Esempio n. 1
0
int
bessel(acb_ptr out, const acb_t inp, void * params, long order, long prec)
{
    acb_ptr t;
    acb_t z;
    ulong n;

    t = _acb_vec_init(order);
    acb_init(z);

    acb_set(t, inp);
    if (order > 1)
        acb_one(t + 1);

    n = 10;
    arb_set_si(acb_realref(z), 20);
    arb_set_si(acb_imagref(z), 10);

    /* z sin(t) */
    _acb_poly_sin_series(out, t, FLINT_MIN(2, order), order, prec);
    _acb_vec_scalar_mul(out, out, order, z, prec);

    /* t n */
    _acb_vec_scalar_mul_ui(t, t, FLINT_MIN(2, order), n, prec);

    _acb_poly_sub(out, t, FLINT_MIN(2, order), out, order, prec);

    _acb_poly_cos_series(out, out, order, order, prec);

    _acb_vec_clear(t, order);
    acb_clear(z);
    return 0;
}
Esempio n. 2
0
void
_acb_poly_mullow_classical(acb_ptr res,
    acb_srcptr poly1, slong len1,
    acb_srcptr poly2, slong len2, slong n, slong prec)
{
    len1 = FLINT_MIN(len1, n);
    len2 = FLINT_MIN(len2, n);

    if (n == 1)
    {
        acb_mul(res, poly1, poly2, prec);
    }
    else if (poly1 == poly2 && len1 == len2)
    {
        slong i;

        _acb_vec_scalar_mul(res, poly1, FLINT_MIN(len1, n), poly1, prec);
        _acb_vec_scalar_mul(res + len1, poly1 + 1, n - len1, poly1 + len1 - 1, prec);

        for (i = 1; i < len1 - 1; i++)
            _acb_vec_scalar_addmul(res + i + 1, poly1 + 1,
                FLINT_MIN(i - 1, n - (i + 1)), poly1 + i, prec);

        for (i = 1; i < FLINT_MIN(2 * len1 - 2, n); i++)
            acb_mul_2exp_si(res + i, res + i, 1);

        for (i = 1; i < FLINT_MIN(len1 - 1, (n + 1) / 2); i++)
            acb_addmul(res + 2 * i, poly1 + i, poly1 + i, prec);
    }
    else
    {
        slong i;

        _acb_vec_scalar_mul(res, poly1, FLINT_MIN(len1, n), poly2, prec);

        if (n > len1)
            _acb_vec_scalar_mul(res + len1, poly2 + 1, n - len1,
                                      poly1 + len1 - 1, prec);

        for (i = 0; i < FLINT_MIN(len1, n) - 1; i++)
            _acb_vec_scalar_addmul(res + i + 1, poly2 + 1,
                                         FLINT_MIN(len2, n - i) - 1,
                                         poly1 + i, prec);
    }
}
Esempio n. 3
0
void
integrals_edge_factors_gc(acb_ptr res, const acb_t cab, const acb_t ba2, sec_t c, slong prec)
{
    slong i;
    acb_t cj, ci;

    acb_init(cj);
    acb_init(ci);

    /* polynomial shift */
    acb_vec_polynomial_shift(res, cab, c.g, prec);

    /* constants cj, j = 1 */
    /* c_1 = (1-zeta^-1) ba2^(-d/2) (-I)^i
     *     = 2 / ba2^(d/2) */

    acb_pow_ui(cj, ba2, c.d / 2, prec);
    if (c.d % 2)
    {
        acb_t t;
        acb_init(t);
        acb_sqrt(t, ba2, prec);
        acb_mul(cj, cj, t, prec);
        acb_clear(t);
    }
    acb_inv(cj, cj, prec);
    acb_mul_2exp_si(cj, cj, 1);

    _acb_vec_scalar_mul(res, res, c.g, cj, prec);

    /* constant ci = -I * ba2*/
    acb_one(ci);
    for (i = 1; i < c.g; i++)
    {
        acb_mul(ci, ci, ba2, prec);
        acb_div_onei(ci, ci);
        acb_mul(res + i, res + i, ci, prec);
    }

    acb_clear(ci);
    acb_clear(cj);
}
Esempio n. 4
0
void
_acb_poly_compose_series_horner(acb_ptr res, acb_srcptr poly1, slong len1,
                            acb_srcptr poly2, slong len2, slong n, slong prec)
{
    if (n == 1)
    {
        acb_set(res, poly1);
    }
    else
    {
        slong i = len1 - 1;
        slong lenr;

        acb_ptr t = _acb_vec_init(n);

        lenr = len2;
        _acb_vec_scalar_mul(res, poly2, len2, poly1 + i, prec);
        i--;
        acb_add(res, res, poly1 + i, prec);

        while (i > 0)
        {
            i--;
            if (lenr + len2 - 1 < n)
            {
                _acb_poly_mul(t, res, lenr, poly2, len2, prec);
                lenr = lenr + len2 - 1;
            }
            else
            {
                _acb_poly_mullow(t, res, lenr, poly2, len2, n, prec);
                lenr = n;
            }
            _acb_poly_add(res, t, lenr, poly1 + i, 1, prec);
        }

        _acb_vec_zero(res + lenr, n - lenr);
        _acb_vec_clear(t, n);
    }
}
Esempio n. 5
0
void
_acb_poly_rgamma_series(acb_ptr res, acb_srcptr h, slong hlen, slong len, slong prec)
{
    int reflect;
    slong i, rflen, r, n, wp;
    acb_ptr t, u, v;
    acb_struct f[2];

    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        acb_rgamma(res, h, prec);
        _acb_vec_zero(res + 1, len - 1);
        return;
    }

    /* use real code for real input */
    if (_acb_vec_is_real(h, hlen))
    {
        arb_ptr tmp = _arb_vec_init(len);
        for (i = 0; i < hlen; i++)
            arb_set(tmp + i, acb_realref(h + i));
        _arb_poly_rgamma_series(tmp, tmp, hlen, len, prec);
        for (i = 0; i < len; i++)
            acb_set_arb(res + i, tmp + i);
        _arb_vec_clear(tmp, len);
        return;
    }

    wp = prec + FLINT_BIT_COUNT(prec);

    t = _acb_vec_init(len);
    u = _acb_vec_init(len);
    v = _acb_vec_init(len);
    acb_init(f);
    acb_init(f + 1);

    /* otherwise use Stirling series */
    acb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);

    /* rgamma(h) = (gamma(1-h+r) sin(pi h)) / (rf(1-h, r) * pi), h = h0 + t*/
    if (reflect)
    {
        /* u = gamma(r+1-h) */
        acb_sub_ui(f, h, r + 1, wp);
        acb_neg(f, f);
        _acb_poly_gamma_stirling_eval(t, f, n, len, wp);
        _acb_poly_exp_series(u, t, len, len, wp);
        for (i = 1; i < len; i += 2)
            acb_neg(u + i, u + i);

        /* v = sin(pi x) */
        acb_set(f, h);
        acb_one(f + 1);
        _acb_poly_sin_pi_series(v, f, 2, len, wp);

        _acb_poly_mullow(t, u, len, v, len, len, wp);

        /* rf(1-h,r) * pi */
        if (r == 0)
        {
            acb_const_pi(u, wp);
            _acb_vec_scalar_div(v, t, len, u, wp);
        }
        else
        {
            acb_sub_ui(f, h, 1, wp);
            acb_neg(f, f);
            acb_set_si(f + 1, -1);
            rflen = FLINT_MIN(len, r + 1);
            _acb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r, rflen, wp);
            acb_const_pi(u, wp);
            _acb_vec_scalar_mul(v, v, rflen, u, wp);

            /* divide by rising factorial */
            /* TODO: might better to use div_series, when it has a good basecase */
            _acb_poly_inv_series(u, v, rflen, len, wp);
            _acb_poly_mullow(v, t, len, u, len, len, wp);
        }
    }
    else
    {
        /* rgamma(h) = rgamma(h+r) rf(h,r) */
        if (r == 0)
        {
            acb_add_ui(f, h, r, wp);
            _acb_poly_gamma_stirling_eval(t, f, n, len, wp);
            _acb_vec_neg(t, t, len);
            _acb_poly_exp_series(v, t, len, len, wp);
        }
        else
        {
            acb_set(f, h);
            acb_one(f + 1);
            rflen = FLINT_MIN(len, r + 1);
            _acb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, wp);

            acb_add_ui(f, h, r, wp);
            _acb_poly_gamma_stirling_eval(v, f, n, len, wp);
            _acb_vec_neg(v, v, len);
            _acb_poly_exp_series(u, v, len, len, wp);

            _acb_poly_mullow(v, u, len, t, rflen, len, wp);
        }
    }

    /* compose with nonconstant part */
    acb_zero(t);
    _acb_vec_set(t + 1, h + 1, hlen - 1);
    _acb_poly_compose_series(res, v, len, t, hlen, len, prec);

    acb_clear(f);
    acb_clear(f + 1);
    _acb_vec_clear(t, len);
    _acb_vec_clear(u, len);
    _acb_vec_clear(v, len);
}
Esempio n. 6
0
void
_acb_poly_zeta_em_tail_naive(acb_ptr sum, const acb_t s, const acb_t Na, acb_srcptr Nasx, slong M, slong d, slong prec)
{
    acb_ptr u, term;
    acb_t Na2, splus, rec;
    arb_t x;
    fmpz_t c;
    int aint;
    slong r;

    BERNOULLI_ENSURE_CACHED(2 * M);

    u = _acb_vec_init(d);
    term = _acb_vec_init(d);
    acb_init(splus);
    acb_init(rec);
    acb_init(Na2);
    arb_init(x);
    fmpz_init(c);

    _acb_vec_zero(sum, d);

    /* u = 1/2 * Nasx */
    _acb_vec_scalar_mul_2exp_si(u, Nasx, d, -WORD(1));

    /* term = u * (s+x) / (N+a) */
    _acb_poly_mullow_cpx(u, u, d, s, d, prec);
    _acb_vec_scalar_div(term, u, d, Na, prec);

    /* (N+a)^2 or 1/(N+a)^2 */
    acb_mul(Na2, Na, Na, prec);
    aint = acb_is_int(Na2);

    if (!aint)
        acb_inv(Na2, Na2, prec);

    for (r = 1; r <= M; r++)
    {
        /* flint_printf("sum 2: %wd %wd\n", r, M); */

        /* sum += bernoulli number * term */
        arb_set_round_fmpz(x, fmpq_numref(bernoulli_cache + 2 * r), prec);
        arb_div_fmpz(x, x, fmpq_denref(bernoulli_cache + 2 * r), prec);

        _acb_vec_scalar_mul_arb(u, term, d, x, prec);
        _acb_vec_add(sum, sum, u, d, prec);

        /* multiply term by ((s+x)+2r-1)((s+x)+2r) / ((N+a)^2 * (2*r+1)*(2*r+2)) */
        acb_set(splus, s);
        arb_add_ui(acb_realref(splus), acb_realref(splus), 2*r-1, prec);
        _acb_poly_mullow_cpx(term, term, d, splus, d, prec);
        arb_add_ui(acb_realref(splus), acb_realref(splus), 1, prec);
        _acb_poly_mullow_cpx(term, term, d, splus, d, prec);

        /* TODO: combine with previous multiplication? */
        if (aint)
        {
            arb_mul_ui(x, acb_realref(Na2), 2*r+1, prec);
            arb_mul_ui(x, x, 2*r+2, prec);
            _acb_vec_scalar_div_arb(term, term, d, x, prec);
        }
        else
        {
            fmpz_set_ui(c, 2*r+1);
            fmpz_mul_ui(c, c, 2*r+2);
            acb_div_fmpz(rec, Na2, c, prec);
            _acb_vec_scalar_mul(term, term, d, rec, prec);
        }
    }

    _acb_vec_clear(u, d);
    _acb_vec_clear(term, d);
    acb_clear(splus);
    acb_clear(rec);
    acb_clear(Na2);
    arb_clear(x);
    fmpz_clear(c);
}
Esempio n. 7
0
void
_acb_poly_zeta_em_sum(acb_ptr z, const acb_t s, const acb_t a, int deflate, ulong N, ulong M, slong d, slong prec)
{
    acb_ptr t, u, v, term, sum;
    acb_t Na, one;
    slong i;

    t = _acb_vec_init(d + 1);
    u = _acb_vec_init(d);
    v = _acb_vec_init(d);
    term = _acb_vec_init(d);
    sum = _acb_vec_init(d);
    acb_init(Na);
    acb_init(one);

    prec += 2 * (FLINT_BIT_COUNT(N) + FLINT_BIT_COUNT(d));
    acb_one(one);

    /* sum 1/(k+a)^(s+x) */
    if (acb_is_one(a) && d <= 3)
        _acb_poly_powsum_one_series_sieved(sum, s, N, d, prec);
    else if (N > 50 && flint_get_num_threads() > 1)
        _acb_poly_powsum_series_naive_threaded(sum, s, a, one, N, d, prec);
    else
        _acb_poly_powsum_series_naive(sum, s, a, one, N, d, prec);

    /* t = 1/(N+a)^(s+x); we might need one extra term for deflation */
    acb_add_ui(Na, a, N, prec);
    _acb_poly_acb_invpow_cpx(t, Na, s, d + 1, prec);

    /* sum += (N+a) * 1/((s+x)-1) * t */
    if (!deflate)
    {
        /* u = (N+a)^(1-(s+x)) */
        acb_sub_ui(v, s, 1, prec);
        _acb_poly_acb_invpow_cpx(u, Na, v, d, prec);

        /* divide by 1/((s-1) + x) */
        acb_sub_ui(v, s, 1, prec);
        acb_div(u, u, v, prec);

        for (i = 1; i < d; i++)
        {
            acb_sub(u + i, u + i, u + i - 1, prec);
            acb_div(u + i, u + i, v, prec);
        }

        _acb_vec_add(sum, sum, u, d, prec);
    }
    /* sum += ((N+a)^(1-(s+x)) - 1) / ((s+x) - 1) */
    else
    {
        /* at s = 1, this becomes (N*t - 1)/x, i.e. just remove one coeff  */
        if (acb_is_one(s))
        {
            for (i = 0; i < d; i++)
                acb_mul(u + i, t + i + 1, Na, prec);
            _acb_vec_add(sum, sum, u, d, prec);
        }
        else
        {
            /* TODO: this is numerically unstable for large derivatives,
                and divides by zero if s contains 1. We want a good
                way to evaluate the power series ((N+a)^y - 1) / y where y has
                nonzero constant term, without doing a division.
                How is this best done? */

            _acb_vec_scalar_mul(t, t, d, Na, prec);
            acb_sub_ui(t + 0, t + 0, 1, prec);
            acb_sub_ui(u + 0, s, 1, prec);
            acb_inv(u + 0, u + 0, prec);
            for (i = 1; i < d; i++)
                acb_mul(u + i, u + i - 1, u + 0, prec);
            for (i = 1; i < d; i += 2)
                acb_neg(u + i, u + i);
            _acb_poly_mullow(v, u, d, t, d, d, prec);
            _acb_vec_add(sum, sum, v, d, prec);
            _acb_poly_acb_invpow_cpx(t, Na, s, d, prec);
        }
    }

    /* sum += u = 1/2 * t */
    _acb_vec_scalar_mul_2exp_si(u, t, d, -WORD(1));
    _acb_vec_add(sum, sum, u, d, prec);

    /* Euler-Maclaurin formula tail */
    if (d < 5 || d < M / 10)
        _acb_poly_zeta_em_tail_naive(u, s, Na, t, M, d, prec);
    else
        _acb_poly_zeta_em_tail_bsplit(u, s, Na, t, M, d, prec);

    _acb_vec_add(z, sum, u, d, prec);

    _acb_vec_clear(t, d + 1);
    _acb_vec_clear(u, d);
    _acb_vec_clear(v, d);
    _acb_vec_clear(term, d);
    _acb_vec_clear(sum, d);
    acb_clear(Na);
    acb_clear(one);
}
Esempio n. 8
0
void
_acb_poly_sin_cos_series_tangent(acb_ptr s, acb_ptr c,
        const acb_srcptr h, slong hlen, slong len, slong prec, int times_pi)
{
    acb_ptr t, u, v;
    acb_t s0, c0;
    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        if (times_pi)
            acb_sin_cos_pi(s, c, h, prec);
        else
            acb_sin_cos(s, c, h, prec);
        _acb_vec_zero(s + 1, len - 1);
        _acb_vec_zero(c + 1, len - 1);
        return;
    }

    /*
    sin(x) = 2*tan(x/2)/(1+tan(x/2)^2)
    cos(x) = (1-tan(x/2)^2)/(1+tan(x/2)^2)
    */

    acb_init(s0);
    acb_init(c0);

    t = _acb_vec_init(3 * len);
    u = t + len;
    v = u + len;

    /* sin, cos of h0 */
    if (times_pi)
        acb_sin_cos_pi(s0, c0, h, prec);
    else
        acb_sin_cos(s0, c0, h, prec);

    /* t = tan((h-h0)/2) */
    acb_zero(u);
    _acb_vec_scalar_mul_2exp_si(u + 1, h + 1, hlen - 1, -1);
    if (times_pi)
    {
        acb_const_pi(t, prec);
        _acb_vec_scalar_mul(u + 1, u + 1, hlen - 1, t, prec);
    }

    _acb_poly_tan_series(t, u, hlen, len, prec);

    /* v = 1 + t^2 */
    _acb_poly_mullow(v, t, len, t, len, len, prec);
    acb_add_ui(v, v, 1, prec);

    /* u = 1/(1+t^2) */
    _acb_poly_inv_series(u, v, len, len, prec);

    /* sine */
    _acb_poly_mullow(s, t, len, u, len, len, prec);
    _acb_vec_scalar_mul_2exp_si(s, s, len, 1);

    /* cosine */
    acb_sub_ui(v, v, 2, prec);
    _acb_vec_neg(v, v, len);
    _acb_poly_mullow(c, v, len, u, len, len, prec);

    /* sin(h0 + h1) = cos(h0) sin(h1) + sin(h0) cos(h1)
       cos(h0 + h1) = cos(h0) cos(h1) - sin(h0) sin(h1) */
    if (!acb_is_zero(s0))
    {
        _acb_vec_scalar_mul(t, s, len, c0, prec);
        _acb_vec_scalar_mul(u, c, len, s0, prec);
        _acb_vec_scalar_mul(v, s, len, s0, prec);
        _acb_vec_add(s, t, u, len, prec);
        _acb_vec_scalar_mul(t, c, len, c0, prec);
        _acb_vec_sub(c, t, v, len, prec);
    }

    _acb_vec_clear(t, 3 * len);

    acb_clear(s0);
    acb_clear(c0);
}
Esempio n. 9
0
void
_acb_poly_lgamma_series(acb_ptr res, acb_srcptr h, slong hlen, slong len, slong prec)
{
    int reflect;
    slong i, r, n, wp;
    acb_t zr;
    acb_ptr t, u;

    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        acb_lgamma(res, h, prec);
        if (acb_is_finite(res))
            _acb_vec_zero(res + 1, len - 1);
        else
            _acb_vec_indeterminate(res + 1, len - 1);
        return;
    }

    if (len == 2)
    {
        acb_t v;
        acb_init(v);
        acb_set(v, h + 1);
        acb_digamma(res + 1, h, prec);
        acb_lgamma(res, h, prec);
        acb_mul(res + 1, res + 1, v, prec);
        acb_clear(v);
        return;
    }

    /* use real code for real input and output */
    if (_acb_vec_is_real(h, hlen) && arb_is_positive(acb_realref(h)))
    {
        arb_ptr tmp = _arb_vec_init(len);
        for (i = 0; i < hlen; i++)
            arb_set(tmp + i, acb_realref(h + i));
        _arb_poly_lgamma_series(tmp, tmp, hlen, len, prec);
        for (i = 0; i < len; i++)
            acb_set_arb(res + i, tmp + i);
        _arb_vec_clear(tmp, len);
        return;
    }

    wp = prec + FLINT_BIT_COUNT(prec);

    t = _acb_vec_init(len);
    u = _acb_vec_init(len);
    acb_init(zr);

    /* use Stirling series */
    acb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);

    if (reflect)
    {
        /* log gamma(h+x) = log rf(1-(h+x), r) - log gamma(1-(h+x)+r) - log sin(pi (h+x)) + log(pi) */
        if (r != 0) /* otherwise t = 0 */
        {
            acb_sub_ui(u, h, 1, wp);
            acb_neg(u, u);
            _log_rising_ui_series(t, u, r, len, wp);
            for (i = 1; i < len; i += 2)
                acb_neg(t + i, t + i);
        }

        acb_sub_ui(u, h, 1, wp);
        acb_neg(u, u);
        acb_add_ui(zr, u, r, wp);
        _acb_poly_gamma_stirling_eval(u, zr, n, len, wp);
        for (i = 1; i < len; i += 2)
            acb_neg(u + i, u + i);

        _acb_vec_sub(t, t, u, len, wp);

        /* log(sin) is unstable with large imaginary parts;
           cot_pi is implemented in a numerically stable way */
        acb_set(u, h);
        acb_one(u + 1);
        _acb_poly_cot_pi_series(u, u, 2, len - 1, wp);
        _acb_poly_integral(u, u, len, wp);
        acb_const_pi(u, wp);
        _acb_vec_scalar_mul(u + 1, u + 1, len - 1, u, wp);
        acb_log_sin_pi(u, h, wp);

        _acb_vec_sub(u, t, u, len, wp);

        acb_const_pi(t, wp); /* todo: constant for log pi */
        acb_log(t, t, wp);
        acb_add(u, u, t, wp);
    }
    else
    {
        /* log gamma(x) = log gamma(x+r) - log rf(x,r) */

        acb_add_ui(zr, h, r, wp);
        _acb_poly_gamma_stirling_eval(u, zr, n, len, wp);

        if (r != 0)
        {
            _log_rising_ui_series(t, h, r, len, wp);
            _acb_vec_sub(u, u, t, len, wp);
        }
    }

    /* compose with nonconstant part */
    acb_zero(t);
    _acb_vec_set(t + 1, h + 1, hlen - 1);
    _acb_poly_compose_series(res, u, len, t, hlen, len, prec);

    acb_clear(zr);
    _acb_vec_clear(t, len);
    _acb_vec_clear(u, len);
}
Esempio n. 10
0
void
_acb_poly_digamma_series(acb_ptr res, acb_srcptr h, slong hlen, slong len, slong prec)
{
    int reflect;
    slong i, r, n, rflen, wp;
    acb_t zr;
    acb_ptr t, u, v;

    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        acb_digamma(res, h, prec);
        if (acb_is_finite(res))
            _acb_vec_zero(res + 1, len - 1);
        else
            _acb_vec_indeterminate(res + 1, len - 1);
        return;
    }

    /* use real code for real input */
    if (_acb_vec_is_real(h, hlen))
    {
        arb_ptr tmp = _arb_vec_init(len);
        for (i = 0; i < hlen; i++)
            arb_set(tmp + i, acb_realref(h + i));
        _arb_poly_digamma_series(tmp, tmp, hlen, len, prec);
        for (i = 0; i < len; i++)
            acb_set_arb(res + i, tmp + i);
        _arb_vec_clear(tmp, len);
        return;
    }

    wp = prec + FLINT_BIT_COUNT(prec);

    t = _acb_vec_init(len + 1);
    u = _acb_vec_init(len + 1);
    v = _acb_vec_init(len + 1);
    acb_init(zr);

    /* use Stirling series */
    acb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 1, wp);

    /* psi(x) = psi((1-x)+r) - h(1-x,r) - pi*cot(pi*x) */
    if (reflect)
    {
        if (r != 0) /* otherwise t = 0 */
        {
            acb_sub_ui(v, h, 1, wp);
            acb_neg(v, v);
            acb_one(v + 1);
            rflen = FLINT_MIN(len + 1, r + 1);
            _acb_poly_rising_ui_series(u, v, 2, r, rflen, wp);
            _acb_poly_derivative(v, u, rflen, wp);
            _acb_poly_div_series(t, v, rflen - 1, u, rflen, len, wp);
            for (i = 1; i < len; i += 2)
                acb_neg(t + i, t + i);
        }

        acb_sub_ui(zr, h, r + 1, wp);
        acb_neg(zr, zr);
        _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp);
        for (i = 1; i < len; i += 2)
            acb_neg(u + i, u + i);

        _acb_vec_sub(u, u, t, len, wp);

        acb_set(t, h);
        acb_one(t + 1);
        _acb_poly_cot_pi_series(t, t, 2, len, wp);
        acb_const_pi(v, wp);
        _acb_vec_scalar_mul(t, t, len, v, wp);

        _acb_vec_sub(u, u, t, len, wp);
    }
    else
    {
        if (r == 0)
        {
            acb_add_ui(zr, h, r, wp);
            _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp);
        }
        else
        {
            acb_set(v, h);
            acb_one(v + 1);
            rflen = FLINT_MIN(len + 1, r + 1);
            _acb_poly_rising_ui_series(u, v, 2, r, rflen, wp);
            _acb_poly_derivative(v, u, rflen, wp);
            _acb_poly_div_series(t, v, rflen - 1, u, rflen, len, wp);

            acb_add_ui(zr, h, r, wp);
            _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp);

            _acb_vec_sub(u, u, t, len, wp);
        }
    }

    /* compose with nonconstant part */
    acb_zero(t);
    _acb_vec_set(t + 1, h + 1, hlen - 1);
    _acb_poly_compose_series(res, u, len, t, hlen, len, prec);

    acb_clear(zr);
    _acb_vec_clear(t, len + 1);
    _acb_vec_clear(u, len + 1);
    _acb_vec_clear(v, len + 1);
}
Esempio n. 11
0
void
acb_elliptic_p_jet(acb_ptr r, const acb_t z, const acb_t tau, slong len, slong prec)
{
    acb_t t01, t02, t03, t04;
    acb_ptr tz1, tz2, tz3, tz4;
    acb_t t;
    int real;
    slong k;

    if (len < 1)
        return;

    if (len == 1)
    {
        acb_elliptic_p(r, z, tau, prec);
        return;
    }

    real = acb_is_real(z) && arb_is_int_2exp_si(acb_realref(tau), -1) &&
                arb_is_positive(acb_imagref(tau));

    acb_init(t);

    acb_init(t01);
    acb_init(t02);
    acb_init(t03);
    acb_init(t04);

    tz1 = _acb_vec_init(len);
    tz2 = _acb_vec_init(len);
    tz3 = _acb_vec_init(len);
    tz4 = _acb_vec_init(len);

    acb_modular_theta_jet(tz1, tz2, tz3, tz4, z, tau, len, prec);

    /* [theta_4(z) / theta_1(z)]^2 */
    _acb_poly_div_series(tz2, tz4, len, tz1, len, len, prec);
    _acb_poly_mullow(tz1, tz2, len, tz2, len, len, prec);

    acb_zero(t);
    acb_modular_theta(t01, t02, t03, t04, t, tau, prec);

    /* [theta_2(0) * theta_3(0)] ^2 */
    acb_mul(t, t02, t03, prec);
    acb_mul(t, t, t, prec);
    _acb_vec_scalar_mul(tz1, tz1, len, t, prec);

    /* - [theta_2(0)^4 + theta_3(0)^4] / 3 */
    acb_pow_ui(t02, t02, 4, prec);
    acb_pow_ui(t03, t03, 4, prec);
    acb_add(t, t02, t03, prec);
    acb_div_ui(t, t, 3, prec);
    acb_sub(tz1, tz1, t, prec);

    /* times pi^2 */
    acb_const_pi(t, prec);
    acb_mul(t, t, t, prec);
    _acb_vec_scalar_mul(r, tz1, len, t, prec);

    if (real)
    {
        for (k = 0; k < len; k++)
            arb_zero(acb_imagref(r + k));
    }

    acb_clear(t);

    acb_clear(t01);
    acb_clear(t02);
    acb_clear(t03);
    acb_clear(t04);

    _acb_vec_clear(tz1, len);
    _acb_vec_clear(tz2, len);
    _acb_vec_clear(tz3, len);
    _acb_vec_clear(tz4, len);
}
Esempio n. 12
0
int main()
{
    long iter;
    flint_rand_t state;

    printf("root_bound_fujiwara....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 10000; iter++)
    {
        acb_poly_t a;
        acb_ptr roots;
        acb_t t;
        mag_t mag1, mag2;
        long i, deg, prec;

        prec = 10 + n_randint(state, 400);
        deg = n_randint(state, 10);

        acb_init(t);
        acb_poly_init(a);
        mag_init(mag1);
        mag_init(mag2);
        roots = _acb_vec_init(deg);

        for (i = 0; i < deg; i++)
            acb_randtest(roots + i, state, prec, 1 + n_randint(state, 20));

        acb_poly_product_roots(a, roots, deg, prec);
        acb_randtest(t, state, prec, 1 + n_randint(state, 20));
        _acb_vec_scalar_mul(a->coeffs, a->coeffs, a->length, t, prec);

        acb_poly_root_bound_fujiwara(mag1, a);

        for (i = 0; i < deg; i++)
        {
            acb_get_mag(mag2, roots + i);

            /* acb_get_mag gives an upper bound which due to rounding
               could be larger than mag1, so we pick a slightly
               smaller number */
            mag_mul_ui(mag2, mag2, 10000);
            mag_div_ui(mag2, mag2, 10001);

            if (mag_cmp(mag2, mag1) > 0)
            {
                printf("FAIL\n");
                printf("a = "); acb_poly_printd(a, 15); printf("\n\n");
                printf("root = "); acb_printd(roots + i, 15); printf("\n\n");
                printf("mag1 = "); mag_printd(mag1, 10); printf("\n\n");
                printf("mag2 = "); mag_printd(mag2, 10); printf("\n\n");
                abort();
            }
        }

        _acb_vec_clear(roots, deg);
        acb_clear(t);
        acb_poly_clear(a);
        mag_clear(mag1);
        mag_clear(mag2);
    }

    flint_randclear(state);
    flint_cleanup();
    printf("PASS\n");
    return EXIT_SUCCESS;
}