Esempio n. 1
0
/**
 * Culls OBB to n sided frustrum. Normals pointing outwards.
 * -> IN:  RebPlane   - array of planes building frustrum
 *         int        - number of planes in array
 *    OUT: RebVISIBLE - obb totally inside frustrum
 *         RebCLIPPED - obb clipped by frustrum
 *         RebCULLED  - obb totally outside frustrum
 */
int RebObb::Cull(const RebPlane *pPlanes, int nNumPlanes) {
   RebVector vN;
   int       nResult = RebVISIBLE;
   float     fRadius, fTest;

   // for all planes
   for (int i=0; i<nNumPlanes; i++) {
      // frustrum normals pointing outwards, we need inwards
      vN = pPlanes[i].m_vcN * -1.0f;

      // calculate projected box radius
      fRadius = _fabs(fA0 * (vN * vcA0)) 
              + _fabs(fA1 * (vN * vcA1))
              + _fabs(fA2 * (vN * vcA2));

      // testvalue: (N*C - d) (#)
      fTest = vN * this->vcCenter - pPlanes[i].m_fD;

      // obb totally outside of at least one plane: (#) < -r
      if (fTest < -fRadius)
         return RebCULLED;
      // or maybe intersecting this plane?
      else if (!(fTest > fRadius))
         nResult = RebCLIPPED;
      } // for

   // if not culled then clipped or inside
   return nResult;
   }
Esempio n. 2
0
// Intersection with OBB. Same as obb culling to frustrum planes.
bool RebPlane::Intersects(const RebObb &obb) {
    float fRadius = _fabs( obb.fA0 * (m_vcN * obb.vcA0) ) 
                  + _fabs( obb.fA1 * (m_vcN * obb.vcA1) ) 
                  + _fabs( obb.fA2 * (m_vcN * obb.vcA2) );

    float fDistance = this->Distance(obb.vcCenter);
    return (fDistance <= fRadius);
   } // Intersects(OBB)
Esempio n. 3
0
// test for intersection with aabb, original code by Andrew Woo, 
// from "Geometric Tools...", Morgan Kaufmann Publ., 2002
bool ZFXRay::Intersects(const ZFXAabb &aabb, float fL, float *t) {
	bool bInside = true;
	float t0, t1, tmp, tFinal;
	float tNear = -999999.9f;
	float tFar = 999999.9f;
	float epsilon = 0.00001f;
	ZFXVector MaxT;

	// first pair of planes
	if (_fabs(m_vcDir.x) < epsilon) {
		if ((m_vcOrig.x < aabb.vcMin.x) ||
			(m_vcOrig.x > aabb.vcMax.x))
			return false;
	}
	t0 = (aabb.vcMin.x - m_vcOrig.x) / m_vcDir.x;
	t1 = (aabb.vcMax.x - m_vcOrig.x) / m_vcDir.x;
	if (t0 > t1) { tmp = t0; t0 = t1; t1 = tmp; }
	if (t0 > tNear) tNear = t0;
	if (t1 < tFar)  tFar = t1;
	if (tNear > tFar) return false;
	if (tFar < 0) return false;

	// second pair of planes
	if (_fabs(m_vcDir.y) < epsilon) {
		if ((m_vcOrig.y < aabb.vcMin.y) ||
			(m_vcOrig.y > aabb.vcMax.y))
			return false;
	}
	t0 = (aabb.vcMin.y - m_vcOrig.y) / m_vcDir.y;
	t1 = (aabb.vcMax.y - m_vcOrig.y) / m_vcDir.y;
	if (t0 > t1) { tmp = t0; t0 = t1; t1 = tmp; }
	if (t0 > tNear) tNear = t0;
	if (t1 < tFar)  tFar = t1;
	if (tNear > tFar) return false;
	if (tFar < 0) return false;

	// third pair of planes
	if (_fabs(m_vcDir.z) < epsilon) {
		if ((m_vcOrig.z < aabb.vcMin.z) ||
			(m_vcOrig.z > aabb.vcMax.z))
			return false;
	}
	t0 = (aabb.vcMin.z - m_vcOrig.z) / m_vcDir.z;
	t1 = (aabb.vcMax.z - m_vcOrig.z) / m_vcDir.z;
	if (t0 > t1) { tmp = t0; t0 = t1; t1 = tmp; }
	if (t0 > tNear) tNear = t0;
	if (t1 < tFar)  tFar = t1;
	if (tNear > tFar) return false;
	if (tFar < 0) return false;


	if (tNear > 0) tFinal = tNear;
	else tFinal = tFar;

	if (tFinal > fL) return false;
	if (t) *t = tFinal;
	return true;
} // Intersects(Aabb) at length
Esempio n. 4
0
// test for intersection with aabb, original code by Andrew Woo, 
// from "Geometric Tools...", Morgan Kaufmann Publ., 2002
bool RebAabb::Intersects(const RebRay &Ray, float fL, float *t) {
   bool bInside = true;
   float t0, t1, tmp, tFinal;
   float tNear = -999999.9f;
   float tFar  =  999999.9f;
   float epsilon = 0.00001f;
   RebVector MaxT;

   // first pair of planes
   if (_fabs(Ray.m_vcDir.x) < epsilon) {
      if ( (Ray.m_vcOrig.x < vcMin.x) ||
         (Ray.m_vcOrig.x > vcMax.x) )
         return false;
      }
   t0 = (vcMin.x - Ray.m_vcOrig.x) / Ray.m_vcDir.x;
   t1 = (vcMax.x - Ray.m_vcOrig.x) / Ray.m_vcDir.x;
   if (t0 > t1) { tmp=t0; t0=t1; t1=tmp; }
   if (t0 > tNear) tNear = t0;
   if (t1 < tFar)  tFar = t1;
   if (tNear > tFar) return false;
   if (tFar < 0) return false;

   // second pair of planes
   if (_fabs(Ray.m_vcDir.y) < epsilon) {
      if ( (Ray.m_vcOrig.y < vcMin.y) ||
         (Ray.m_vcOrig.y > vcMax.y) )
         return false;
      }
   t0 = (vcMin.y - Ray.m_vcOrig.y) / Ray.m_vcDir.y;
   t1 = (vcMax.y - Ray.m_vcOrig.y) / Ray.m_vcDir.y;
   if (t0 > t1) { tmp=t0; t0=t1; t1=tmp; }
   if (t0 > tNear) tNear = t0;
   if (t1 < tFar)  tFar = t1;
   if (tNear > tFar) return false;
   if (tFar < 0) return false;

   // third pair of planes
   if (_fabs(Ray.m_vcDir.z) < epsilon) {
      if ( (Ray.m_vcOrig.z < vcMin.z) ||
         (Ray.m_vcOrig.z > vcMax.z) )
         return false;
      }
   t0 = (vcMin.z - Ray.m_vcOrig.z) / Ray.m_vcDir.z;
   t1 = (vcMax.z - Ray.m_vcOrig.z) / Ray.m_vcDir.z;
   if (t0 > t1) { tmp=t0; t0=t1; t1=tmp; }
   if (t0 > tNear) tNear = t0;
   if (t1 < tFar)  tFar = t1;
   if (tNear > tFar) return false;
   if (tFar < 0) return false;


   if (tNear > 0) tFinal = tNear;
   else tFinal = tFar;

   if (tFinal > fL) return false;
   if (t) *t = tFinal;
   return true;
   } // Intersects(Ray) at length
Esempio n. 5
0
// helperfunction
void RebObb::ObbProj(const RebObb &Obb, const RebVector &vcV,
                     float *pfMin, float *pfMax) {
   float fDP = vcV * Obb.vcCenter;
   float fR = Obb.fA0 * _fabs(vcV * Obb.vcA0) +
              Obb.fA0 * _fabs(vcV * Obb.vcA1) +
              Obb.fA1 * _fabs(vcV * Obb.vcA2);
   *pfMin = fDP - fR;
   *pfMax = fDP + fR;
   } // ObbProj
Esempio n. 6
0
// Intersection of two planes. If third parameter is given the line
// of intersection will be calculated. (www.magic-software.com)
bool RebPlane::Intersects(const RebPlane &plane, RebRay *pIntersection) {
   RebVector vcCross;
   float     fSqrLength;
   
   // if crossproduct of normals 0 than planes parallel
   vcCross.Cross(this->m_vcN, plane.m_vcN);
   fSqrLength = vcCross.GetSqrLength();

   if (fSqrLength < 1e-08f) 
      return false;

   // find line of intersection
   if (pIntersection) {
      float fN00 = this->m_vcN.GetSqrLength();
      float fN01 = this->m_vcN * plane.m_vcN;
      float fN11 = plane.m_vcN.GetSqrLength();
      float fDet = fN00*fN11 - fN01*fN01;

      if (_fabs(fDet) < 1e-08f) 
         return false;

      float fInvDet = 1.0f/fDet;
      float fC0 = (fN11*this->m_fD - fN01*plane.m_fD) * fInvDet;
      float fC1 = (fN00*plane.m_fD - fN01*this->m_fD) * fInvDet;

      (*pIntersection).m_vcDir  = vcCross;
      (*pIntersection).m_vcOrig = this->m_vcN*fC0 + plane.m_vcN*fC1;
      }

   return true;
   } // Intersects(Plane)
Esempio n. 7
0
// Intersection with Plane at distance fL. 
bool ZFXRay::Intersects(const ZFXPlane &plane, bool bCull, float fL,
	float *t, ZFXVector *vcHit) {
	float Vd = plane.m_vcN * m_vcDir;

	// ray parallel to plane
	if (_fabs(Vd) < 0.00001f)
		return false;

	// normal pointing away from ray dir
	// => intersection backface if any
	if (bCull && (Vd > 0.0f))
		return false;

	float Vo = -((plane.m_vcN * m_vcOrig) + plane.m_fD);

	float _t = Vo / Vd;

	// intersection behind ray origin or beyond valid range
	if ((_t < 0.0f) || (_t > fL))
		return false;

	if (vcHit) {
		(*vcHit) = m_vcOrig + (m_vcDir * _t);
	}

	if (t)
		(*t) = _t;

	return true;
} // Intersects(Plane)
Esempio n. 8
0
bool ZFXRay::Intersects(const ZFXPlane &plane, bool bCull, float fL, float *t, ZFXVector *vcHit){
	float Vd=plane.m_vcN* m_vcDir;

	//ray parallel to the plane
	if(_fabs(Vd)<0.00001f)
		return false;

	//Plane normal point away from ray direction
	//intersection with back face if any
	if (bCull && (Vd>0.0f))
		return false;

	float Vo= -((plane.m_vcN*m_vcOrig)+plane.m_fD);
	float _t=Vo/Vd;

	//Intersection before ray origin
	if(_t<0.0f || _t>fL)
		return false;

	if (vcHit){
		(*vcHit)=m_vcOrig+(m_vcDir*_t);
	}

	if(t)
		(*t)=_t;

	return true;
}
Esempio n. 9
0
// Calculate distance to point. Plane normal must be normalized.
 float RebPlane::Distance(const RebVector &vcPoint) {
   return ( _fabs((m_vcN*vcPoint) - m_fD) );
   }
Esempio n. 10
0
// test for intersection with obb at certain length (line segment),
// slaps method but compare result if true to length prior return.
bool ZFXRay::Intersects(const ZFXObb &obb, float fL, float *t) {
	float e, f, t1, t2, temp;
	float tmin = -99999.9f,
		tmax = +99999.9f;

	ZFXVector vcP = obb.vcCenter - m_vcOrig;

	// 1st slap
	e = obb.vcA0 * vcP;
	f = obb.vcA0 * m_vcDir;
	if (_fabs(f) > 0.00001f) {

		t1 = (e + obb.fA0) / f;
		t2 = (e - obb.fA0) / f;

		if (t1 > t2) { temp = t1; t1 = t2; t2 = temp; }
		if (t1 > tmin) tmin = t1;
		if (t2 < tmax) tmax = t2;
		if (tmin > tmax) return false;
		if (tmax < 0.0f) return false;
	}
	else if (((-e - obb.fA0) > 0.0f) || ((-e + obb.fA0) < 0.0f))
		return false;

	// 2nd slap
	e = obb.vcA1 * vcP;
	f = obb.vcA1 * m_vcDir;
	if (_fabs(f) > 0.00001f) {

		t1 = (e + obb.fA1) / f;
		t2 = (e - obb.fA1) / f;

		if (t1 > t2) { temp = t1; t1 = t2; t2 = temp; }
		if (t1 > tmin) tmin = t1;
		if (t2 < tmax) tmax = t2;
		if (tmin > tmax) return false;
		if (tmax < 0.0f) return false;
	}
	else if (((-e - obb.fA1) > 0.0f) || ((-e + obb.fA1) < 0.0f))
		return false;

	// 3rd slap
	e = obb.vcA2 * vcP;
	f = obb.vcA2 * m_vcDir;
	if (_fabs(f) > 0.00001f) {

		t1 = (e + obb.fA2) / f;
		t2 = (e - obb.fA2) / f;

		if (t1 > t2) { temp = t1; t1 = t2; t2 = temp; }
		if (t1 > tmin) tmin = t1;
		if (t2 < tmax) tmax = t2;
		if (tmin > tmax) return false;
		if (tmax < 0.0f) return false;
	}
	else if (((-e - obb.fA2) > 0.0f) || ((-e + obb.fA2) < 0.0f))
		return false;

	if ((tmin > 0.0f) && (tmin <= fL)) {
		if (t) *t = tmin;
		return true;
	}

	// intersection on line but not on segment
	if (tmax > fL) return false;

	if (t) *t = tmax;

	return true;
} // Intersects(Obb at length)
Esempio n. 11
0
// intersects another obb
bool RebObb::Intersects(const RebObb &Obb) {
   float T[3];
   
   // difference vector between both obb
   RebVector vcD = Obb.vcCenter - this->vcCenter;

   float matM[3][3];   // B's axis in relation to A
   float ra,           // radius A
         rb,           // radius B
         t;            // absolute values from T[]
   
   // Obb A's axis as separation axis?
   // ================================
   // first axis vcA0
   matM[0][0] = this->vcA0 * Obb.vcA0;
   matM[0][1] = this->vcA0 * Obb.vcA1;
   matM[0][2] = this->vcA0 * Obb.vcA2;
   ra   = this->fA0;
   rb   = Obb.fA0 * _fabs(matM[0][0]) + 
          Obb.fA1 * _fabs(matM[0][1]) + 
          Obb.fA2 * _fabs(matM[0][2]);

   T[0] = vcD * this->vcA0;
   t    = _fabs(T[0]);
   if(t > (ra + rb) ) 
      return false;

   // second axis vcA1
   matM[1][0] = this->vcA1 * Obb.vcA0;
   matM[1][1] = this->vcA1 * Obb.vcA1;
   matM[1][2] = this->vcA1 * Obb.vcA2;
   ra   = this->fA1;
   rb   = Obb.fA0 * _fabs(matM[1][0]) + 
          Obb.fA1 * _fabs(matM[1][1]) + 
          Obb.fA2 * _fabs(matM[1][2]);
   T[1] = vcD * this->vcA1;
   t    = _fabs(T[1]);
   if(t > (ra + rb) ) 
      return false;

   // third axis vcA2
   matM[2][0] = this->vcA2 * Obb.vcA0;
   matM[2][1] = this->vcA2 * Obb.vcA1;
   matM[2][2] = this->vcA2 * Obb.vcA2;
   ra   = this->fA2;
   rb   = Obb.fA0 * _fabs(matM[2][0]) + 
          Obb.fA1 * _fabs(matM[2][1]) + 
          Obb.fA2 * _fabs(matM[2][2]);
   T[2] = vcD * this->vcA2;
   t    = _fabs(T[2]);
   if(t > (ra + rb) ) 
      return false;

   // Obb B's axis as separation axis?
   // ================================
   // first axis vcA0
   ra = this->fA0 * _fabs(matM[0][0]) + 
        this->fA1 * _fabs(matM[1][0]) + 
        this->fA2 * _fabs(matM[2][0]);
   rb = Obb.fA0;
   t = _fabs( T[0]*matM[0][0] + T[1]*matM[1][0] + T[2]*matM[2][0] );
   if(t > (ra + rb) )
      return false;

   // second axis vcA1
   ra = this->fA0 * _fabs(matM[0][1]) + 
        this->fA1 * _fabs(matM[1][1]) + 
        this->fA2 * _fabs(matM[2][1]);
   rb = Obb.fA1;
   t = _fabs( T[0]*matM[0][1] + T[1]*matM[1][1] + T[2]*matM[2][1] );
   if(t > (ra + rb) )
      return false;

   // third axis vcA2
   ra = this->fA0 * _fabs(matM[0][2]) + 
        this->fA1 * _fabs(matM[1][2]) + 
        this->fA2 * _fabs(matM[2][2]);
   rb = Obb.fA2;
   t = _fabs( T[0]*matM[0][2] + T[1]*matM[1][2] + T[2]*matM[2][2] );
   if(t > (ra + rb) )
      return false;

   // other candidates: cross products of axis:
   // =========================================
   // axis A0xB0
   ra = this->fA1*_fabs(matM[2][0]) + this->fA2*_fabs(matM[1][0]);
   rb = Obb.fA1*_fabs(matM[0][2]) + Obb.fA2*_fabs(matM[0][1]);
   t = _fabs( T[2]*matM[1][0] - T[1]*matM[2][0] );
   if( t > ra + rb )
      return false;
   
   // axis A0xB1
   ra = this->fA1*_fabs(matM[2][1]) + this->fA2*_fabs(matM[1][1]);
   rb = Obb.fA0*_fabs(matM[0][2]) + Obb.fA2*_fabs(matM[0][0]);
   t = _fabs( T[2]*matM[1][1] - T[1]*matM[2][1] );
   if( t > ra + rb )
      return false;
   
   // axis A0xB2
   ra = this->fA1*_fabs(matM[2][2]) + this->fA2*_fabs(matM[1][2]);
   rb = Obb.fA0*_fabs(matM[0][1]) + Obb.fA1*_fabs(matM[0][0]);
   t = _fabs( T[2]*matM[1][2] - T[1]*matM[2][2] );
   if( t > ra + rb )
      return false;
   
   // axis A1xB0
   ra = this->fA0*_fabs(matM[2][0]) + this->fA2*_fabs(matM[0][0]);
   rb = Obb.fA1*_fabs(matM[1][2]) + Obb.fA2*_fabs(matM[1][1]);
   t = _fabs( T[0]*matM[2][0] - T[2]*matM[0][0] );
   if( t > ra + rb )
      return false;
   
   // axis A1xB1
   ra = this->fA0*_fabs(matM[2][1]) + this->fA2*_fabs(matM[0][1]);
   rb = Obb.fA0*_fabs(matM[1][2]) + Obb.fA2*_fabs(matM[1][0]);
   t = _fabs( T[0]*matM[2][1] - T[2]*matM[0][1] );
   if( t > ra + rb )
      return false;
   
   // axis A1xB2
   ra = this->fA0*_fabs(matM[2][2]) + this->fA2*_fabs(matM[0][2]);
   rb = Obb.fA0*_fabs(matM[1][1]) + Obb.fA1*_fabs(matM[1][0]);
   t = _fabs( T[0]*matM[2][2] - T[2]*matM[0][2] );
   if( t > ra + rb )
      return false;
   
   // axis A2xB0
   ra = this->fA0*_fabs(matM[1][0]) + this->fA1*_fabs(matM[0][0]);
   rb = Obb.fA1*_fabs(matM[2][2]) + Obb.fA2*_fabs(matM[2][1]);
   t = _fabs( T[1]*matM[0][0] - T[0]*matM[1][0] );
   if( t > ra + rb )
      return false;
   
   // axis A2xB1
   ra = this->fA0*_fabs(matM[1][1]) + this->fA1*_fabs(matM[0][1]);
   rb = Obb.fA0 *_fabs(matM[2][2]) + Obb.fA2*_fabs(matM[2][0]);
   t = _fabs( T[1]*matM[0][1] - T[0]*matM[1][1] );
   if( t > ra + rb )
      return false;
   
   // axis A2xB2
   ra = this->fA0*_fabs(matM[1][2]) + this->fA1*_fabs(matM[0][2]);
   rb = Obb.fA0*_fabs(matM[2][1]) + Obb.fA1*_fabs(matM[2][0]);
   t = _fabs( T[1]*matM[0][2] - T[0]*matM[1][2] );
   if( t > ra + rb )
      return false;
   
   // no separation axis found => intersection
   return true;
   } // Intersects(obb)
Esempio n. 12
0
// intersects ray at certain length (line segment), slaps method
bool RebObb::Intersects(const RebRay &Ray, float fL, float *t) {
   float e, f, t1, t2, temp;
   float tmin = -99999.9f, 
         tmax = +99999.9f;

   RebVector vcP = this->vcCenter - Ray.m_vcOrig;

   // 1st slap
   e = this->vcA0 * vcP;
   f = this->vcA0 * Ray.m_vcDir;
   if (_fabs(f) > 0.00001f) {

      t1 = (e + this->fA0) / f;
      t2 = (e - this->fA0) / f;

      if (t1 > t2) { temp=t1; t1=t2; t2=temp; }
      if (t1 > tmin) tmin = t1;
      if (t2 < tmax) tmax = t2;
      if (tmin > tmax) return false;
      if (tmax < 0.0f) return false;
      }
   else if ( ((-e - this->fA0) > 0.0f) || ((-e + this->fA0) < 0.0f) )
      return false;

   // 2nd slap
   e = this->vcA1 * vcP;
   f = this->vcA1 * Ray.m_vcDir;
   if (_fabs(f) > 0.00001f) {

      t1 = (e + this->fA1) / f;
      t2 = (e - this->fA1) / f;

      if (t1 > t2) { temp=t1; t1=t2; t2=temp; }
      if (t1 > tmin) tmin = t1;
      if (t2 < tmax) tmax = t2;
      if (tmin > tmax) return false;
      if (tmax < 0.0f) return false;
      }
   else if ( ((-e - this->fA1) > 0.0f) || ((-e + this->fA1) < 0.0f) )
      return false;

   // 3rd slap
   e = this->vcA2 * vcP;
   f = this->vcA2 * Ray.m_vcDir;
   if (_fabs(f) > 0.00001f) {

      t1 = (e + this->fA2) / f;
      t2 = (e - this->fA2) / f;

      if (t1 > t2) { temp=t1; t1=t2; t2=temp; }
      if (t1 > tmin) tmin = t1;
      if (t2 < tmax) tmax = t2;
      if (tmin > tmax) return false;
      if (tmax < 0.0f) return false;
      }
   else if ( ((-e - this->fA2) > 0.0f) || ((-e + this->fA2) < 0.0f) )
      return false;

   if ( (tmin > 0.0f) && (tmin <= fL) ) {
      if (t) *t = tmin;
      return true;
      }

   // intersection on line but not on segment
   if (tmax > fL) return false;

   if (t) *t = tmax;

   return true;
   } // Intersects(Segment)
Esempio n. 13
0
/**
 * convex quad-box overlap test, based on the separating
 * axis therom. see Moller, JGT 6(1), 2001 for
 * derivation of the tri case.
 * 
 * \param quad
 * \param xmin
 * \param ymin
 * \param xmax
 * \param ymax
 *
 * \return 0 ==> no overlap 
 *        1 ==> overlap
 */
static int
quad_overlap(float *quad, float xmin, float ymin, float xmax, float ymax)
{
	int a;
	float v[4][2], f[4][2], c[2], h[2];
	float p0, p1, p2, r;
	
	/* find the center */
	c[0] = (xmin + xmax) * (GLfloat).5;
	c[1] = (ymin + ymax) * (GLfloat).5;

	h[0] = xmax - c[0];
	h[1] = ymax - c[1];
	
	/* translate everything to be at the origin */
	v[0][0] = quad[0] - c[0];
	v[0][1] = quad[1] - c[1];
	v[1][0] = quad[2] - c[0];
	v[1][1] = quad[3] - c[1];
	v[2][0] = quad[4] - c[0];
	v[2][1] = quad[5] - c[1];
	v[3][0] = quad[6] - c[0];
	v[3][1] = quad[7] - c[1];
	
	/* XXX: \todo this should be pre-computed */
	for (a=0; a<2; a++)
	{		
		f[0][a] = v[1][a] - v[0][a];
		f[1][a] = v[2][a] - v[1][a];
		f[2][a] = v[3][a] - v[2][a];
		f[3][a] = v[0][a] - v[3][a];
	}
	
	/* now, test the x & y axes (e0 & e1) */
	if ((_max2f(_max2f(v[0][0], v[1][0]), _max2f(v[2][0], v[3][0])) < -h[0]) ||
		(_min2f(_min2f(v[0][0], v[1][0]), _min2f(v[2][0], v[3][0])) > h[0]))
		return 0;

	if ((_max2f(_max2f(v[0][1], v[1][1]), _max2f(v[2][1], v[3][1])) < -h[1]) ||
		(_min2f(_min2f(v[0][1], v[1][1]), _min2f(v[2][1], v[3][1])) > h[1]))
		return 0;
	
	/* a0* and a1* reduce to e2, so no bother */

	/* a20 = (-f0y, f0x, 0) */
	p0 = v[1][0]*v[0][1] - v[0][0]*v[1][1];
	p1 = v[2][1]*f[0][0] - v[2][0]*f[0][1];
	p2 = v[3][1]*f[0][0] - v[3][0]*f[0][1];
	
	r  = h[0]*_fabs(f[0][1]) + h[1]*_fabs(f[0][0]);
	if ((_min3f(p0, p1, p2) > r) || (_max3f(p0, p1, p2) < -r)) return 0;
		
	/* a21 = (-f1y, f1x, 0) */
	p0 = v[2][0]*v[1][1] - v[1][0]*v[2][1];
	p1 = v[0][1]*f[1][0] - v[0][0]*f[1][1];
	p2 = v[3][1]*f[1][0] - v[3][0]*f[1][1];
	
	r  = h[0]*_fabs(f[1][1]) + h[1]*_fabs(f[1][0]);
	if ((_min3f(p0, p1, p2) > r) || (_max3f(p0, p1, p2) < -r)) return 0;

	/* a22 = (-f2y, f2x, 0) */
	p0 = v[3][0]*v[2][1] - v[2][0]*v[3][1];
	p1 = v[0][1]*f[2][0] - v[0][0]*f[2][1];
	p2 = v[1][1]*f[2][0] - v[1][0]*f[2][1];
	
	r  = h[0]*_fabs(f[2][1]) + h[1]*_fabs(f[2][0]);
	if ((_min3f(p0, p1, p2) > r) || (_max3f(p0, p1, p2) < -r)) return 0;
	
	/* a23 = (-f3y, f3x, 0) */
	p0 = v[0][0]*v[3][1] - v[3][0]*v[0][1];
	p1 = v[1][1]*f[3][0] - v[1][0]*f[3][1];
	p2 = v[2][1]*f[3][0] - v[2][0]*f[3][1];
	
	r  = h[0]*_fabs(f[3][1]) + h[1]*_fabs(f[3][0]);
	if ((_min3f(p0, p1, p2) > r) || (_max3f(p0, p1, p2) < -r)) return 0;

	return 1;
}
Esempio n. 14
0
double fabs(double x)
{
    return _fabs(x);
}
Esempio n. 15
0
bool ZFXRay::Intersects(const ZFXObb &pObb,float fL,float *t) const{
	float e, f, t1,t2,temp;
	float tmin= FLT_MIN;
	float tmax=FLT_MAX;

	ZFXVector vcP=pObb.vcCenter - m_vcOrig;
	
	//1 Slap
	e=pObb.vcA0 * vcP;
	f=pObb.vcA0 * m_vcDir;

	if(_fabs(f)>0.00001f){
		t1=(e + pObb.fA0) / f;
		t2=(e - pObb.fA0) / f;

		if(t1>t2) { temp=t1;t1=t2;t2=temp;}
		if(t1>tmin)tmin=t1;
		if(t2<tmax)tmax=t2;
		if(tmin>tmax) return false;
		if(tmax<0.0f) return false;
	}
	else if (((-e - pObb.fA0) >0.0f) ||
		((-e + pObb.fA0) <0.0f))
		return false;
	
	//2 Slap

	e=pObb.vcA1 * vcP;
	f=pObb.vcA1 * m_vcDir;

	if(_fabs(f)>0.00001f){
		t1=(e + pObb.fA1) / f;
		t2=(e - pObb.fA1) / f;

		if(t1>t2) { temp=t1;t1=t2;t2=temp;}
		if(t1>tmin)tmin=t1;
		if(t2<tmax)tmax=t2;
		if(tmin>tmax) return false;
		if(tmax<0.0f) return false;
	}
	else if (((-e - pObb.fA1) >0.0f) ||
		((-e + pObb.fA1) <0.0f))
		return false;
	

	//3 Slap
	e=pObb.vcA2 * vcP;
	f=pObb.vcA2 * m_vcDir;

	if(_fabs(f)>0.00001f){
		t1=(e + pObb.fA2) / f;
		t2=(e - pObb.fA2) / f;

		if(t1>t2) { temp=t1;t1=t2;t2=temp;}
		if(t1>tmin)tmin=t1;
		if(t2<tmax)tmax=t2;
		if(tmin>tmax) return false;
		if(tmax<0.0f) return false;
	}
	else if (((-e - pObb.fA2) >0.0f) ||
		((-e + pObb.fA2) <0.0f))
		return false;
	
	if(tmin>0.0f && (tmin <= fL)){
		if (t) *t =tmin;
		return true;
	}
	if (t) *t=tmax;
	return true;
}
void test_Vectord(void)
{
    LOG("* [Empty Vector]\n");
    mcon::Vectord dvec;

    // Zero length
    CHECK_VALUE(dvec.GetLength(), 0);
    // IsNull() is true.
    CHECK_VALUE(dvec.IsNull(), true);

    LOG("* [Resize]\n");
    const int length = 6;
    dvec.Resize(length);
    CHECK_VALUE(dvec.GetLength(), length);
    // IsNull() is false.
    CHECK_VALUE(dvec.IsNull(), false);

    for (size_t i = 0; i < length; ++i)
    {
        dvec[i] = i;
    }
    for (size_t i = 0; i < length; ++i)
    {
        CHECK_VALUE(dvec[i], i);
    }

    LOG("* [operator+=(double)]\n");
    // operator+=(T)
    dvec += 1;
    for (size_t i = 0; i < length; ++i)
    {
        CHECK_VALUE(dvec[i], i+1);
    }
    // operator*=(T)
    LOG("* [operator*=(double)]\n");
    dvec *= 10;
    for (size_t i = 0; i < length; ++i)
    {
        CHECK_VALUE(dvec[i], (i+1)*10);
    }
    // operator/=(T)
    LOG("* [operator/=(double)]\n");
    dvec /= 5;
    for (size_t i = 0; i < length; ++i)
    {
        CHECK_VALUE(dvec[i], (i+1)*2);
    }
    // operator-=(T)
    LOG("* [operator-=(double)]\n");
    dvec -= 5;
    for (size_t i = 0; i < length; ++i)
    {
        CHECK_VALUE(dvec[i], (static_cast<int>(i)+1)*2-5);
    }
    LOG("* [Copy]\n");
    mcon::Vectord dvec2(length*2);

    for (size_t i = 0; i < dvec2.GetLength(); ++i)
    {
        dvec2[i] = -(i+1);
    }
    // Copy
    dvec2.Copy(dvec);
    for (size_t i = 0; i < dvec2.GetLength(); ++i)
    {
        if (0 <= i && i < length)
        {
            CHECK_VALUE(dvec2[i], (static_cast<int>(i)+1)*2-5);
        }
    }
    LOG("* [operator=]\n");
    // Substitution
    dvec2 = dvec;
    for (size_t i = 0; i < length; ++i)
    {
        CHECK_VALUE(dvec2[i], (static_cast<int>(i)+1)*2-5);
    }
    dvec = 10;
    for (size_t i = 0; i < dvec2.GetLength(); ++i)
    {
        dvec2[i] = i + 1;
    }

    LOG("* [operator?=]\n");
    dvec += dvec2;
    for (size_t i = 0; i < length; ++i)
    {
        CHECK_VALUE(dvec[i], (i+1) + 10);
    }
    for (size_t i = 0; i < dvec2.GetLength(); ++i)
    {
        dvec2[i] = (i & 1) ? 1.0 : 2.0;
    }

    dvec *= dvec2;
    for (size_t i = 0; i < length; ++i)
    {
        CHECK_VALUE(dvec[i], ((i+1) + 10) * ((i & 1) ? 1.0 : 2.0));
    }
    dvec /= dvec2;
    for (size_t i = 0; i < length; ++i)
    {
        CHECK_VALUE(dvec[i], (i+1) + 10);
    }
    for (size_t i = 0; i < dvec2.GetLength(); ++i)
    {
        dvec2[i] = i + 1;
    }
    dvec -= dvec2;
    for (size_t i = 0; i < length; ++i)
    {
        CHECK_VALUE(dvec[i], 10);
    }
    LOG("* [Carveout]\n");
    for (size_t i = 0; i < dvec.GetLength(); ++i)
    {
        dvec[i] = i + 1;
    }
    // dvec = {1, 2, 3, 4, 5, 6};
    dvec2 = dvec(0, 0);
    CHECK_VALUE(dvec2.IsNull(), true);
    dvec2 = dvec(-1, 1);
    CHECK_VALUE(dvec2.IsNull(), true);
    dvec2 = dvec(dvec.GetLength(), 1);
    CHECK_VALUE(dvec2.IsNull(), true);
    dvec2 = dvec(dvec.GetLength()-1, 5);
    CHECK_VALUE(dvec2.IsNull(), false);
    for (size_t i = 0; i < dvec2.GetLength(); ++i)
    {
        CHECK_VALUE(dvec2[i], 6);
    }

    dvec2 = dvec(1, 3);
    for (size_t i = 0; i < dvec2.GetLength(); ++i)
    {
        CHECK_VALUE(dvec2[i], i+2);
    }
    // Fifo
    LOG("* [Fifo]\n");
    double v = dvec2.Fifo(5);
    CHECK_VALUE(v, 2);
    for (size_t i = 0; i < dvec2.GetLength(); ++i)
    {
        CHECK_VALUE(dvec2[i], i+3);
    }
    // Unshift
    LOG("* [Unshift]\n");
    v = dvec2.Unshift(2);
    CHECK_VALUE(v, 5);
    for (size_t i = 0; i < dvec2.GetLength(); ++i)
    {
        CHECK_VALUE(dvec2[i], i+2);
    }

    // Maximum/Minimum
    LOG("* [GetMaximum]\n");
    {
        const int lens[] = {1, 2, 3, 4, 5, 7, 8, 9, 31, 32, 33, 63, 64, 65};
        for ( unsigned int i = 0; i < sizeof(lens)/sizeof(int); ++i )
        {
            double ans = - __DBL_MAX__;
            const int n = lens[i];
            LOG("    Lenght=%d:\n", n);
            mcon::Vectord v(n);
            // 昇順
            for ( int k = 0; k < n; ++k )
            {
                v[k] = k - n/2;
                if (  ans < v[k] )
                {
                    ans = v[k];
                }
            }
            CHECK_VALUE(ans, v.GetMaximum());
            // 降順
            ans = - __DBL_MAX__;
            for ( int k = 0; k < n; ++k )
            {
                v[k] = n/2 - k;
                if (  ans < v[k] )
                {
                    ans = v[k];
                }
            }
            CHECK_VALUE(ans, v.GetMaximum());
        }
    }

    LOG("* [GetMinimum]\n");
    {
        const int lens[] = {1, 2, 3, 4, 5, 7, 8, 9, 31, 32, 33, 63, 64, 65};
        for ( unsigned int i = 0; i < sizeof(lens)/sizeof(int); ++i )
        {
            double ans = __DBL_MAX__;
            const int n = lens[i];
            LOG("    Lenght=%d:\n", n);
            mcon::Vectord v(n);
            // 昇順
            for ( int k = 0; k < n; ++k )
            {
                v[k] = k - n/2;
                if ( ans > v[k] )
                {
                    ans = v[k];
                }
            }
            CHECK_VALUE(ans, v.GetMinimum());
            // 降順
            ans = __DBL_MAX__;
            for ( int k = 0; k < n; ++k )
            {
                v[k] = n/2 - k;
                if (  ans > v[k] )
                {
                    ans = v[k];
                }
            }
            CHECK_VALUE(ans, v.GetMinimum());
        }
    }
    LOG("* [GetMaximumAbsolute]\n");
    {
        const int lens[] = {1, 2, 3, 4, 5, 7, 8, 9, 31, 32, 33, 63, 64, 65};
        for ( unsigned int i = 0; i < sizeof(lens)/sizeof(int); ++i )
        {
            double ans = 0;
            const int n = lens[i];
            LOG("    Lenght=%d:\n", n);
            mcon::Vectord v(n);
            // 昇順
            for ( int k = 0; k < n; ++k )
            {
                v[k] = (k + 1) * (k & 1 ? -1 : 1);
                if (  ans < _fabs(v[k]) )
                {
                    ans = _fabs(v[k]);
                }
            }
            CHECK_VALUE(ans, v.GetMaximumAbsolute());
            // 昇順 (符号が逆)
            // 結果は変わらない
            v *= -1;
            CHECK_VALUE(ans, v.GetMaximumAbsolute());

            // 降順
            for ( int k = 0; k < n; ++k )
            {
                v[k] = n - k;
                if ( ans < _fabs(v[k]) )
                {
                    ans = _fabs(v[k]);
                }
            }
            CHECK_VALUE(ans, v.GetMaximumAbsolute());
            // 降順 (符号が逆)
            // 結果は変わらない
            v *= -1;
            CHECK_VALUE(ans, v.GetMaximumAbsolute());
        }
    }
    LOG("* [GetMinimumAbsolute]\n");
    {
        const int lens[] = {1, 2, 3, 4, 5, 7, 8, 9, 31, 32, 33, 63, 64, 65};
        for ( unsigned int i = 0; i < sizeof(lens)/sizeof(int); ++i )
        {
            double ans = __DBL_MAX__;
            const int n = lens[i];
            LOG("    Lenght=%d:\n", n);
            mcon::Vectord v(n);
            // 昇順
            for ( int k = 0; k < n; ++k )
            {
                v[k] = (k + 1) * (k & 1 ? -1 : 1);
                if (  ans > _fabs(v[k]) )
                {
                    ans = _fabs(v[k]);
                }
            }
            CHECK_VALUE(ans, v.GetMinimumAbsolute());
            // 昇順 (符号が逆)
            // 結果は変わらない
            v *= -1;
            CHECK_VALUE(ans, v.GetMinimumAbsolute());

            // 降順
            ans = __DBL_MAX__;
            for ( int k = 0; k < n; ++k )
            {
                v[k] = n - k;
                if ( ans > _fabs(v[k]) )
                {
                    ans = _fabs(v[k]);
                }
            }
            CHECK_VALUE(ans, v.GetMinimumAbsolute());
            // 降順 (符号が逆)
            // 結果は変わらない
            v *= -1;
            CHECK_VALUE(ans, v.GetMinimumAbsolute());
        }
    }
    LOG("* [GetSum/Average/GetNorm]\n");
    {
        const int lens[] = {1, 2, 3, 4, 5, 7, 8, 9, 31, 32, 33, 63, 64, 65};
        for ( unsigned int i = 0; i < sizeof(lens)/sizeof(int); ++i )
        {
            const int n = lens[i];
            LOG("    Lenght=%d:\n", n);
            mcon::Vectord v(n);
            double sum = 0;
            double norm = 0;
            for ( int k = 0; k < n; ++k )
            {
                v[k] = k + 1 - n/4;
                sum += v[k];
                norm += v[k]*v[k];
            }
            double ave = sum / n;
            norm = sqrt(norm);
            CHECK_VALUE(sum , v.GetSum());
            CHECK_VALUE(ave , v.GetAverage());
            CHECK_VALUE(norm, v.GetNorm());
        }
    }
    LOG("* [Dot]\n");
    {
        const int lens[] = {1, 2, 3, 4, 5, 7, 8, 9, 31, 32, 33, 63, 64, 65};
        for ( unsigned int i = 0; i < sizeof(lens)/sizeof(int); ++i )
        {
            const int n = lens[i];
            LOG("    Lenght=%d:\n", n);
            mcon::Vectord v(n);
            mcon::Vectord w(n);
            double dot = 0;
            for ( int k = 0; k < n; ++k )
            {
                v[k] = k + 1 - n/4;
                w[k] = 3*n/4 - k - 1;
                dot += v[k]*w[k];
            }
            CHECK_VALUE(dot, v.GetDotProduct(w));
        }
    }
    LOG("* [ToMatrix]\n");
    for (size_t i = 0; i < dvec.GetLength(); ++i)
    {
        dvec[i] = i + 1;
    }
    const mcon::Matrix<double> m = dvec.ToMatrix();
    CHECK_VALUE(m.GetRowLength(), 1);
    CHECK_VALUE(m.GetColumnLength(), dvec.GetLength());
    for (size_t i = 0; i < dvec.GetLength(); ++i)
    {
        CHECK_VALUE(m[0][i], i+1);
    }
    const mcon::Matrix<double> mt = dvec.ToMatrix().Transpose();

    CHECK_VALUE(mt.GetRowLength(), dvec.GetLength());
    CHECK_VALUE(mt.GetColumnLength(), 1);
    for (size_t i = 0; i < dvec.GetLength(); ++i)
    {
        CHECK_VALUE(mt[i][0], i+1);
    }
    LOG("END\n");
}
Esempio n. 17
0
int encode_op(char *opcode, char *op_data)
{
	int rd,rs,rt,imm,funct,shaft,target;
	char tmp[256];
	const char *fi = "%s %d";
	const char *fg = "%s %%g%d";
	const char *ff = "%s %%f%d";
	const char *fl = "%s %s";
	const char *fgi = "%s %%g%d, %d";
	const char *fgl = "%s %%g%d, %s";
	const char *fgg = "%s %%g%d, %%g%d";
	const char *fggl = "%s %%g%d, %%g%d, %s";
	const char *fggi = "%s %%g%d, %%g%d, %d";
	const char *fggg = "%s %%g%d, %%g%d, %%g%d";
	const char *fff = "%s %%f%d, %%f%d";
	const char *fgf = "%s %%g%d, %%f%d";
	const char *ffg = "%s %%f%d, %%g%d";
	const char *fffl = "%s %%f%d, %%f%d, %s";
	const char *ffff = "%s %%f%d, %%f%d, %%f%d";
	const char *ffgi = "%s %%f%d, %%g%d, %d";
	const char *ffgg = "%s %%f%d, %%g%d, %%g%d";
	char lname[256];

	shaft = funct = target = 0;

	if(strcmp(opcode, "mvhi") == 0){
		if(sscanf(op_data, fgi, tmp, &rs, &imm) == 3)
		    return mvhi(rs,0,imm);
	}
	if(strcmp(opcode, "mvlo") == 0){
		if(sscanf(op_data, fgi, tmp, &rs, &imm) == 3)
		    return mvlo(rs,0,imm);
	}
	if(strcmp(opcode, "add") == 0){
		if(sscanf(op_data, fggg, tmp, &rd, &rs,&rt) == 4)
		    return add(rs,rt,rd,0);
	}
	if(strcmp(opcode, "nor") == 0){
		if(sscanf(op_data, fggg, tmp, &rd, &rs,&rt) == 4)
		    return nor(rs,rt,rd,0);
	}
	if(strcmp(opcode, "sub") == 0){
		if(sscanf(op_data, fggg, tmp, &rd, &rs,&rt) == 4)
		    return sub(rs,rt,rd,0);
	}
	if(strcmp(opcode, "mul") == 0){
		if(sscanf(op_data, fggg, tmp, &rd, &rs,&rt) == 4)
		    return mul(rs,rt,rd,0);
	}
	if(strcmp(opcode, "addi") == 0){
		if(sscanf(op_data, fggi, tmp, &rt, &rs, &imm) == 4)
		    return addi(rs,rt,imm);
	}
	if(strcmp(opcode, "subi") == 0){
		if(sscanf(op_data, fggi, tmp, &rt, &rs, &imm) == 4)
		    return subi(rs,rt,imm);
	}
	if(strcmp(opcode, "muli") == 0){
		if(sscanf(op_data, fggi, tmp, &rt, &rs, &imm) == 4)
		    return muli(rs,rt,imm);
	}
	if(strcmp(opcode, "input") == 0){
		if(sscanf(op_data, fg, tmp, &rd) == 2)
		    return input(0,0,rd,0);
	}
	if(strcmp(opcode, "inputw") == 0){
		if(sscanf(op_data, fg, tmp, &rd) == 2)
		    return inputw(0,0,rd,0);
	}
	if(strcmp(opcode, "inputf") == 0){
		if(sscanf(op_data, ff, tmp, &rd) == 2)
		    return inputf(0,0,rd,0);
	}
	if(strcmp(opcode, "output") == 0){
		if(sscanf(op_data, fg, tmp, &rs) == 2)
		    return output(rs,0,0,0);
	}
	if(strcmp(opcode, "outputw") == 0){
		if(sscanf(op_data, fg, tmp, &rs) == 2)
		    return outputw(rs,0,0,0);
	}
	if(strcmp(opcode, "outputf") == 0){
		if(sscanf(op_data, ff, tmp, &rs) == 2)
		    return outputf(rs,0,0,0);
	}
	if(strcmp(opcode, "and") == 0){
		if(sscanf(op_data, fggg, tmp, &rd, &rs,&rt) == 4)
		    return _and(rs,rt,rd,0);
	}
	if(strcmp(opcode, "or") == 0){
		if(sscanf(op_data, fggg, tmp, &rd, &rs,&rt) == 4)
		    return _or(rs,rt,rd,0);
	}
	if(strcmp(opcode, "sll") == 0){
		if(sscanf(op_data, fggg, tmp, &rd, &rs,&rt) == 4)
		    return sll(rs,rt,rd,0);
	}
	if(strcmp(opcode, "srl") == 0){
		if(sscanf(op_data, fggg, tmp, &rd, &rs,&rt) == 4)
		    return srl(rs,rt,rd,0);
	}
	if(strcmp(opcode, "slli") == 0){
		if(sscanf(op_data, fggi, tmp, &rt, &rs, &imm) == 4)
		    return slli(rs,rt,imm);
	}
	if(strcmp(opcode, "srli") == 0){
		if(sscanf(op_data, fggi, tmp, &rt, &rs, &imm) == 4)
		    return srli(rs,rt,imm);
	}
	if(strcmp(opcode, "b") == 0){
		if(sscanf(op_data, fg, tmp, &rs) == 2)
		    return b(rs,0,0,0);
	}
	if(strcmp(opcode, "jmp") == 0){
		if(sscanf(op_data, fl, tmp, lname) == 2) {
			strcpy(label_name[label_cnt],lname);
		    return jmp(label_cnt++);
		}
	}
	if(strcmp(opcode, "jeq") == 0){
		if(sscanf(op_data, fggl, tmp, &rs, &rt, lname) == 4) {
			strcpy(label_name[label_cnt],lname);
		    return jeq(rs,rt,label_cnt++);
		}
	}
	if(strcmp(opcode, "jne") == 0){
		if(sscanf(op_data, fggl, tmp, &rs, &rt, lname) == 4) {
			strcpy(label_name[label_cnt],lname);
		    return jne(rs,rt,label_cnt++);
		}
	}
	if(strcmp(opcode, "jlt") == 0){
		if(sscanf(op_data, fggl, tmp, &rs, &rt, lname) == 4) {
			strcpy(label_name[label_cnt],lname);
		    return jlt(rs,rt,label_cnt++);
		}
	}
	if(strcmp(opcode, "jle") == 0){
		if(sscanf(op_data, fggl, tmp, &rs, &rt, lname) == 4) {
			strcpy(label_name[label_cnt],lname);
		    return jle(rs,rt,label_cnt++);
		}
	}
	if(strcmp(opcode, "call") == 0){
		if(sscanf(op_data, fl, tmp, lname) == 2)  {
			strcpy(label_name[label_cnt],lname);
		    return call(label_cnt++);
		}
	}
	if(strcmp(opcode, "callR") == 0){
		if(sscanf(op_data, fg, tmp, &rs) == 2)
		    return callr(rs,0,0,0);
	}
	if(strcmp(opcode, "return") == 0){
		    return _return(0);
	}
	if(strcmp(opcode, "ld") == 0){
		if(sscanf(op_data, fggg, tmp, &rd, &rs,&rt) == 4)
		    return ld(rs,rt,rd,0);
	}
	if(strcmp(opcode, "ldi") == 0){
		if(sscanf(op_data, fggi, tmp, &rt, &rs, &imm) == 4)
		    return ldi(rs,rt,imm);
	}
	if(strcmp(opcode, "ldlr") == 0){
		if(sscanf(op_data, fgi, tmp, &rs, &imm) == 3)
		    return ldlr(rs,0,imm);
	}
	if(strcmp(opcode, "fld") == 0){
		if(sscanf(op_data, ffgg, tmp, &rd, &rs,&rt) == 4)
		    return fld(rs,rt,rd,0);
	}
	if(strcmp(opcode, "st") == 0){
		if(sscanf(op_data, fggg, tmp, &rd, &rs,&rt) == 4)
		    return st(rs,rt,rd,0);
	}
	if(strcmp(opcode, "sti") == 0){
		if(sscanf(op_data, fggi, tmp, &rt, &rs, &imm) == 4)
		    return sti(rs,rt,imm);
	}
	if(strcmp(opcode, "stlr") == 0){
		if(sscanf(op_data, fgi, tmp, &rs, &imm) == 3)
		    return stlr(rs,0,imm);
	}
	if(strcmp(opcode, "fst") == 0){
		if(sscanf(op_data, ffgg, tmp, &rd, &rs,&rt) == 4)
		    return fst(rs,rt,rd,0);
	}
	if(strcmp(opcode, "fadd") == 0){
		if(sscanf(op_data, ffff, tmp, &rd, &rs, &rt) == 4)
		    return fadd(rs,rt,rd,0);
	}
	if(strcmp(opcode, "fsub") == 0){
		if(sscanf(op_data, ffff, tmp, &rd, &rs, &rt) == 4)
		    return fsub(rs,rt,rd,0);
	}
	if(strcmp(opcode, "fmul") == 0){
		if(sscanf(op_data, ffff, tmp, &rd, &rs, &rt) == 4)
		    return fmul(rs,rt,rd,0);
	}
	if(strcmp(opcode, "fdiv") == 0){
		if(sscanf(op_data, ffff, tmp, &rd, &rs, &rt) == 4)
		    return fdiv(rs,rt,rd,0);
	}
	if(strcmp(opcode, "fsqrt") == 0){
		if(sscanf(op_data, fff, tmp, &rd, &rs) == 3)
		    return fsqrt(rs,0,rd,0);
	}
	if(strcmp(opcode, "fabs") == 0){
		if(sscanf(op_data, fff, tmp, &rd, &rs) == 3)
		    return _fabs(rs,0,rd,0);
	}
	if(strcmp(opcode, "fmov") == 0){
		if(sscanf(op_data, fff, tmp, &rd, &rs) == 3)
		    return fmov(rs,0,rd,0);
	}
	if(strcmp(opcode, "fneg") == 0){
		if(sscanf(op_data, fff, tmp, &rd, &rs) == 3)
		    return fneg(rs,0,rd,0);
	}
	if(strcmp(opcode, "fldi") == 0){
		if(sscanf(op_data, ffgi, tmp, &rt, &rs, &imm) == 4)
		    return fldi(rs,rt,imm);
	}
	if(strcmp(opcode, "fsti") == 0){
		if(sscanf(op_data, ffgi, tmp, &rt, &rs, &imm) == 4)
		    return fsti(rs,rt,imm);
	}
	if(strcmp(opcode, "fjeq") == 0){
		if(sscanf(op_data, fffl, tmp, &rs, &rt, lname) == 4) {
			strcpy(label_name[label_cnt],lname);
		    return fjeq(rs,rt,label_cnt++);
		}
	}
	if(strcmp(opcode, "fjlt") == 0){
		if(sscanf(op_data, fffl, tmp, &rs, &rt, lname) == 4) {
			strcpy(label_name[label_cnt],lname);
		    return fjlt(rs,rt,label_cnt++);
		}
	}
	if(strcmp(opcode, "halt") == 0){
		    return halt(0,0,0,0);
	}
	if(strcmp(opcode, "setL") == 0){
		if(sscanf(op_data, fgl, tmp, &rd, lname) == 3) {
			strcpy(label_name[label_cnt],lname);
		    return setl(0,rd,label_cnt++);
		}
	}
	if(strcmp(opcode, "padd") == 0){
		if(sscanf(op_data, fgi, tmp, &rt, &imm) == 3) {
		    return padd(0,rt,imm);
		}
	}
	if(strcmp(opcode, "link") == 0){
		if(sscanf(op_data, fi, tmp, &imm) == 2) {
		    return link(0,0,imm);
		}
	}
	if(strcmp(opcode, "movlr") == 0){
		return movlr(0,0,0,0);
	}
	if(strcmp(opcode, "btmplr") == 0){
		return btmplr(0,0,0,0);
	}
	/*
	if(strcmp(opcode, "padd") == 0){
		if(sscanf(op_data, fgg, tmp, &rd, &rt) == 3) {
		    return padd(0,rt,d,0);
		}
	}
	*/

	return -1;
}