Esempio n. 1
0
static int sdio_irq_thread(void *_host)
{
	struct mmc_host *host = _host;
	struct sched_param param = { .sched_priority = 1 };
	unsigned long period, idle_period;
	int ret;

	sched_setscheduler(current, SCHED_FIFO, &param);

	/*
	 * We want to allow for SDIO cards to work even on non SDIO
	 * aware hosts.  One thing that non SDIO host cannot do is
	 * asynchronous notification of pending SDIO card interrupts
	 * hence we poll for them in that case.
	 */
	idle_period = msecs_to_jiffies(10);
	period = (host->caps & MMC_CAP_SDIO_IRQ) ?
		MAX_SCHEDULE_TIMEOUT : idle_period;

	pr_debug("%s: IRQ thread started (poll period = %lu jiffies)\n",
		 mmc_hostname(host), period);

	do {
		/*
		 * We claim the host here on drivers behalf for a couple
		 * reasons:
		 *
		 * 1) it is already needed to retrieve the CCCR_INTx;
		 * 2) we want the driver(s) to clear the IRQ condition ASAP;
		 * 3) we need to control the abort condition locally.
		 *
		 * Just like traditional hard IRQ handlers, we expect SDIO
		 * IRQ handlers to be quick and to the point, so that the
		 * holding of the host lock does not cover too much work
		 * that doesn't require that lock to be held.
		 */
		ret = __mmc_claim_host(host, &host->sdio_irq_thread_abort);
		if (ret)
			break;
		ret = process_sdio_pending_irqs(host);
		host->sdio_irq_pending = false;
		mmc_release_host(host);

		/*
		 * Give other threads a chance to run in the presence of
		 * errors.
		 */
		if (ret < 0) {
			set_current_state(TASK_INTERRUPTIBLE);
			if (!kthread_should_stop())
				schedule_timeout(HZ);
			set_current_state(TASK_RUNNING);
		}

		/*
		 * Adaptive polling frequency based on the assumption
		 * that an interrupt will be closely followed by more.
		 * This has a substantial benefit for network devices.
		 */
		if (!(host->caps & MMC_CAP_SDIO_IRQ)) {
			if (ret > 0)
				period /= 2;
			else {
				period++;
				if (period > idle_period)
					period = idle_period;
			}
		}

		set_current_state(TASK_INTERRUPTIBLE);
		if (host->caps & MMC_CAP_SDIO_IRQ) {
			mmc_host_clk_hold(host);
			host->ops->enable_sdio_irq(host, 1);
			mmc_host_clk_release(host);
		}
		if (!kthread_should_stop())
			schedule_timeout(period);
		set_current_state(TASK_RUNNING);
	} while (!kthread_should_stop());

	if (host->caps & MMC_CAP_SDIO_IRQ) {
		mmc_host_clk_hold(host);
		host->ops->enable_sdio_irq(host, 0);
		mmc_host_clk_release(host);
	}

	pr_debug("%s: IRQ thread exiting with code %d\n",
		 mmc_hostname(host), ret);

	return ret;
}

static int sdio_card_irq_get(struct mmc_card *card)
{
	struct mmc_host *host = card->host;

	WARN_ON(!host->claimed);

	if (!host->sdio_irqs++) {
		if (!(host->caps2 & MMC_CAP2_SDIO_IRQ_NOTHREAD)) {
			atomic_set(&host->sdio_irq_thread_abort, 0);
			host->sdio_irq_thread =
				kthread_run(sdio_irq_thread, host,
					    "ksdioirqd/%s", mmc_hostname(host));
			if (IS_ERR(host->sdio_irq_thread)) {
				int err = PTR_ERR(host->sdio_irq_thread);
				host->sdio_irqs--;
				return err;
			}
		} else {
			mmc_host_clk_hold(host);
			host->ops->enable_sdio_irq(host, 1);
			mmc_host_clk_release(host);
		}
	}

	return 0;
}

static int sdio_card_irq_put(struct mmc_card *card)
{
	struct mmc_host *host = card->host;

	WARN_ON(!host->claimed);
	BUG_ON(host->sdio_irqs < 1);

	if (!--host->sdio_irqs) {
		if (!(host->caps2 & MMC_CAP2_SDIO_IRQ_NOTHREAD)) {
			atomic_set(&host->sdio_irq_thread_abort, 1);
			kthread_stop(host->sdio_irq_thread);
		} else {
			mmc_host_clk_hold(host);
			host->ops->enable_sdio_irq(host, 0);
			mmc_host_clk_release(host);
		}
	}

	return 0;
}

/* If there is only 1 function registered set sdio_single_irq */
static void sdio_single_irq_set(struct mmc_card *card)
{
	struct sdio_func *func;
	int i;

	card->sdio_single_irq = NULL;
	if ((card->host->caps & MMC_CAP_SDIO_IRQ) &&
	    card->host->sdio_irqs == 1)
		for (i = 0; i < card->sdio_funcs; i++) {
		       func = card->sdio_func[i];
		       if (func && func->irq_handler) {
			       card->sdio_single_irq = func;
			       break;
		       }
	       }
}

/**
 *	sdio_claim_irq - claim the IRQ for a SDIO function
 *	@func: SDIO function
 *	@handler: IRQ handler callback
 *
 *	Claim and activate the IRQ for the given SDIO function. The provided
 *	handler will be called when that IRQ is asserted.  The host is always
 *	claimed already when the handler is called so the handler must not
 *	call sdio_claim_host() nor sdio_release_host().
 */
int sdio_claim_irq(struct sdio_func *func, sdio_irq_handler_t *handler)
{
	int ret;
	unsigned char reg;

	BUG_ON(!func);
	BUG_ON(!func->card);

	pr_debug("SDIO: Enabling IRQ for %s...\n", sdio_func_id(func));

	if (func->irq_handler) {
		pr_debug("SDIO: IRQ for %s already in use.\n", sdio_func_id(func));
		return -EBUSY;
	}

	ret = mmc_io_rw_direct(func->card, 0, 0, SDIO_CCCR_IENx, 0, &reg);
	if (ret)
		return ret;

	reg |= 1 << func->num;

	reg |= 1; /* Master interrupt enable */

	ret = mmc_io_rw_direct(func->card, 1, 0, SDIO_CCCR_IENx, reg, NULL);
	if (ret)
		return ret;

	func->irq_handler = handler;
	ret = sdio_card_irq_get(func->card);
	if (ret)
		func->irq_handler = NULL;
	sdio_single_irq_set(func->card);

	return ret;
}
static int sdio_irq_thread(void *_host)
{
    struct mmc_host *host = _host;
    struct sched_param param = { .sched_priority = 1 };
    unsigned long period, idle_period;
    int ret;

    sched_setscheduler(current, SCHED_FIFO, &param);

    idle_period = msecs_to_jiffies(10);
    period = (host->caps & MMC_CAP_SDIO_IRQ) ?
             MAX_SCHEDULE_TIMEOUT : idle_period;

    pr_debug("%s: IRQ thread started (poll period = %lu jiffies)\n",
             mmc_hostname(host), period);

    do {
        ret = __mmc_claim_host(host, &host->sdio_irq_thread_abort);
        if (ret)
            break;
        ret = process_sdio_pending_irqs(host);
        host->sdio_irq_pending = false;
        mmc_release_host(host);

        if (ret < 0) {
            set_current_state(TASK_INTERRUPTIBLE);
            if (!kthread_should_stop())
                schedule_timeout(HZ);
            set_current_state(TASK_RUNNING);
        }

        if (!(host->caps & MMC_CAP_SDIO_IRQ)) {
            if (ret > 0)
                period /= 2;
            else {
                period++;
                if (period > idle_period)
                    period = idle_period;
            }
        }

        set_current_state(TASK_INTERRUPTIBLE);
        if (host->caps & MMC_CAP_SDIO_IRQ) {
            mmc_host_clk_hold(host);
            host->ops->enable_sdio_irq(host, 1);
            mmc_host_clk_release(host);
        }
        if (!kthread_should_stop())
            schedule_timeout(period);
        set_current_state(TASK_RUNNING);
    } while (!kthread_should_stop());

    if (host->caps & MMC_CAP_SDIO_IRQ) {
        mmc_host_clk_hold(host);
        host->ops->enable_sdio_irq(host, 0);
        mmc_host_clk_release(host);
    }

    pr_debug("%s: IRQ thread exiting with code %d\n",
             mmc_hostname(host), ret);

    return ret;
}

static int sdio_card_irq_get(struct mmc_card *card)
{
    struct mmc_host *host = card->host;

    WARN_ON(!host->claimed);

    if (!host->sdio_irqs++) {
        atomic_set(&host->sdio_irq_thread_abort, 0);
        host->sdio_irq_thread =
            kthread_run(sdio_irq_thread, host, "ksdioirqd/%s",
                        mmc_hostname(host));
        if (IS_ERR(host->sdio_irq_thread)) {
            int err = PTR_ERR(host->sdio_irq_thread);
            host->sdio_irqs--;
            return err;
        }
        if (host->caps & MMC_CAP_SDIO_IRQ) {
            mmc_host_clk_hold(host);
            host->ops->enable_sdio_irq(host, 1);
            mmc_host_clk_release(host);
        }
    }

    return 0;
}

static int sdio_card_irq_put(struct mmc_card *card)
{
    struct mmc_host *host = card->host;

    WARN_ON(!host->claimed);
    BUG_ON(host->sdio_irqs < 1);

    if (host->sdio_irqs == 1) {
        if (host->caps & MMC_CAP_SDIO_IRQ) {
            mmc_host_clk_hold(host);
            host->ops->enable_sdio_irq(host, 0);
            mmc_host_clk_release(host);
        }
    }

    if (!--host->sdio_irqs) {
        atomic_set(&host->sdio_irq_thread_abort, 1);
        kthread_stop(host->sdio_irq_thread);
    }

    return 0;
}

static void sdio_single_irq_set(struct mmc_card *card)
{
    struct sdio_func *func;
    int i;

    card->sdio_single_irq = NULL;
    if ((card->host->caps & MMC_CAP_SDIO_IRQ) &&
            card->host->sdio_irqs == 1)
        for (i = 0; i < card->sdio_funcs; i++) {
            func = card->sdio_func[i];
            if (func && func->irq_handler) {
                card->sdio_single_irq = func;
                break;
            }
        }
}

int sdio_claim_irq(struct sdio_func *func, sdio_irq_handler_t *handler)
{
    int ret;
    unsigned char reg;

    BUG_ON(!func);
    BUG_ON(!func->card);

    pr_debug("SDIO: Enabling IRQ for %s...\n", sdio_func_id(func));

    if (func->irq_handler) {
        pr_debug("SDIO: IRQ for %s already in use.\n", sdio_func_id(func));
        return -EBUSY;
    }

    ret = mmc_io_rw_direct(func->card, 0, 0, SDIO_CCCR_IENx, 0, &reg);
    if (ret)
        return ret;

    reg |= 1 << func->num;

    reg |= 1;

    ret = mmc_io_rw_direct(func->card, 1, 0, SDIO_CCCR_IENx, reg, NULL);
    if (ret)
        return ret;

    func->irq_handler = handler;
    ret = sdio_card_irq_get(func->card);
    if (ret)
        func->irq_handler = NULL;
    sdio_single_irq_set(func->card);

    return ret;
}