K; k++) { mpfr_sqr (s, s, MPFR_RNDU); /* err <= 2*olderr */ MPFR_SET_EXP (s, MPFR_GET_EXP (s) + 1); /* Can't overflow */ mpfr_sub (s, s, r, MPFR_RNDN); /* err <= 4*olderr */ if (MPFR_IS_ZERO(s)) goto ziv_next; MPFR_ASSERTD (MPFR_GET_EXP (s) <= 1); } /* The absolute error on s is bounded by (2l+1/3)*2^(2K-m) 2l+1/3 <= 2l+1. If |x| >= 4, we need to add 2^(2-m) for the argument reduction by 2Pi: if K = 0, this amounts to add 4 to 2l+1/3, i.e., to add 2 to l; if K >= 1, this amounts to add 1 to 2*l+1/3. */ l = 2 * l + 1; if (reduce) l += (K == 0) ? 4 : 1; k = MPFR_INT_CEIL_LOG2 (l) + 2*K; /* now the error is bounded by 2^(k-m) = 2^(EXP(s)-err) */ exps = MPFR_GET_EXP (s); if (MPFR_LIKELY (MPFR_CAN_ROUND (s, exps + m - k, precy, rnd_mode))) break; if (MPFR_UNLIKELY (exps == 1)) /* s = 1 or -1, and except x=0 which was already checked above, cos(x) cannot be 1 or -1, so we can round if the error is less than 2^(-precy) for directed rounding, or 2^(-precy-1) for rounding to nearest. */ { if (m > k && (m - k >= precy + (rnd_mode == MPFR_RNDN))) { /* If round to nearest or away, result is s = 1 or -1, otherwise it is round(nexttoward (s, 0)). However in order to have the inexact flag correctly set below, we set |s| to 1 - 2^(-m) in all cases. */ mpfr_nexttozero (s); break; } } if (exps < cancel) { m += cancel - exps; cancel = exps; } ziv_next: MPFR_ZIV_NEXT (loop, m); MPFR_GROUP_REPREC_2 (group, m, r, s); if (reduce) { mpfr_set_prec (xr, m); mpfr_set_prec (c, expx + m - 1); } } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); MPFR_GROUP_CLEAR (group); if (reduce) { mpfr_clear (xr); mpfr_clear (c); } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }
/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q using Brent/Kung method with O(sqrt(l)) multiplications. Return l. Uses m multiplications of full size and 2l/m of decreasing size, i.e. a total equivalent to about m+l/m full multiplications, i.e. 2*sqrt(l) for m=sqrt(l). Version using mpz. ss must have at least (sizer+1) limbs. The error is bounded by (l^2+4*l) ulps where l is the return value. */ static unsigned long mpfr_exp2_aux2 (mpz_t s, mpfr_srcptr r, mp_prec_t q, mp_exp_t *exps) { mp_exp_t expr, *expR, expt; mp_size_t sizer; mp_prec_t ql; unsigned long l, m, i; mpz_t t, *R, rr, tmp; TMP_DECL(marker); /* estimate value of l */ MPFR_ASSERTD (MPFR_GET_EXP (r) < 0); l = q / (- MPFR_GET_EXP (r)); m = __gmpfr_isqrt (l); /* we access R[2], thus we need m >= 2 */ if (m < 2) m = 2; TMP_MARK(marker); R = (mpz_t*) TMP_ALLOC((m+1)*sizeof(mpz_t)); /* R[i] is r^i */ expR = (mp_exp_t*) TMP_ALLOC((m+1)*sizeof(mp_exp_t)); /* exponent for R[i] */ sizer = 1 + (MPFR_PREC(r)-1)/BITS_PER_MP_LIMB; mpz_init(tmp); MY_INIT_MPZ(rr, sizer+2); MY_INIT_MPZ(t, 2*sizer); /* double size for products */ mpz_set_ui(s, 0); *exps = 1-q; /* 1 ulp = 2^(1-q) */ for (i = 0 ; i <= m ; i++) MY_INIT_MPZ(R[i], sizer+2); expR[1] = mpfr_get_z_exp(R[1], r); /* exact operation: no error */ expR[1] = mpz_normalize2(R[1], R[1], expR[1], 1-q); /* error <= 1 ulp */ mpz_mul(t, R[1], R[1]); /* err(t) <= 2 ulps */ mpz_div_2exp(R[2], t, q-1); /* err(R[2]) <= 3 ulps */ expR[2] = 1-q; for (i = 3 ; i <= m ; i++) { mpz_mul(t, R[i-1], R[1]); /* err(t) <= 2*i-2 */ mpz_div_2exp(R[i], t, q-1); /* err(R[i]) <= 2*i-1 ulps */ expR[i] = 1-q; } mpz_set_ui (R[0], 1); mpz_mul_2exp (R[0], R[0], q-1); expR[0] = 1-q; /* R[0]=1 */ mpz_set_ui (rr, 1); expr = 0; /* rr contains r^l/l! */ /* by induction: err(rr) <= 2*l ulps */ l = 0; ql = q; /* precision used for current giant step */ do { /* all R[i] must have exponent 1-ql */ if (l != 0) for (i = 0 ; i < m ; i++) expR[i] = mpz_normalize2 (R[i], R[i], expR[i], 1-ql); /* the absolute error on R[i]*rr is still 2*i-1 ulps */ expt = mpz_normalize2 (t, R[m-1], expR[m-1], 1-ql); /* err(t) <= 2*m-1 ulps */ /* computes t = 1 + r/(l+1) + ... + r^(m-1)*l!/(l+m-1)! using Horner's scheme */ for (i = m-1 ; i-- != 0 ; ) { mpz_div_ui(t, t, l+i+1); /* err(t) += 1 ulp */ mpz_add(t, t, R[i]); } /* now err(t) <= (3m-2) ulps */ /* now multiplies t by r^l/l! and adds to s */ mpz_mul(t, t, rr); expt += expr; expt = mpz_normalize2(t, t, expt, *exps); /* err(t) <= (3m-1) + err_rr(l) <= (3m-2) + 2*l */ MPFR_ASSERTD (expt == *exps); mpz_add(s, s, t); /* no error here */ /* updates rr, the multiplication of the factors l+i could be done using binary splitting too, but it is not sure it would save much */ mpz_mul(t, rr, R[m]); /* err(t) <= err(rr) + 2m-1 */ expr += expR[m]; mpz_set_ui (tmp, 1); for (i = 1 ; i <= m ; i++) mpz_mul_ui (tmp, tmp, l + i); mpz_fdiv_q(t, t, tmp); /* err(t) <= err(rr) + 2m */ expr += mpz_normalize(rr, t, ql); /* err_rr(l+1) <= err_rr(l) + 2m+1 */ ql = q - *exps - mpz_sizeinbase(s, 2) + expr + mpz_sizeinbase(rr, 2); l += m; } while ((size_t) expr+mpz_sizeinbase(rr, 2) > (size_t)((int)-q)); TMP_FREE(marker); mpz_clear(tmp); return l; }
/* use Brent's formula exp(x) = (1+r+r^2/2!+r^3/3!+...)^(2^K)*2^n where x = n*log(2)+(2^K)*r together with Brent-Kung O(t^(1/2)) algorithm for the evaluation of power series. The resulting complexity is O(n^(1/3)*M(n)). */ int mpfr_exp_2 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) { long n; unsigned long K, k, l, err; /* FIXME: Which type ? */ int error_r; mp_exp_t exps; mp_prec_t q, precy; int inexact; mpfr_t r, s, t; mpz_t ss; TMP_DECL(marker); precy = MPFR_PREC(y); MPFR_TRACE ( printf("Py=%d Px=%d", MPFR_PREC(y), MPFR_PREC(x)) ); MPFR_TRACE ( MPFR_DUMP (x) ); n = (long) (mpfr_get_d1 (x) / LOG2); /* error bounds the cancelled bits in x - n*log(2) */ if (MPFR_UNLIKELY(n == 0)) error_r = 0; else count_leading_zeros (error_r, (mp_limb_t) (n < 0) ? -n : n); error_r = BITS_PER_MP_LIMB - error_r + 2; /* for the O(n^(1/2)*M(n)) method, the Taylor series computation of n/K terms costs about n/(2K) multiplications when computed in fixed point */ K = (precy < SWITCH) ? __gmpfr_isqrt ((precy + 1) / 2) : __gmpfr_cuberoot (4*precy); l = (precy - 1) / K + 1; err = K + MPFR_INT_CEIL_LOG2 (2 * l + 18); /* add K extra bits, i.e. failure probability <= 1/2^K = O(1/precy) */ q = precy + err + K + 5; /*q = ( (q-1)/BITS_PER_MP_LIMB + 1) * BITS_PER_MP_LIMB; */ mpfr_init2 (r, q + error_r); mpfr_init2 (s, q + error_r); mpfr_init2 (t, q); /* the algorithm consists in computing an upper bound of exp(x) using a precision of q bits, and see if we can round to MPFR_PREC(y) taking into account the maximal error. Otherwise we increase q. */ for (;;) { MPFR_TRACE ( printf("n=%d K=%d l=%d q=%d\n",n,K,l,q) ); /* if n<0, we have to get an upper bound of log(2) in order to get an upper bound of r = x-n*log(2) */ mpfr_const_log2 (s, (n >= 0) ? GMP_RNDZ : GMP_RNDU); /* s is within 1 ulp of log(2) */ mpfr_mul_ui (r, s, (n < 0) ? -n : n, (n >= 0) ? GMP_RNDZ : GMP_RNDU); /* r is within 3 ulps of n*log(2) */ if (n < 0) mpfr_neg (r, r, GMP_RNDD); /* exact */ /* r = floor(n*log(2)), within 3 ulps */ MPFR_TRACE ( MPFR_DUMP (x) ); MPFR_TRACE ( MPFR_DUMP (r) ); mpfr_sub (r, x, r, GMP_RNDU); /* possible cancellation here: the error on r is at most 3*2^(EXP(old_r)-EXP(new_r)) */ while (MPFR_IS_NEG (r)) { /* initial approximation n was too large */ n--; mpfr_add (r, r, s, GMP_RNDU); } mpfr_prec_round (r, q, GMP_RNDU); MPFR_TRACE ( MPFR_DUMP (r) ); MPFR_ASSERTD (MPFR_IS_POS (r)); mpfr_div_2ui (r, r, K, GMP_RNDU); /* r = (x-n*log(2))/2^K, exact */ TMP_MARK(marker); MY_INIT_MPZ(ss, 3 + 2*((q-1)/BITS_PER_MP_LIMB)); exps = mpfr_get_z_exp (ss, s); /* s <- 1 + r/1! + r^2/2! + ... + r^l/l! */ l = (precy < SWITCH) ? mpfr_exp2_aux (ss, r, q, &exps) /* naive method */ : mpfr_exp2_aux2 (ss, r, q, &exps); /* Brent/Kung method */ MPFR_TRACE(printf("l=%d q=%d (K+l)*q^2=%1.3e\n", l, q, (K+l)*(double)q*q)); for (k = 0; k < K; k++) { mpz_mul (ss, ss, ss); exps <<= 1; exps += mpz_normalize (ss, ss, q); } mpfr_set_z (s, ss, GMP_RNDN); MPFR_SET_EXP(s, MPFR_GET_EXP (s) + exps); TMP_FREE(marker); /* don't need ss anymore */ if (n>0) mpfr_mul_2ui(s, s, n, GMP_RNDU); else mpfr_div_2ui(s, s, -n, GMP_RNDU); /* error is at most 2^K*(3l*(l+1)) ulp for mpfr_exp2_aux */ l = (precy < SWITCH) ? 3*l*(l+1) : l*(l+4) ; k = MPFR_INT_CEIL_LOG2 (l); /* k = 0; while (l) { k++; l >>= 1; } */ /* now k = ceil(log(error in ulps)/log(2)) */ K += k; MPFR_TRACE ( printf("after mult. by 2^n:\n") ); MPFR_TRACE ( MPFR_DUMP (s) ); MPFR_TRACE ( printf("err=%d bits\n", K) ); if (mpfr_can_round (s, q - K, GMP_RNDN, GMP_RNDZ, precy + (rnd_mode == GMP_RNDN)) ) break; MPFR_TRACE (printf("prec++, use %d\n", q+BITS_PER_MP_LIMB) ); MPFR_TRACE (printf("q=%d q-K=%d precy=%d\n",q,q-K,precy) ); q += BITS_PER_MP_LIMB; mpfr_set_prec (r, q); mpfr_set_prec (s, q); mpfr_set_prec (t, q); } inexact = mpfr_set (y, s, rnd_mode); mpfr_clear (r); mpfr_clear (s); mpfr_clear (t); return inexact; }
int mpfr_cos (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) { int K0, K, precy, m, k, l; int inexact; mpfr_t r, s; mp_limb_t *rp, *sp; mp_size_t sm; mp_exp_t exps, cancel = 0; TMP_DECL (marker); if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x))) { if (MPFR_IS_NAN(x) || MPFR_IS_INF(x)) { MPFR_SET_NAN(y); MPFR_RET_NAN; } else { MPFR_ASSERTD(MPFR_IS_ZERO(x)); return mpfr_set_ui (y, 1, GMP_RNDN); } } mpfr_save_emin_emax (); precy = MPFR_PREC(y); K0 = __gmpfr_isqrt(precy / 2); /* Need K + log2(precy/K) extra bits */ m = precy + 3 * (K0 + 2 * MAX(MPFR_GET_EXP (x), 0)) + 3; TMP_MARK(marker); sm = (m + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB; MPFR_TMP_INIT(rp, r, m, sm); MPFR_TMP_INIT(sp, s, m, sm); for (;;) { mpfr_mul (r, x, x, GMP_RNDU); /* err <= 1 ulp */ /* we need that |r| < 1 for mpfr_cos2_aux, i.e. up(x^2)/2^(2K) < 1 */ K = K0 + MAX (MPFR_GET_EXP (r), 0); mpfr_div_2ui (r, r, 2 * K, GMP_RNDN); /* r = (x/2^K)^2, err <= 1 ulp */ /* s <- 1 - r/2! + ... + (-1)^l r^l/(2l)! */ l = mpfr_cos2_aux (s, r); MPFR_SET_ONE (r); for (k = 0; k < K; k++) { mpfr_mul (s, s, s, GMP_RNDU); /* err <= 2*olderr */ mpfr_mul_2ui (s, s, 1, GMP_RNDU); /* err <= 4*olderr */ mpfr_sub (s, s, r, GMP_RNDN); } /* absolute error on s is bounded by (2l+1/3)*2^(2K-m) */ for (k = 2 * K, l = 2 * l + 1; l > 1; l = (l + 1) >> 1) k++; /* now the error is bounded by 2^(k-m) = 2^(EXP(s)-err) */ exps = MPFR_GET_EXP(s); if (MPFR_LIKELY(mpfr_can_round (s, exps + m - k, GMP_RNDN, GMP_RNDZ, precy + (rnd_mode == GMP_RNDN)))) break; m += BITS_PER_MP_LIMB; if (exps < cancel) { m += cancel - exps; cancel = exps; } sm = (m + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB; MPFR_TMP_INIT(rp, r, m, sm); MPFR_TMP_INIT(sp, s, m, sm); } mpfr_restore_emin_emax (); inexact = mpfr_set (y, s, rnd_mode); /* FIXME: Dont' need check range? */ TMP_FREE(marker); return inexact; }