long double __ieee754_sinhl (long double x) { long double t, w, h; u_int32_t jx, ix; ieee854_long_double_shape_type u; /* Words of |x|. */ u.value = x; jx = u.parts32.w0; ix = jx & 0x7fffffff; /* x is INF or NaN */ if (ix >= 0x7fff0000) return x + x; h = 0.5; if (jx & 0x80000000) h = -h; /* Absolute value of x. */ u.parts32.w0 = ix; /* |x| in [0,40], return sign(x)*0.5*(E+E/(E+1))) */ if (ix <= 0x40044000) { if (ix < 0x3fc60000) /* |x| < 2^-57 */ if (shuge + x > one) return x; /* sinh(tiny) = tiny with inexact */ t = __expm1l (u.value); if (ix < 0x3fff0000) return h * (2.0 * t - t * t / (t + one)); return h * (t + t / (t + one)); } /* |x| in [40, log(maxdouble)] return 0.5*exp(|x|) */ if (ix <= 0x400c62e3) /* 11356.375 */ return h * __ieee754_expl (u.value); /* |x| in [log(maxdouble), overflowthreshold] Overflow threshold is log(2 * maxdouble). */ if (u.value <= ovf_thresh) { w = __ieee754_expl (0.5 * u.value); t = h * w; return t * w; } /* |x| > overflowthreshold, sinhl(x) overflow */ return x * shuge; }
long double __ieee754_gammal_r (long double x, int *signgamp) { /* We don't have a real gamma implementation now. We'll use lgamma and the exp function. But due to the required boundary conditions we must check some values separately. */ u_int32_t es, hx, lx; GET_LDOUBLE_WORDS (es, hx, lx, x); if (((es & 0x7fff) | hx | lx) == 0) { /* Return value for x == 0 is NaN with invalid exception. */ *signgamp = 0; return x / x; } if (es == 0xffffffff && ((hx & 0x7fffffff) | lx) == 0) { /* x == -Inf. According to ISO this is NaN. */ *signgamp = 0; return x - x; } if ((es & 0x7fff) == 0x7fff && ((hx & 0x7fffffff) | lx) != 0) /* NaN, return it. */ return x; if ((es & 0x8000) != 0 && x < 0xffffffff && __rintl (x) == x) { /* Return value for integer x < 0 is NaN with invalid exception. */ *signgamp = 0; return (x - x) / (x - x); } /* XXX FIXME. */ return __ieee754_expl (__ieee754_lgammal_r (x, signgamp)); }
/*Converting from double precision to Multi-precision and calculating e^x */ double __slowexp(double x) { #ifdef NO_LONG_DOUBLE double w,z,res,eps=3.0e-26; int p; mp_no mpx, mpy, mpz,mpw,mpeps,mpcor; p=6; __dbl_mp(x,&mpx,p); /* Convert a double precision number x */ /* into a multiple precision number mpx with prec. p. */ __mpexp(&mpx, &mpy, p); /* Multi-Precision exponential function */ __dbl_mp(eps,&mpeps,p); __mul(&mpeps,&mpy,&mpcor,p); __add(&mpy,&mpcor,&mpw,p); __sub(&mpy,&mpcor,&mpz,p); __mp_dbl(&mpw, &w, p); __mp_dbl(&mpz, &z, p); if (w == z) return w; else { /* if calculating is not exactly */ p = 32; __dbl_mp(x,&mpx,p); __mpexp(&mpx, &mpy, p); __mp_dbl(&mpy, &res, p); return res; } #else return (double) __ieee754_expl((long double)x); #endif }
long double __ieee754_gammal_r (long double x, int *signgamp) { /* We don't have a real gamma implementation now. We'll use lgamma and the exp function. But due to the required boundary conditions we must check some values separately. */ int64_t hx; u_int64_t lx; GET_LDOUBLE_WORDS64 (hx, lx, x); if (((hx | lx) & 0x7fffffffffffffffLL) == 0) { /* Return value for x == 0 is Inf with divide by zero exception. */ *signgamp = 0; return 1.0 / x; } if (hx < 0 && (u_int64_t) hx < 0xfff0000000000000ULL && __rintl (x) == x) { /* Return value for integer x < 0 is NaN with invalid exception. */ *signgamp = 0; return (x - x) / (x - x); } if (hx == 0xfff0000000000000ULL) { /* x == -Inf. According to ISO this is NaN. */ *signgamp = 0; return x - x; } /* XXX FIXME. */ return __ieee754_expl (__ieee754_lgammal_r (x, signgamp)); }
long double __ieee754_exp2l (long double x) { if (__glibc_likely (isless (x, (long double) LDBL_MAX_EXP))) { if (__builtin_expect (isgreaterequal (x, (long double) (LDBL_MIN_EXP - LDBL_MANT_DIG - 1)), 1)) { int intx = (int) x; long double fractx = x - intx; if (fabsl (fractx) < LDBL_EPSILON / 4.0L) return __scalbnl (1.0L + fractx, intx); return __scalbnl (__ieee754_expl (M_LN2l * fractx), intx); } else { /* Underflow or exact zero. */ if (isinf (x)) return 0; else return LDBL_MIN * LDBL_MIN; } } else /* Infinity, NaN or overflow. */ return LDBL_MAX * x; }
/*Converting from double precision to Multi-precision and calculating e^x */ double SECTION __slowexp (double x) { #ifndef USE_LONG_DOUBLE_FOR_MP double w, z, res, eps = 3.0e-26; int p; mp_no mpx, mpy, mpz, mpw, mpeps, mpcor; /* Use the multiple precision __MPEXP function to compute the exponential First at 144 bits and if it is not accurate enough, at 768 bits. */ p = 6; __dbl_mp (x, &mpx, p); __mpexp (&mpx, &mpy, p); __dbl_mp (eps, &mpeps, p); __mul (&mpeps, &mpy, &mpcor, p); __add (&mpy, &mpcor, &mpw, p); __sub (&mpy, &mpcor, &mpz, p); __mp_dbl (&mpw, &w, p); __mp_dbl (&mpz, &z, p); if (w == z) return w; else { p = 32; __dbl_mp (x, &mpx, p); __mpexp (&mpx, &mpy, p); __mp_dbl (&mpy, &res, p); return res; } #else return (double) __ieee754_expl((long double)x); #endif }
long double __ieee754_sinhl(long double x) { long double t,w,h; u_int32_t jx,ix,i0,i1; /* Words of |x|. */ GET_LDOUBLE_WORDS(jx,i0,i1,x); ix = jx&0x7fff; /* x is INF or NaN */ if(__builtin_expect(ix==0x7fff, 0)) return x+x; h = 0.5; if (jx & 0x8000) h = -h; /* |x| in [0,25], return sign(x)*0.5*(E+E/(E+1))) */ if (ix < 0x4003 || (ix == 0x4003 && i0 <= 0xc8000000)) { /* |x|<25 */ if (ix<0x3fdf) { /* |x|<2**-32 */ if (fabsl (x) < LDBL_MIN) { long double force_underflow = x * x; math_force_eval (force_underflow); } if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ } t = __expm1l(fabsl(x)); if(ix<0x3fff) return h*(2.0*t-t*t/(t+one)); return h*(t+t/(t+one)); } /* |x| in [25, log(maxdouble)] return 0.5*exp(|x|) */ if (ix < 0x400c || (ix == 0x400c && i0 < 0xb17217f7)) return h*__ieee754_expl(fabsl(x)); /* |x| in [log(maxdouble), overflowthreshold] */ if (ix<0x400c || (ix == 0x400c && (i0 < 0xb174ddc0 || (i0 == 0xb174ddc0 && i1 <= 0x31aec0ea)))) { w = __ieee754_expl(0.5*fabsl(x)); t = h*w; return t*w; } /* |x| > overflowthreshold, sinhl(x) overflow */ return x*shuge; }
/* wrapper expl */ long double __expl (long double x) { long double z = __ieee754_expl (x); if (__builtin_expect (!__finitel (z) || z == 0, 0) && __finitel (x) && _LIB_VERSION != _IEEE_) return __kernel_standard_l (x, x, 206 + !!__signbitl (x)); return z; }
long double __ieee754_exp10l (long double arg) { if (__finitel (arg) && arg < LDBL_MIN_10_EXP - LDBL_DIG - 10) return LDBL_MIN * LDBL_MIN; else /* This is a very stupid and inprecise implementation. It'll get replaced sometime (soon?). */ return __ieee754_expl (M_LN10l * arg); }
long double __ieee754_sinhl(long double x) { long double t,w,h; int64_t ix,jx; double xhi; /* High word of |x|. */ xhi = ldbl_high (x); EXTRACT_WORDS64 (jx, xhi); ix = jx&0x7fffffffffffffffLL; /* x is INF or NaN */ if(ix>=0x7ff0000000000000LL) return x+x; h = 0.5; if (jx<0) h = -h; /* |x| in [0,40], return sign(x)*0.5*(E+E/(E+1))) */ if (ix < 0x4044000000000000LL) { /* |x|<40 */ if (ix<0x3c90000000000000LL) { /* |x|<2**-54 */ math_check_force_underflow (x); if(shuge+x>one) return x;/* sinhl(tiny) = tiny with inexact */ } t = __expm1l(fabsl(x)); if(ix<0x3ff0000000000000LL) return h*(2.0*t-t*t/(t+one)); w = t/(t+one); return h*(t+w); } /* |x| in [40, log(maxdouble)] return 0.5*exp(|x|) */ if (ix < 0x40862e42fefa39efLL) return h*__ieee754_expl(fabsl(x)); /* |x| in [log(maxdouble), overflowthresold] */ if (ix <= 0x408633ce8fb9f87eLL) { w = __ieee754_expl(0.5*fabsl(x)); t = h*w; return t*w; } /* |x| > overflowthresold, sinh(x) overflow */ return x*shuge; }
long double __ieee754_coshl (long double x) { long double t,w; int64_t ix; /* High word of |x|. */ GET_LDOUBLE_MSW64(ix,x); ix &= 0x7fffffffffffffffLL; /* x is INF or NaN */ if(ix>=0x7ff0000000000000LL) return x*x; /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */ if(ix<0x3fd62e42fefa39efLL) { t = __expm1l(fabsl(x)); w = one+t; if (ix<0x3c80000000000000LL) return w; /* cosh(tiny) = 1 */ return one+(t*t)/(w+w); } /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */ if (ix < 0x4036000000000000LL) { t = __ieee754_expl(fabsl(x)); return half*t+half/t; } /* |x| in [22, log(maxdouble)] return half*exp(|x|) */ if (ix < 0x40862e42fefa39efLL) return half*__ieee754_expl(fabsl(x)); /* |x| in [log(maxdouble), overflowthresold] */ if (ix < 0x408633ce8fb9f87dLL) { w = __ieee754_expl(half*fabsl(x)); t = half*w; return t*w; } /* |x| > overflowthresold, cosh(x) overflow */ return huge*huge; }
long double __ieee754_exp10l (long double arg) { union ibm_extended_long_double u; long double arg_high, arg_low; long double exp_high, exp_low; if (!__finitel (arg)) return __ieee754_expl (arg); if (arg < LDBL_MIN_10_EXP - LDBL_DIG - 10) return LDBL_MIN * LDBL_MIN; else if (arg > LDBL_MAX_10_EXP + 1) return LDBL_MAX * LDBL_MAX; else if (fabsl (arg) < 0x1p-109L) return 1.0L; u.ld = arg; arg_high = u.d[0].d; arg_low = u.d[1].d; exp_high = arg_high * log10_high; exp_low = arg_high * log10_low + arg_low * M_LN10l; return __ieee754_expl (exp_high) * __ieee754_expl (exp_low); }
long double __ieee754_exp10l (long double arg) { ieee854_long_double_shape_type u; long double arg_high, arg_low; long double exp_high, exp_low; if (!isfinite (arg)) return __ieee754_expl (arg); if (arg < LDBL_MIN_10_EXP - LDBL_DIG - 10) return LDBL_MIN * LDBL_MIN; else if (arg > LDBL_MAX_10_EXP + 1) return LDBL_MAX * LDBL_MAX; else if (fabsl (arg) < 0x1p-116L) return 1.0L; u.value = arg; u.parts64.lsw &= 0xfe00000000000000LL; arg_high = u.value; arg_low = arg - arg_high; exp_high = arg_high * log10_high; exp_low = arg_high * log10_low + arg_low * M_LN10l; return __ieee754_expl (exp_high) * __ieee754_expl (exp_low); }
/*Converting from double precision to Multi-precision and calculating e^x */ double SECTION __slowexp (double x) { #ifndef USE_LONG_DOUBLE_FOR_MP double w, z, res, eps = 3.0e-26; int p; mp_no mpx, mpy, mpz, mpw, mpeps, mpcor; /* Use the multiple precision __MPEXP function to compute the exponential First at 144 bits and if it is not accurate enough, at 768 bits. */ p = 6; __dbl_mp (x, &mpx, p); __mpexp (&mpx, &mpy, p); __dbl_mp (eps, &mpeps, p); __mul (&mpeps, &mpy, &mpcor, p); __add (&mpy, &mpcor, &mpw, p); __sub (&mpy, &mpcor, &mpz, p); __mp_dbl (&mpw, &w, p); __mp_dbl (&mpz, &z, p); if (w == z) { /* Track how often we get to the slow exp code plus its input/output values. */ LIBC_PROBE (slowexp_p6, 2, &x, &w); return w; } else { p = 32; __dbl_mp (x, &mpx, p); __mpexp (&mpx, &mpy, p); __mp_dbl (&mpy, &res, p); /* Track how often we get to the uber-slow exp code plus its input/output values. */ LIBC_PROBE (slowexp_p32, 2, &x, &res); return res; } #else return (double) __ieee754_expl((long double)x); #endif }
__complex__ long double __ccoshl (__complex__ long double x) { __complex__ long double retval; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l); long double sinix, cosix; if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN)) { __sincosl (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0; } if (fabsl (__real__ x) > t) { long double exp_t = __ieee754_expl (t); long double rx = fabsl (__real__ x); if (signbit (__real__ x)) sinix = -sinix; rx -= t; sinix *= exp_t / 2.0L; cosix *= exp_t / 2.0L; if (rx > t) { rx -= t; sinix *= exp_t; cosix *= exp_t; } if (rx > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = LDBL_MAX * cosix; __imag__ retval = LDBL_MAX * sinix; } else { long double exp_val = __ieee754_expl (rx); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } } else { __real__ retval = __ieee754_coshl (__real__ x) * cosix; __imag__ retval = __ieee754_sinhl (__real__ x) * sinix; } math_check_force_underflow_complex (retval); } else { __imag__ retval = __real__ x == 0.0 ? 0.0 : __nanl (""); __real__ retval = __nanl ("") + __nanl (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else if (rcls == FP_INFINITE) { /* Real part is infinite. */ if (__glibc_likely (icls > FP_ZERO)) { /* Imaginary part is finite. */ long double sinix, cosix; if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN)) { __sincosl (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0; } __real__ retval = __copysignl (HUGE_VALL, cosix); __imag__ retval = (__copysignl (HUGE_VALL, sinix) * __copysignl (1.0, __real__ x)); } else if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = HUGE_VALL; __imag__ retval = __imag__ x * __copysignl (1.0, __real__ x); } else { /* The addition raises the invalid exception. */ __real__ retval = HUGE_VALL; __imag__ retval = __nanl ("") + __nanl (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else { __real__ retval = __nanl (""); __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanl (""); } return retval; }
__complex__ long double __cexpl (__complex__ long double x) { __complex__ long double retval; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls >= FP_ZERO, 1)) { /* Real part is finite. */ if (__builtin_expect (icls >= FP_ZERO, 1)) { /* Imaginary part is finite. */ const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l); long double sinix, cosix; __sincosl (__imag__ x, &sinix, &cosix); if (__real__ x > t) { long double exp_t = __ieee754_expl (t); __real__ x -= t; sinix *= exp_t; cosix *= exp_t; if (__real__ x > t) { __real__ x -= t; sinix *= exp_t; cosix *= exp_t; } } if (__real__ x > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = LDBL_MAX * cosix; __imag__ retval = LDBL_MAX * sinix; } else { long double exp_val = __ieee754_expl (__real__ x); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } } else { /* If the imaginary part is +-inf or NaN and the real part is not +-inf the result is NaN + iNaN. */ __real__ retval = __nanl (""); __imag__ retval = __nanl (""); feraiseexcept (FE_INVALID); } } else if (__builtin_expect (rcls == FP_INFINITE, 1)) { /* Real part is infinite. */ if (__builtin_expect (icls >= FP_ZERO, 1)) { /* Imaginary part is finite. */ long double value = signbit (__real__ x) ? 0.0 : HUGE_VALL; if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = value; __imag__ retval = __imag__ x; } else { long double sinix, cosix; __sincosl (__imag__ x, &sinix, &cosix); __real__ retval = __copysignl (value, cosix); __imag__ retval = __copysignl (value, sinix); } } else if (signbit (__real__ x) == 0) { __real__ retval = HUGE_VALL; __imag__ retval = __nanl (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = 0.0; __imag__ retval = __copysignl (0.0, __imag__ x); } } else { /* If the real part is NaN the result is NaN + iNaN. */ __real__ retval = __nanl (""); __imag__ retval = __nanl (""); if (rcls != FP_NAN || icls != FP_NAN) feraiseexcept (FE_INVALID); } return retval; }
__complex__ long double __ctanl (__complex__ long double x) { __complex__ long double res; if (__builtin_expect (!isfinite (__real__ x) || !isfinite (__imag__ x), 0)) { if (__isinf_nsl (__imag__ x)) { __real__ res = __copysignl (0.0, __real__ x); __imag__ res = __copysignl (1.0, __imag__ x); } else if (__real__ x == 0.0) { res = x; } else { __real__ res = __nanl (""); __imag__ res = __nanl (""); if (__isinf_nsl (__real__ x)) feraiseexcept (FE_INVALID); } } else { long double sinrx, cosrx; long double den; const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2); int rcls = fpclassify (__real__ x); /* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y)) = (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */ if (__builtin_expect (rcls != FP_SUBNORMAL, 1)) { __sincosl (__real__ x, &sinrx, &cosrx); } else { sinrx = __real__ x; cosrx = 1.0; } if (fabsl (__imag__ x) > t) { /* Avoid intermediate overflow when the real part of the result may be subnormal. Ignoring negligible terms, the imaginary part is +/- 1, the real part is sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */ long double exp_2t = __ieee754_expl (2 * t); __imag__ res = __copysignl (1.0, __imag__ x); __real__ res = 4 * sinrx * cosrx; __imag__ x = fabsl (__imag__ x); __imag__ x -= t; __real__ res /= exp_2t; if (__imag__ x > t) { /* Underflow (original imaginary part of x has absolute value > 2t). */ __real__ res /= exp_2t; } else __real__ res /= __ieee754_expl (2 * __imag__ x); } else { long double sinhix, coshix; if (fabsl (__imag__ x) > LDBL_MIN) { sinhix = __ieee754_sinhl (__imag__ x); coshix = __ieee754_coshl (__imag__ x); } else { sinhix = __imag__ x; coshix = 1.0L; } if (fabsl (sinhix) > fabsl (cosrx) * LDBL_EPSILON) den = cosrx * cosrx + sinhix * sinhix; else den = cosrx * cosrx; __real__ res = sinrx * cosrx / den; __imag__ res = sinhix * coshix / den; } } return res; }
__complex__ long double __csinl (__complex__ long double x) { __complex__ long double retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); __real__ x = fabsl (__real__ x); if (__builtin_expect (icls >= FP_ZERO, 1)) { /* Imaginary part is finite. */ if (__builtin_expect (rcls >= FP_ZERO, 1)) { /* Real part is finite. */ const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l); long double sinix, cosix; if (__builtin_expect (rcls != FP_SUBNORMAL, 1)) { __sincosl (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; cosix = 1.0; } if (fabsl (__imag__ x) > t) { long double exp_t = __ieee754_expl (t); long double ix = fabsl (__imag__ x); if (signbit (__imag__ x)) cosix = -cosix; ix -= t; sinix *= exp_t / 2.0L; cosix *= exp_t / 2.0L; if (ix > t) { ix -= t; sinix *= exp_t; cosix *= exp_t; } if (ix > t) { /* Overflow (original imaginary part of x > 3t). */ __real__ retval = LDBL_MAX * sinix; __imag__ retval = LDBL_MAX * cosix; } else { long double exp_val = __ieee754_expl (ix); __real__ retval = exp_val * sinix; __imag__ retval = exp_val * cosix; } } else { __real__ retval = __ieee754_coshl (__imag__ x) * sinix; __imag__ retval = __ieee754_sinhl (__imag__ x) * cosix; } if (negate) __real__ retval = -__real__ retval; if (fabsl (__real__ retval) < LDBL_MIN) { volatile long double force_underflow = __real__ retval * __real__ retval; (void) force_underflow; } if (fabsl (__imag__ retval) < LDBL_MIN) { volatile long double force_underflow = __imag__ retval * __imag__ retval; (void) force_underflow; } } else { if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = __nanl (""); __imag__ retval = __imag__ x; if (rcls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = __nanl (""); __imag__ retval = __nanl (""); feraiseexcept (FE_INVALID); } } } else if (icls == FP_INFINITE) { /* Imaginary part is infinite. */ if (rcls == FP_ZERO) { /* Real part is 0.0. */ __real__ retval = __copysignl (0.0, negate ? -1.0 : 1.0); __imag__ retval = __imag__ x; } else if (rcls > FP_ZERO) { /* Real part is finite. */ long double sinix, cosix; if (__builtin_expect (rcls != FP_SUBNORMAL, 1)) { __sincosl (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; cosix = 1.0; } __real__ retval = __copysignl (HUGE_VALL, sinix); __imag__ retval = __copysignl (HUGE_VALL, cosix); if (negate) __real__ retval = -__real__ retval; if (signbit (__imag__ x)) __imag__ retval = -__imag__ retval; } else { /* The addition raises the invalid exception. */ __real__ retval = __nanl (""); __imag__ retval = HUGE_VALL; if (rcls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else { if (rcls == FP_ZERO) __real__ retval = __copysignl (0.0, negate ? -1.0 : 1.0); else __real__ retval = __nanl (""); __imag__ retval = __nanl (""); } return retval; }
static long double gammal_positive (long double x, int *exp2_adj) { int local_signgam; if (x < 0.5L) { *exp2_adj = 0; return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x; } else if (x <= 1.5L) { *exp2_adj = 0; return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam)); } else if (x < 12.5L) { /* Adjust into the range for using exp (lgamma). */ *exp2_adj = 0; long double n = __ceill (x - 1.5L); long double x_adj = x - n; long double eps; long double prod = __gamma_productl (x_adj, 0, n, &eps); return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam)) * prod * (1.0L + eps)); } else { long double eps = 0; long double x_eps = 0; long double x_adj = x; long double prod = 1; if (x < 24.0L) { /* Adjust into the range for applying Stirling's approximation. */ long double n = __ceill (24.0L - x); x_adj = x + n; x_eps = (x - (x_adj - n)); prod = __gamma_productl (x_adj - n, x_eps, n, &eps); } /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, starting by computing pow (X_ADJ, X_ADJ) with a power of 2 factored out. */ long double exp_adj = -eps; long double x_adj_int = __roundl (x_adj); long double x_adj_frac = x_adj - x_adj_int; int x_adj_log2; long double x_adj_mant = __frexpl (x_adj, &x_adj_log2); if (x_adj_mant < M_SQRT1_2l) { x_adj_log2--; x_adj_mant *= 2.0L; } *exp2_adj = x_adj_log2 * (int) x_adj_int; long double ret = (__ieee754_powl (x_adj_mant, x_adj) * __ieee754_exp2l (x_adj_log2 * x_adj_frac) * __ieee754_expl (-x_adj) * __ieee754_sqrtl (2 * M_PIl / x_adj) / prod); exp_adj += x_eps * __ieee754_logl (x_adj); long double bsum = gamma_coeff[NCOEFF - 1]; long double x_adj2 = x_adj * x_adj; for (size_t i = 1; i <= NCOEFF - 1; i++) bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; exp_adj += bsum / x_adj; return ret + ret * __expm1l (exp_adj); } }
__complex__ long double __cexpl (__complex__ long double x) { __complex__ long double retval; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l); long double sinix, cosix; if (__glibc_likely (icls != FP_SUBNORMAL)) { __sincosl (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0; } if (__real__ x > t) { long double exp_t = __ieee754_expl (t); __real__ x -= t; sinix *= exp_t; cosix *= exp_t; if (__real__ x > t) { __real__ x -= t; sinix *= exp_t; cosix *= exp_t; } } if (__real__ x > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = LDBL_MAX * cosix; __imag__ retval = LDBL_MAX * sinix; } else { long double exp_val = __ieee754_expl (__real__ x); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } if (fabsl (__real__ retval) < LDBL_MIN) { volatile long double force_underflow = __real__ retval * __real__ retval; (void) force_underflow; } if (fabsl (__imag__ retval) < LDBL_MIN) { volatile long double force_underflow = __imag__ retval * __imag__ retval; (void) force_underflow; } } else { /* If the imaginary part is +-inf or NaN and the real part is not +-inf the result is NaN + iNaN. */ __real__ retval = __nanl (""); __imag__ retval = __nanl (""); feraiseexcept (FE_INVALID); } } else if (__glibc_likely (rcls == FP_INFINITE)) { /* Real part is infinite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ long double value = signbit (__real__ x) ? 0.0 : HUGE_VALL; if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = value; __imag__ retval = __imag__ x; } else { long double sinix, cosix; if (__glibc_likely (icls != FP_SUBNORMAL)) { __sincosl (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0; } __real__ retval = __copysignl (value, cosix); __imag__ retval = __copysignl (value, sinix); } } else if (signbit (__real__ x) == 0) { __real__ retval = HUGE_VALL; __imag__ retval = __nanl (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = 0.0; __imag__ retval = __copysignl (0.0, __imag__ x); } } else { /* If the real part is NaN the result is NaN + iNaN unless the imaginary part is zero. */ __real__ retval = __nanl (""); if (icls == FP_ZERO) __imag__ retval = __imag__ x; else { __imag__ retval = __nanl (""); if (rcls != FP_NAN || icls != FP_NAN) feraiseexcept (FE_INVALID); } } return retval; }
__complex__ long double __ctanhl (__complex__ long double x) { __complex__ long double res; if (!isfinite (__real__ x) || !isfinite (__imag__ x)) { if (__isinfl (__real__ x)) { __real__ res = __copysignl (1.0L, __real__ x); __imag__ res = __copysignl (0.0L, __imag__ x); } else if (__imag__ x == 0.0) { res = x; } else { __real__ res = __nanl (""); __imag__ res = __nanl (""); #ifdef FE_INVALID if (__isinfl (__imag__ x)) feraiseexcept (FE_INVALID); #endif } } else { long double sinix, cosix; long double den; const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2.0L); /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y)) = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */ __sincosl (__imag__ x, &sinix, &cosix); if (fabsl (__real__ x) > t) { /* Avoid intermediate overflow when the imaginary part of the result may be subnormal. Ignoring negligible terms, the real part is +/- 1, the imaginary part is sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */ long double exp_2t = __ieee754_expl (2 * t); __real__ res = __copysignl (1.0L, __real__ x); __imag__ res = 4 * sinix * cosix; __real__ x = fabsl (__real__ x); __real__ x -= t; __imag__ res /= exp_2t; if (__real__ x > t) { /* Underflow (original real part of x has absolute value > 2t). */ __imag__ res /= exp_2t; } else __imag__ res /= __ieee754_expl (2.0L * __real__ x); } else { long double sinhrx, coshrx; if (fabs (__real__ x) > LDBL_MIN) { sinhrx = __ieee754_sinhl (__real__ x); coshrx = __ieee754_coshl (__real__ x); } else { sinhrx = __real__ x; coshrx = 1.0L; } if (fabsl (sinhrx) > fabsl (cosix) * ldbl_eps) den = sinhrx * sinhrx + cosix * cosix; else den = cosix * cosix; __real__ res = sinhrx * (coshrx / den); __imag__ res = sinix * (cosix / den); } /* __gcc_qmul does not respect -0.0 so we need the following fixup. */ if ((__real__ res == 0.0L) && (__real__ x == 0.0L)) __real__ res = __real__ x; if ((__real__ res == 0.0L) && (__imag__ x == 0.0L)) __imag__ res = __imag__ x; } return res; }