Esempio n. 1
0
void
_acb_poly_sin_cos_pi_series(acb_ptr s, acb_ptr c, const acb_srcptr h, slong hlen, slong n, slong prec)
{
    hlen = FLINT_MIN(hlen, n);

    if (hlen == 1)
    {
        acb_sin_cos_pi(s, c, h, prec);
        _acb_vec_zero(s + 1, n - 1);
        _acb_vec_zero(c + 1, n - 1);
    }
    else if (n == 2)
    {
        acb_t t;
        acb_init(t);
        acb_const_pi(t, prec);
        acb_mul(t, t, h + 1, prec);
        acb_sin_cos_pi(s, c, h, prec);
        acb_mul(s + 1, c, t, prec);
        acb_neg(t, t);
        acb_mul(c + 1, s, t, prec);
        acb_clear(t);
    }
    else if (hlen < TANGENT_CUTOFF)
        _acb_poly_sin_cos_series_basecase(s, c, h, hlen, n, prec, 1);
    else
        _acb_poly_sin_cos_series_tangent(s, c, h, hlen, n, prec, 1);
}
Esempio n. 2
0
void
_acb_hypgeom_coulomb_series(acb_ptr F, acb_ptr G,
    acb_ptr Hpos, acb_ptr Hneg, const acb_t l, const acb_t eta,
    acb_srcptr z, slong zlen, slong len, slong prec)
{
    acb_ptr t, v;

    if (len == 0)
        return;

    zlen = FLINT_MIN(zlen, len);

    if (zlen == 1)
    {
        acb_hypgeom_coulomb(F, G, Hpos, Hneg, l, eta, z, prec);
        if (F != NULL) _acb_vec_zero(F + 1, len - 1);
        if (G != NULL) _acb_vec_zero(G + 1, len - 1);
        if (Hpos != NULL) _acb_vec_zero(Hpos + 1, len - 1);
        if (Hneg != NULL) _acb_vec_zero(Hneg + 1, len - 1);
        return;
    }

    t = _acb_vec_init(len);
    v = _acb_vec_init(zlen);

    /* copy nonconstant part first to allow aliasing */
    acb_zero(v);
    _acb_vec_set(v + 1, z + 1, zlen - 1);

    acb_hypgeom_coulomb_jet(F, G, Hpos, Hneg, l, eta, z, len, prec);

    if (F != NULL)
    {
        _acb_vec_set(t, F, len);
        _acb_poly_compose_series(F, t, len, v, zlen, len, prec);
    }

    if (G != NULL)
    {
        _acb_vec_set(t, G, len);
        _acb_poly_compose_series(G, t, len, v, zlen, len, prec);
    }

    if (Hpos != NULL)
    {
        _acb_vec_set(t, Hpos, len);
        _acb_poly_compose_series(Hpos, t, len, v, zlen, len, prec);
    }

    if (Hneg != NULL)
    {
        _acb_vec_set(t, Hneg, len);
        _acb_poly_compose_series(Hneg, t, len, v, zlen, len, prec);
    }

    _acb_vec_clear(t, len);
    _acb_vec_clear(v, zlen);
}
Esempio n. 3
0
void
_acb_poly_sin_series(acb_ptr g, acb_srcptr h, slong hlen, slong n, slong prec)
{
    hlen = FLINT_MIN(hlen, n);

    if (hlen == 1)
    {
        acb_sin(g, h, prec);
        _acb_vec_zero(g + 1, n - 1);
    }
    else if (n == 2)
    {
        acb_t t;
        acb_init(t);
        acb_sin_cos(g, t, h, prec);
        acb_mul(g + 1, h + 1, t, prec);  /* safe since hlen >= 2 */
        acb_clear(t);
    }
    else
    {
        acb_ptr t = _acb_vec_init(n);
        _acb_poly_sin_cos_series(g, t, h, hlen, n, prec);
        _acb_vec_clear(t, n);
    }
}
Esempio n. 4
0
void
_acb_dirichlet_hardy_z_series(acb_ptr res, acb_srcptr s, slong slen,
    const dirichlet_group_t G, const dirichlet_char_t chi,
    slong len, slong prec)
{
    slen = FLINT_MIN(slen, len);

    if (len == 0)
        return;

    if (slen == 1)
    {
        acb_dirichlet_hardy_z(res, s, G, chi, 1, prec);
        _acb_vec_zero(res + 1, len - 1);
    }
    else
    {
        acb_ptr t, u;
        t = _acb_vec_init(len);
        u = _acb_vec_init(slen);

        acb_dirichlet_hardy_z(t, s, G, chi, len, prec);

        /* compose with nonconstant part */
        acb_zero(u);
        _acb_vec_set(u + 1, s + 1, slen - 1);
        _acb_poly_compose_series(res, t, len, u, slen, len, prec);

        _acb_vec_clear(t, len);
        _acb_vec_clear(u, slen);
    }
}
Esempio n. 5
0
void
acb_poly_set_coeff_si(acb_poly_t poly, slong n, slong x)
{
    acb_poly_fit_length(poly, n + 1);

    if (n + 1 > poly->length)
    {
        _acb_vec_zero(poly->coeffs + poly->length, n - poly->length);
        poly->length = n + 1;
    }

    acb_set_si(poly->coeffs + n, x);
    _acb_poly_normalise(poly);
}
Esempio n. 6
0
/* compose by poly2 = a*x^n + c, no aliasing; n >= 1 */
void
_acb_poly_compose_axnc(acb_ptr res, acb_srcptr poly1, slong len1,
    const acb_t c, const acb_t a, slong n, slong prec)
{
    slong i;

    _acb_vec_set_round(res, poly1, len1, prec);
    /* shift by c (c = 0 case will be fast) */
    _acb_poly_taylor_shift(res, c, len1, prec);

    /* multiply by powers of a */
    if (!acb_is_one(a))
    {
        if (acb_equal_si(a, -1))
        {
            for (i = 1; i < len1; i += 2)
                acb_neg(res + i, res + i);
        }
        else if (len1 == 2)
        {
            acb_mul(res + 1, res + 1, a, prec);
        }
        else
        {
            acb_t t;
            acb_init(t);
            acb_set(t, a);

            for (i = 1; i < len1; i++)
            {
                acb_mul(res + i, res + i, t, prec);
                if (i + 1 < len1)
                    acb_mul(t, t, a, prec);
            }

            acb_clear(t);
        }
    }

    /* stretch */
    for (i = len1 - 1; i >= 1 && n > 1; i--)
    {
        acb_swap(res + i * n, res + i);
        _acb_vec_zero(res + (i - 1) * n + 1, n - 1);
    }
}
Esempio n. 7
0
void
_acb_poly_compose_series(acb_ptr res, acb_srcptr poly1, slong len1,
                            acb_srcptr poly2, slong len2, slong n, slong prec)
{
    if (len2 == 1)
    {
        acb_set_round(res, poly1, prec);
        _acb_vec_zero(res + 1, n - 1);
    }
    else if (_acb_vec_is_zero(poly2 + 1, len2 - 2))  /* poly2 is a monomial */
    {
        slong i, j;
        acb_t t;

        acb_init(t);
        acb_set(t, poly2 + len2 - 1);
        acb_set_round(res, poly1, prec);

        for (i = 1, j = len2 - 1; i < len1 && j < n; i++, j += len2 - 1)
        {
            acb_mul(res + j, poly1 + i, t, prec);

            if (i + 1 < len1 && j + len2 - 1 < n)
                acb_mul(t, t, poly2 + len2 - 1, prec);
        }

        if (len2 != 2)
            for (i = 1; i < n; i++)
                if (i % (len2 - 1) != 0)
                    acb_zero(res + i);

        acb_clear(t);
    }
    else if (len1 < 6 || n < 6)
    {
        _acb_poly_compose_series_horner(res, poly1, len1, poly2, len2, n, prec);
    }
    else
    {
        _acb_poly_compose_series_brent_kung(res, poly1, len1, poly2, len2, n, prec);
    }
}
Esempio n. 8
0
void
_acb_poly_compose_series_horner(acb_ptr res, acb_srcptr poly1, slong len1,
                            acb_srcptr poly2, slong len2, slong n, slong prec)
{
    if (n == 1)
    {
        acb_set(res, poly1);
    }
    else
    {
        slong i = len1 - 1;
        slong lenr;

        acb_ptr t = _acb_vec_init(n);

        lenr = len2;
        _acb_vec_scalar_mul(res, poly2, len2, poly1 + i, prec);
        i--;
        acb_add(res, res, poly1 + i, prec);

        while (i > 0)
        {
            i--;
            if (lenr + len2 - 1 < n)
            {
                _acb_poly_mul(t, res, lenr, poly2, len2, prec);
                lenr = lenr + len2 - 1;
            }
            else
            {
                _acb_poly_mullow(t, res, lenr, poly2, len2, n, prec);
                lenr = n;
            }
            _acb_poly_add(res, t, lenr, poly1 + i, 1, prec);
        }

        _acb_vec_zero(res + lenr, n - lenr);
        _acb_vec_clear(t, n);
    }
}
Esempio n. 9
0
void
_acb_poly_sqrt_series(acb_ptr g,
    acb_srcptr h, slong hlen, slong len, slong prec)
{
    hlen = FLINT_MIN(hlen, len);

    while (hlen > 0 && acb_is_zero(h + hlen - 1))
        hlen--;

    if (hlen <= 1)
    {
        acb_sqrt(g, h, prec);
        _acb_vec_zero(g + 1, len - 1);
    }
    else if (len == 2)
    {
        acb_sqrt(g, h, prec);
        acb_div(g + 1, h + 1, h, prec);
        acb_mul(g + 1, g + 1, g, prec);
        acb_mul_2exp_si(g + 1, g + 1, -1);
    }
    else if (_acb_vec_is_zero(h + 1, hlen - 2))
    {
        acb_t t;
        acb_init(t);
        arf_set_si_2exp_si(arb_midref(acb_realref(t)), 1, -1);
        _acb_poly_binomial_pow_acb_series(g, h, hlen, t, len, prec);
        acb_clear(t);
    }
    else
    {
        acb_ptr t;
        t = _acb_vec_init(len);
        _acb_poly_rsqrt_series(t, h, hlen, len, prec);
        _acb_poly_mullow(g, t, len, h, hlen, len, prec);
        _acb_vec_clear(t, len);
    }
}
Esempio n. 10
0
void
_acb_poly_atan_series(acb_ptr g, acb_srcptr h, slong hlen, slong n, slong prec)
{
    acb_t c;
    acb_init(c);

    acb_atan(c, h, prec);

    hlen = FLINT_MIN(hlen, n);

    if (hlen == 1)
    {
        _acb_vec_zero(g + 1, n - 1);
    }
    else
    {
        acb_ptr t, u;
        slong ulen;

        t = _acb_vec_init(n);
        u = _acb_vec_init(n);

        /* atan(h(x)) = integral(h'(x)/(1+h(x)^2)) */
        ulen = FLINT_MIN(n, 2 * hlen - 1);
        _acb_poly_mullow(u, h, hlen, h, hlen, ulen, prec);
        acb_add_ui(u, u, 1, prec);

        _acb_poly_derivative(t, h, hlen, prec);
        _acb_poly_div_series(g, t, hlen - 1, u, ulen, n, prec);
        _acb_poly_integral(g, g, n, prec);

        _acb_vec_clear(t, n);
        _acb_vec_clear(u, n);
    }

    acb_swap(g, c);
    acb_clear(c);
}
void
_acb_poly_pow_ui_trunc_binexp(acb_ptr res,
    acb_srcptr f, long flen, ulong exp, long len, long prec)
{
    acb_ptr v, R, S, T;
    long rlen;
    ulong bit;

    if (exp <= 1)
    {
        if (exp == 0)
            acb_one(res);
        else if (exp == 1)
            _acb_vec_set_round(res, f, len, prec);
        return;
    }

    /* (f * x^r)^m = x^(rm) * f^m */
    while (flen > 1 && acb_is_zero(f))
    {
        if (((ulong) len) > exp)
        {
            _acb_vec_zero(res, exp);
            len -= exp;
            res += exp;
        }
        else
        {
            _acb_vec_zero(res, len);
            return;
        }

        f++;
        flen--;
    }

    if (exp == 2)
    {
        _acb_poly_mullow(res, f, flen, f, flen, len, prec);
        return;
    }

    if (flen == 1)
    {
        acb_pow_ui(res, f, exp, prec);
        return;
    }

    v = _acb_vec_init(len);
    bit = 1UL << (FLINT_BIT_COUNT(exp) - 2);
    
    if (n_zerobits(exp) % 2)
    {
        R = res;
        S = v;
    }
    else
    {
        R = v;
        S = res;
    }

    MUL(R, rlen, f, flen, f, flen, len, prec);

    if (bit & exp)
    {
        MUL(S, rlen, R, rlen, f, flen, len, prec);
        T = R;
        R = S;
        S = T;
    }
    
    while (bit >>= 1)
    {
        if (bit & exp)
        {
            MUL(S, rlen, R, rlen, R, rlen, len, prec);
            MUL(R, rlen, S, rlen, f, flen, len, prec);
        }
        else
        {
            MUL(S, rlen, R, rlen, R, rlen, len, prec);
            T = R;
            R = S;
            S = T;
        }
    }
    
    _acb_vec_clear(v, len);
}
Esempio n. 12
0
void
_acb_poly_inv_series(acb_ptr Qinv,
    acb_srcptr Q, slong Qlen, slong len, slong prec)
{
    Qlen = FLINT_MIN(Qlen, len);

    acb_inv(Qinv, Q, prec);

    if (Qlen == 1)
    {
        _acb_vec_zero(Qinv + 1, len - 1);
    }
    else if (len == 2)
    {
        acb_mul(Qinv + 1, Qinv, Qinv, prec);
        acb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
        acb_neg(Qinv + 1, Qinv + 1);
    }
    else
    {
        slong i, blen;

        /* The basecase algorithm is faster for much larger Qlen or len than
           this, but unfortunately also much less numerically stable. */
        if (Qlen == 2 || len <= 8)
            blen = len;
        else
            blen = FLINT_MIN(len, 4);

        for (i = 1; i < blen; i++)
        {
            acb_dot(Qinv + i, NULL, 1,
                Q + 1, 1, Qinv + i - 1, -1, FLINT_MIN(i, Qlen - 1), prec);
            if (!acb_is_one(Qinv))
                acb_mul(Qinv + i, Qinv + i, Qinv, prec);
        }

        if (len > blen)
        {
            slong Qnlen, Wlen, W2len;
            acb_ptr W;

            W = _acb_vec_init(len);

            NEWTON_INIT(blen, len)
            NEWTON_LOOP(m, n)

            Qnlen = FLINT_MIN(Qlen, n);
            Wlen = FLINT_MIN(Qnlen + m - 1, n);
            W2len = Wlen - m;
            MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
            MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
            _acb_vec_neg(Qinv + m, Qinv + m, n - m);

            NEWTON_END_LOOP
            NEWTON_END

            _acb_vec_clear(W, len);
        }
    }
}
Esempio n. 13
0
void
_acb_poly_powsum_one_series_sieved(acb_ptr z, const acb_t s, slong n, slong len, slong prec)
{
    slong * divisors;
    slong powers_alloc;
    slong i, j, k, ibound, kprev, power_of_two, horner_point;
    int critical_line, integer;

    acb_ptr powers;
    acb_ptr t, u, x;
    acb_ptr p1, p2;
    arb_t logk, v, w;

    critical_line = arb_is_exact(acb_realref(s)) &&
        (arf_cmp_2exp_si(arb_midref(acb_realref(s)), -1) == 0);

    integer = arb_is_zero(acb_imagref(s)) && arb_is_int(acb_realref(s));

    divisors = flint_calloc(n / 2 + 1, sizeof(slong));
    powers_alloc = (n / 6 + 1) * len;
    powers = _acb_vec_init(powers_alloc);

    ibound = n_sqrt(n);
    for (i = 3; i <= ibound; i += 2)
        if (DIVISOR(i) == 0)
            for (j = i * i; j <= n; j += 2 * i)
                DIVISOR(j) = i;

    t = _acb_vec_init(len);
    u = _acb_vec_init(len);
    x = _acb_vec_init(len);
    arb_init(logk);
    arb_init(v);
    arb_init(w);

    power_of_two = 1;
    while (power_of_two * 2 <= n)
        power_of_two *= 2;
    horner_point = n / power_of_two;

    _acb_vec_zero(z, len);

    kprev = 0;
    COMPUTE_POWER(x, 2, kprev);

    for (k = 1; k <= n; k += 2)
    {
        /* t = k^(-s) */
        if (DIVISOR(k) == 0)
        {
            COMPUTE_POWER(t, k, kprev);
        }
        else
        {
            p1 = POWER(DIVISOR(k));
            p2 = POWER(k / DIVISOR(k));

            if (len == 1)
                acb_mul(t, p1, p2, prec);
            else
                _acb_poly_mullow(t, p1, len, p2, len, len, prec);
        }

        if (k * 3 <= n)
            _acb_vec_set(POWER(k), t, len);

        _acb_vec_add(u, u, t, len, prec);

        while (k == horner_point && power_of_two != 1)
        {
            _acb_poly_mullow(t, z, len, x, len, len, prec);
            _acb_vec_add(z, t, u, len, prec);

            power_of_two /= 2;
            horner_point = n / power_of_two;
            horner_point -= (horner_point % 2 == 0);
        }
    }

    _acb_poly_mullow(t, z, len, x, len, len, prec);
    _acb_vec_add(z, t, u, len, prec);

    flint_free(divisors);
    _acb_vec_clear(powers, powers_alloc);
    _acb_vec_clear(t, len);
    _acb_vec_clear(u, len);
    _acb_vec_clear(x, len);
    arb_clear(logk);
    arb_clear(v);
    arb_clear(w);
}
Esempio n. 14
0
void
_acb_poly_digamma_series(acb_ptr res, acb_srcptr h, slong hlen, slong len, slong prec)
{
    int reflect;
    slong i, r, n, rflen, wp;
    acb_t zr;
    acb_ptr t, u, v;

    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        acb_digamma(res, h, prec);
        if (acb_is_finite(res))
            _acb_vec_zero(res + 1, len - 1);
        else
            _acb_vec_indeterminate(res + 1, len - 1);
        return;
    }

    /* use real code for real input */
    if (_acb_vec_is_real(h, hlen))
    {
        arb_ptr tmp = _arb_vec_init(len);
        for (i = 0; i < hlen; i++)
            arb_set(tmp + i, acb_realref(h + i));
        _arb_poly_digamma_series(tmp, tmp, hlen, len, prec);
        for (i = 0; i < len; i++)
            acb_set_arb(res + i, tmp + i);
        _arb_vec_clear(tmp, len);
        return;
    }

    wp = prec + FLINT_BIT_COUNT(prec);

    t = _acb_vec_init(len + 1);
    u = _acb_vec_init(len + 1);
    v = _acb_vec_init(len + 1);
    acb_init(zr);

    /* use Stirling series */
    acb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 1, wp);

    /* psi(x) = psi((1-x)+r) - h(1-x,r) - pi*cot(pi*x) */
    if (reflect)
    {
        if (r != 0) /* otherwise t = 0 */
        {
            acb_sub_ui(v, h, 1, wp);
            acb_neg(v, v);
            acb_one(v + 1);
            rflen = FLINT_MIN(len + 1, r + 1);
            _acb_poly_rising_ui_series(u, v, 2, r, rflen, wp);
            _acb_poly_derivative(v, u, rflen, wp);
            _acb_poly_div_series(t, v, rflen - 1, u, rflen, len, wp);
            for (i = 1; i < len; i += 2)
                acb_neg(t + i, t + i);
        }

        acb_sub_ui(zr, h, r + 1, wp);
        acb_neg(zr, zr);
        _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp);
        for (i = 1; i < len; i += 2)
            acb_neg(u + i, u + i);

        _acb_vec_sub(u, u, t, len, wp);

        acb_set(t, h);
        acb_one(t + 1);
        _acb_poly_cot_pi_series(t, t, 2, len, wp);
        acb_const_pi(v, wp);
        _acb_vec_scalar_mul(t, t, len, v, wp);

        _acb_vec_sub(u, u, t, len, wp);
    }
    else
    {
        if (r == 0)
        {
            acb_add_ui(zr, h, r, wp);
            _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp);
        }
        else
        {
            acb_set(v, h);
            acb_one(v + 1);
            rflen = FLINT_MIN(len + 1, r + 1);
            _acb_poly_rising_ui_series(u, v, 2, r, rflen, wp);
            _acb_poly_derivative(v, u, rflen, wp);
            _acb_poly_div_series(t, v, rflen - 1, u, rflen, len, wp);

            acb_add_ui(zr, h, r, wp);
            _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp);

            _acb_vec_sub(u, u, t, len, wp);
        }
    }

    /* compose with nonconstant part */
    acb_zero(t);
    _acb_vec_set(t + 1, h + 1, hlen - 1);
    _acb_poly_compose_series(res, u, len, t, hlen, len, prec);

    acb_clear(zr);
    _acb_vec_clear(t, len + 1);
    _acb_vec_clear(u, len + 1);
    _acb_vec_clear(v, len + 1);
}
Esempio n. 15
0
void
_acb_poly_rgamma_series(acb_ptr res, acb_srcptr h, slong hlen, slong len, slong prec)
{
    int reflect;
    slong i, rflen, r, n, wp;
    acb_ptr t, u, v;
    acb_struct f[2];

    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        acb_rgamma(res, h, prec);
        _acb_vec_zero(res + 1, len - 1);
        return;
    }

    /* use real code for real input */
    if (_acb_vec_is_real(h, hlen))
    {
        arb_ptr tmp = _arb_vec_init(len);
        for (i = 0; i < hlen; i++)
            arb_set(tmp + i, acb_realref(h + i));
        _arb_poly_rgamma_series(tmp, tmp, hlen, len, prec);
        for (i = 0; i < len; i++)
            acb_set_arb(res + i, tmp + i);
        _arb_vec_clear(tmp, len);
        return;
    }

    wp = prec + FLINT_BIT_COUNT(prec);

    t = _acb_vec_init(len);
    u = _acb_vec_init(len);
    v = _acb_vec_init(len);
    acb_init(f);
    acb_init(f + 1);

    /* otherwise use Stirling series */
    acb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);

    /* rgamma(h) = (gamma(1-h+r) sin(pi h)) / (rf(1-h, r) * pi), h = h0 + t*/
    if (reflect)
    {
        /* u = gamma(r+1-h) */
        acb_sub_ui(f, h, r + 1, wp);
        acb_neg(f, f);
        _acb_poly_gamma_stirling_eval(t, f, n, len, wp);
        _acb_poly_exp_series(u, t, len, len, wp);
        for (i = 1; i < len; i += 2)
            acb_neg(u + i, u + i);

        /* v = sin(pi x) */
        acb_set(f, h);
        acb_one(f + 1);
        _acb_poly_sin_pi_series(v, f, 2, len, wp);

        _acb_poly_mullow(t, u, len, v, len, len, wp);

        /* rf(1-h,r) * pi */
        if (r == 0)
        {
            acb_const_pi(u, wp);
            _acb_vec_scalar_div(v, t, len, u, wp);
        }
        else
        {
            acb_sub_ui(f, h, 1, wp);
            acb_neg(f, f);
            acb_set_si(f + 1, -1);
            rflen = FLINT_MIN(len, r + 1);
            _acb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r, rflen, wp);
            acb_const_pi(u, wp);
            _acb_vec_scalar_mul(v, v, rflen, u, wp);

            /* divide by rising factorial */
            /* TODO: might better to use div_series, when it has a good basecase */
            _acb_poly_inv_series(u, v, rflen, len, wp);
            _acb_poly_mullow(v, t, len, u, len, len, wp);
        }
    }
    else
    {
        /* rgamma(h) = rgamma(h+r) rf(h,r) */
        if (r == 0)
        {
            acb_add_ui(f, h, r, wp);
            _acb_poly_gamma_stirling_eval(t, f, n, len, wp);
            _acb_vec_neg(t, t, len);
            _acb_poly_exp_series(v, t, len, len, wp);
        }
        else
        {
            acb_set(f, h);
            acb_one(f + 1);
            rflen = FLINT_MIN(len, r + 1);
            _acb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, wp);

            acb_add_ui(f, h, r, wp);
            _acb_poly_gamma_stirling_eval(v, f, n, len, wp);
            _acb_vec_neg(v, v, len);
            _acb_poly_exp_series(u, v, len, len, wp);

            _acb_poly_mullow(v, u, len, t, rflen, len, wp);
        }
    }

    /* compose with nonconstant part */
    acb_zero(t);
    _acb_vec_set(t + 1, h + 1, hlen - 1);
    _acb_poly_compose_series(res, v, len, t, hlen, len, prec);

    acb_clear(f);
    acb_clear(f + 1);
    _acb_vec_clear(t, len);
    _acb_vec_clear(u, len);
    _acb_vec_clear(v, len);
}
Esempio n. 16
0
void
gc_integrals_precomp(acb_ptr res, acb_srcptr u, slong d1, slong d, slong g, const gc_int_t gc, int flag, slong prec)
{
    slong l;
    arb_t w, x;
    acb_t y, yxi;
    void (*sqrt_pol) (acb_t y, acb_srcptr u, slong d1, slong d,
            const arb_t x, slong prec);

    arb_init(w);
    arb_init(x);
    acb_init(y);
    acb_init(yxi);
#if DEBUG
    flint_printf("\ngc integral : d1 = %ld, d = %ld, g = %ld, n = %ld, prec = %ld",
            d1, d, g, gc->n, prec);
#endif

    sqrt_pol = &sqrt_pol_turn;
    if (flag & AJ_ROOT_DEF)
        sqrt_pol = &sqrt_pol_def;
    else if (flag & AJ_ROOT_TURN)
        sqrt_pol = &sqrt_pol_turn;

    /* compute integral */
    _acb_vec_zero(res, g);

    for (l = 0; l < gc->len; l++)
    {

        /* compute 1/y(x) */
        sqrt_pol(y, u, d1, d, gc->x + l, prec);
        acb_inv(y, y, prec);

        /* differentials */
        acb_vec_add_geom_arb(res, g, y, gc->x + l, prec);

        /* now on -x */
        arb_neg(x, gc->x + l);

        sqrt_pol(y, u, d1, d, x, prec);
        acb_inv(y, y, prec);
        acb_vec_add_geom_arb(res, g, y, x, prec);
    }

    if (gc->n % 2)
    {
        arb_zero(x);
        /* FIXME: pb with turn */
        sqrt_pol_def(y, u, d1, d, x, prec);
#if DEBUG > 1
        flint_printf("\nend integration sum");
        _acb_vec_printd(res, g, 30, "\n");
        flint_printf("\nroots (d1=%ld, d=%ld)\n",d1,d);
        _acb_vec_printd(u, d, 30, "\n");
        flint_printf("\n -> y = ");
        acb_printd(y, 30);
#endif
        acb_inv(y, y, prec);
        acb_add(res + 0, res + 0, y, prec);
    }

    /* multiply by weight = Pi / n */
    arb_const_pi(w, prec);
    arb_div_ui(w, w, gc->n, prec);
    _acb_vec_scalar_mul_arb(res, res, g, w, prec);
#if DEBUG > 1
        flint_printf("\nend integration ");
        _acb_vec_printd(res, g, 30, "\n");
#endif

    arb_clear(x);
    arb_clear(w);
    acb_clear(y);
    acb_clear(yxi);
}
Esempio n. 17
0
void
_acb_poly_zeta_em_tail_naive(acb_ptr sum, const acb_t s, const acb_t Na, acb_srcptr Nasx, slong M, slong d, slong prec)
{
    acb_ptr u, term;
    acb_t Na2, splus, rec;
    arb_t x;
    fmpz_t c;
    int aint;
    slong r;

    BERNOULLI_ENSURE_CACHED(2 * M);

    u = _acb_vec_init(d);
    term = _acb_vec_init(d);
    acb_init(splus);
    acb_init(rec);
    acb_init(Na2);
    arb_init(x);
    fmpz_init(c);

    _acb_vec_zero(sum, d);

    /* u = 1/2 * Nasx */
    _acb_vec_scalar_mul_2exp_si(u, Nasx, d, -WORD(1));

    /* term = u * (s+x) / (N+a) */
    _acb_poly_mullow_cpx(u, u, d, s, d, prec);
    _acb_vec_scalar_div(term, u, d, Na, prec);

    /* (N+a)^2 or 1/(N+a)^2 */
    acb_mul(Na2, Na, Na, prec);
    aint = acb_is_int(Na2);

    if (!aint)
        acb_inv(Na2, Na2, prec);

    for (r = 1; r <= M; r++)
    {
        /* flint_printf("sum 2: %wd %wd\n", r, M); */

        /* sum += bernoulli number * term */
        arb_set_round_fmpz(x, fmpq_numref(bernoulli_cache + 2 * r), prec);
        arb_div_fmpz(x, x, fmpq_denref(bernoulli_cache + 2 * r), prec);

        _acb_vec_scalar_mul_arb(u, term, d, x, prec);
        _acb_vec_add(sum, sum, u, d, prec);

        /* multiply term by ((s+x)+2r-1)((s+x)+2r) / ((N+a)^2 * (2*r+1)*(2*r+2)) */
        acb_set(splus, s);
        arb_add_ui(acb_realref(splus), acb_realref(splus), 2*r-1, prec);
        _acb_poly_mullow_cpx(term, term, d, splus, d, prec);
        arb_add_ui(acb_realref(splus), acb_realref(splus), 1, prec);
        _acb_poly_mullow_cpx(term, term, d, splus, d, prec);

        /* TODO: combine with previous multiplication? */
        if (aint)
        {
            arb_mul_ui(x, acb_realref(Na2), 2*r+1, prec);
            arb_mul_ui(x, x, 2*r+2, prec);
            _acb_vec_scalar_div_arb(term, term, d, x, prec);
        }
        else
        {
            fmpz_set_ui(c, 2*r+1);
            fmpz_mul_ui(c, c, 2*r+2);
            acb_div_fmpz(rec, Na2, c, prec);
            _acb_vec_scalar_mul(term, term, d, rec, prec);
        }
    }

    _acb_vec_clear(u, d);
    _acb_vec_clear(term, d);
    acb_clear(splus);
    acb_clear(rec);
    acb_clear(Na2);
    arb_clear(x);
    fmpz_clear(c);
}
Esempio n. 18
0
void
_acb_poly_lgamma_series(acb_ptr res, acb_srcptr h, slong hlen, slong len, slong prec)
{
    int reflect;
    slong i, r, n, wp;
    acb_t zr;
    acb_ptr t, u;

    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        acb_lgamma(res, h, prec);
        if (acb_is_finite(res))
            _acb_vec_zero(res + 1, len - 1);
        else
            _acb_vec_indeterminate(res + 1, len - 1);
        return;
    }

    if (len == 2)
    {
        acb_t v;
        acb_init(v);
        acb_set(v, h + 1);
        acb_digamma(res + 1, h, prec);
        acb_lgamma(res, h, prec);
        acb_mul(res + 1, res + 1, v, prec);
        acb_clear(v);
        return;
    }

    /* use real code for real input and output */
    if (_acb_vec_is_real(h, hlen) && arb_is_positive(acb_realref(h)))
    {
        arb_ptr tmp = _arb_vec_init(len);
        for (i = 0; i < hlen; i++)
            arb_set(tmp + i, acb_realref(h + i));
        _arb_poly_lgamma_series(tmp, tmp, hlen, len, prec);
        for (i = 0; i < len; i++)
            acb_set_arb(res + i, tmp + i);
        _arb_vec_clear(tmp, len);
        return;
    }

    wp = prec + FLINT_BIT_COUNT(prec);

    t = _acb_vec_init(len);
    u = _acb_vec_init(len);
    acb_init(zr);

    /* use Stirling series */
    acb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);

    if (reflect)
    {
        /* log gamma(h+x) = log rf(1-(h+x), r) - log gamma(1-(h+x)+r) - log sin(pi (h+x)) + log(pi) */
        if (r != 0) /* otherwise t = 0 */
        {
            acb_sub_ui(u, h, 1, wp);
            acb_neg(u, u);
            _log_rising_ui_series(t, u, r, len, wp);
            for (i = 1; i < len; i += 2)
                acb_neg(t + i, t + i);
        }

        acb_sub_ui(u, h, 1, wp);
        acb_neg(u, u);
        acb_add_ui(zr, u, r, wp);
        _acb_poly_gamma_stirling_eval(u, zr, n, len, wp);
        for (i = 1; i < len; i += 2)
            acb_neg(u + i, u + i);

        _acb_vec_sub(t, t, u, len, wp);

        /* log(sin) is unstable with large imaginary parts;
           cot_pi is implemented in a numerically stable way */
        acb_set(u, h);
        acb_one(u + 1);
        _acb_poly_cot_pi_series(u, u, 2, len - 1, wp);
        _acb_poly_integral(u, u, len, wp);
        acb_const_pi(u, wp);
        _acb_vec_scalar_mul(u + 1, u + 1, len - 1, u, wp);
        acb_log_sin_pi(u, h, wp);

        _acb_vec_sub(u, t, u, len, wp);

        acb_const_pi(t, wp); /* todo: constant for log pi */
        acb_log(t, t, wp);
        acb_add(u, u, t, wp);
    }
    else
    {
        /* log gamma(x) = log gamma(x+r) - log rf(x,r) */

        acb_add_ui(zr, h, r, wp);
        _acb_poly_gamma_stirling_eval(u, zr, n, len, wp);

        if (r != 0)
        {
            _log_rising_ui_series(t, h, r, len, wp);
            _acb_vec_sub(u, u, t, len, wp);
        }
    }

    /* compose with nonconstant part */
    acb_zero(t);
    _acb_vec_set(t + 1, h + 1, hlen - 1);
    _acb_poly_compose_series(res, u, len, t, hlen, len, prec);

    acb_clear(zr);
    _acb_vec_clear(t, len);
    _acb_vec_clear(u, len);
}
Esempio n. 19
0
void
_acb_poly_sin_cos_series_tangent(acb_ptr s, acb_ptr c,
        const acb_srcptr h, slong hlen, slong len, slong prec, int times_pi)
{
    acb_ptr t, u, v;
    acb_t s0, c0;
    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        if (times_pi)
            acb_sin_cos_pi(s, c, h, prec);
        else
            acb_sin_cos(s, c, h, prec);
        _acb_vec_zero(s + 1, len - 1);
        _acb_vec_zero(c + 1, len - 1);
        return;
    }

    /*
    sin(x) = 2*tan(x/2)/(1+tan(x/2)^2)
    cos(x) = (1-tan(x/2)^2)/(1+tan(x/2)^2)
    */

    acb_init(s0);
    acb_init(c0);

    t = _acb_vec_init(3 * len);
    u = t + len;
    v = u + len;

    /* sin, cos of h0 */
    if (times_pi)
        acb_sin_cos_pi(s0, c0, h, prec);
    else
        acb_sin_cos(s0, c0, h, prec);

    /* t = tan((h-h0)/2) */
    acb_zero(u);
    _acb_vec_scalar_mul_2exp_si(u + 1, h + 1, hlen - 1, -1);
    if (times_pi)
    {
        acb_const_pi(t, prec);
        _acb_vec_scalar_mul(u + 1, u + 1, hlen - 1, t, prec);
    }

    _acb_poly_tan_series(t, u, hlen, len, prec);

    /* v = 1 + t^2 */
    _acb_poly_mullow(v, t, len, t, len, len, prec);
    acb_add_ui(v, v, 1, prec);

    /* u = 1/(1+t^2) */
    _acb_poly_inv_series(u, v, len, len, prec);

    /* sine */
    _acb_poly_mullow(s, t, len, u, len, len, prec);
    _acb_vec_scalar_mul_2exp_si(s, s, len, 1);

    /* cosine */
    acb_sub_ui(v, v, 2, prec);
    _acb_vec_neg(v, v, len);
    _acb_poly_mullow(c, v, len, u, len, len, prec);

    /* sin(h0 + h1) = cos(h0) sin(h1) + sin(h0) cos(h1)
       cos(h0 + h1) = cos(h0) cos(h1) - sin(h0) sin(h1) */
    if (!acb_is_zero(s0))
    {
        _acb_vec_scalar_mul(t, s, len, c0, prec);
        _acb_vec_scalar_mul(u, c, len, s0, prec);
        _acb_vec_scalar_mul(v, s, len, s0, prec);
        _acb_vec_add(s, t, u, len, prec);
        _acb_vec_scalar_mul(t, c, len, c0, prec);
        _acb_vec_sub(c, t, v, len, prec);
    }

    _acb_vec_clear(t, 3 * len);

    acb_clear(s0);
    acb_clear(c0);
}