static int HafCpu_Histogram3Thresholds_DATA_U8
	(
		vx_uint32     dstHist[],
		vx_uint8      distThreshold0,
		vx_uint8      distThreshold1,
		vx_uint8      distThreshold2,
		vx_uint32     srcWidth,
		vx_uint32     srcHeight,
		vx_uint8    * pSrcImage,
		vx_uint32     srcImageStrideInBytes
	)
{
	// offset: to convert the range from 0..255 to -128..127, because SSE does not have compare instructions for unsigned bytes
	// thresh: source threshold in -128..127 range
	__m128i offset = _mm_set1_epi8((char)0x80);
	__m128i T0 = _mm_set1_epi8((char)((distThreshold0 - 1) ^ 0x80));
	__m128i T1 = _mm_set1_epi8((char)((distThreshold1 - 1) ^ 0x80));
	__m128i T2 = _mm_set1_epi8((char)((distThreshold2 - 1) ^ 0x80));
	__m128i onemask = _mm_set1_epi8((char)1);
	// process one pixel row at a time that counts "pixel < srcThreshold"
	__m128i count0 = _mm_set1_epi8((char)0);
	__m128i count1 = _mm_set1_epi8((char)0);
	__m128i count2 = _mm_set1_epi8((char)0);
	vx_uint8 * srcRow = pSrcImage;
	vx_uint32 width = (srcWidth + 15) >> 4;
	for (unsigned int y = 0; y < srcHeight; y++) {
		__m128i * src = (__m128i *)srcRow;
		for (unsigned int x = 0; x < width; x++) {
			__m128i pixels = _mm_load_si128(src++);
			pixels = _mm_xor_si128(pixels, offset);
			__m128i cmpout;
			cmpout = _mm_cmpgt_epi8(pixels, T0);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			count0 = _mm_add_epi32(count0, cmpout);
			cmpout = _mm_cmpgt_epi8(pixels, T1);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			count1 = _mm_add_epi32(count1, cmpout);
			cmpout = _mm_cmpgt_epi8(pixels, T2);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			count2 = _mm_add_epi32(count2, cmpout);
		}
		srcRow += srcImageStrideInBytes;
	}
	// extract histogram from count: special case needed when T1 == T2
	dstHist[0] = M128I(count0).m128i_u32[0] + M128I(count0).m128i_u32[2];
	dstHist[1] = M128I(count1).m128i_u32[0] + M128I(count1).m128i_u32[2] - dstHist[0];
	dstHist[2] = M128I(count2).m128i_u32[0] + M128I(count2).m128i_u32[2] - dstHist[0] - dstHist[1];
	dstHist[3] = srcWidth * srcHeight - dstHist[0] - dstHist[1] - dstHist[2];
	if (M128I(T1).m128i_i8[0] == M128I(T2).m128i_i8[0]) {
		dstHist[2] = dstHist[3];
		dstHist[3] = 0;
	}
	return AGO_SUCCESS;
}
Esempio n. 2
0
// Denoise a 16x1 vector.
static INLINE __m128i vp9_denoiser_16x1_sse2(
    const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
    const __m128i *k_0, const __m128i *k_4, const __m128i *k_8,
    const __m128i *k_16, const __m128i *l3, const __m128i *l32,
    const __m128i *l21, __m128i acc_diff) {
  // Calculate differences
  const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0]));
  const __m128i v_mc_running_avg_y =
      _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0]));
  __m128i v_running_avg_y;
  const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
  const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
  // Obtain the sign. FF if diff is negative.
  const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, *k_0);
  // Clamp absolute difference to 16 to be used to get mask. Doing this
  // allows us to use _mm_cmpgt_epi8, which operates on signed byte.
  const __m128i clamped_absdiff =
      _mm_min_epu8(_mm_or_si128(pdiff, ndiff), *k_16);
  // Get masks for l2 l1 and l0 adjustments.
  const __m128i mask2 = _mm_cmpgt_epi8(*k_16, clamped_absdiff);
  const __m128i mask1 = _mm_cmpgt_epi8(*k_8, clamped_absdiff);
  const __m128i mask0 = _mm_cmpgt_epi8(*k_4, clamped_absdiff);
  // Get adjustments for l2, l1, and l0.
  __m128i adj2 = _mm_and_si128(mask2, *l32);
  const __m128i adj1 = _mm_and_si128(mask1, *l21);
  const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff);
  __m128i adj, padj, nadj;

  // Combine the adjustments and get absolute adjustments.
  adj2 = _mm_add_epi8(adj2, adj1);
  adj = _mm_sub_epi8(*l3, adj2);
  adj = _mm_andnot_si128(mask0, adj);
  adj = _mm_or_si128(adj, adj0);

  // Restore the sign and get positive and negative adjustments.
  padj = _mm_andnot_si128(diff_sign, adj);
  nadj = _mm_and_si128(diff_sign, adj);

  // Calculate filtered value.
  v_running_avg_y = _mm_adds_epu8(v_sig, padj);
  v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj);
  _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);

  // Adjustments <=7, and each element in acc_diff can fit in signed
  // char.
  acc_diff = _mm_adds_epi8(acc_diff, padj);
  acc_diff = _mm_subs_epi8(acc_diff, nadj);
  return acc_diff;
}
Esempio n. 3
0
inline void casefoldRange(char* dest, const char* begin, const char* end)
{
	if (end - begin < 64)
	{
		// short string, don't bother optimizing
		for (const char* i = begin; i != end; ++i)
			*dest++ = casefold(*i);
	}
	else
	{
		// Shift 'A'..'Z' range ([65..90]) to [102..127] to use one signed comparison insn
		__m128i shiftAmount = _mm_set1_epi8(127 - 'Z');
		__m128i lowerBound = _mm_set1_epi8(127 - ('Z' - 'A') - 1);
		__m128i upperBit = _mm_set1_epi8(0x20);

		const char* i = begin;

		for (; i + 16 < end; i += 16)
		{
			__m128i v = _mm_loadu_si128(reinterpret_cast<const __m128i*>(i));
			__m128i upperMask = _mm_cmpgt_epi8(_mm_add_epi8(v, shiftAmount), lowerBound);
			__m128i cfv = _mm_or_si128(v, _mm_and_si128(upperMask, upperBit));
			_mm_storeu_si128(reinterpret_cast<__m128i*>(dest), cfv);
			dest += 16;
		}

		for (; i != end; ++i)
			*dest++ = casefold(*i);
	}
}
Esempio n. 4
0
__m128i test_mm_cmpgt_epi8(__m128i A, __m128i B) {
  // DAG-LABEL: test_mm_cmpgt_epi8
  // DAG: icmp sgt <16 x i8>
  //
  // ASM-LABEL: test_mm_cmpgt_epi8
  // ASM: pcmpgtb
  return _mm_cmpgt_epi8(A, B);
}
Esempio n. 5
0
// Shift each byte of "x" by 3 bits while preserving by the sign bit.
static WEBP_INLINE void SignedShift8b(__m128i* const x) {
    const __m128i zero = _mm_setzero_si128();
    const __m128i signs = _mm_cmpgt_epi8(zero, *x);
    const __m128i lo_0 = _mm_unpacklo_epi8(*x, signs);  // s8 -> s16 sign extend
    const __m128i hi_0 = _mm_unpackhi_epi8(*x, signs);
    const __m128i lo_1 = _mm_srai_epi16(lo_0, 3);
    const __m128i hi_1 = _mm_srai_epi16(hi_0, 3);
    *x = _mm_packs_epi16(lo_1, hi_1);
}
    SIMDValue SIMDInt8x16Operation::OpGreaterThan(const SIMDValue& aValue, const SIMDValue& bValue)
    {
        X86SIMDValue x86Result;
        X86SIMDValue tmpaValue = X86SIMDValue::ToX86SIMDValue(aValue);
        X86SIMDValue tmpbValue = X86SIMDValue::ToX86SIMDValue(bValue);
        x86Result.m128i_value = _mm_cmpgt_epi8(tmpaValue.m128i_value, tmpbValue.m128i_value); // compare a > b?

        return X86SIMDValue::ToSIMDValue(x86Result);
    }
Esempio n. 7
0
mlib_status
__mlib_VectorConvert_U8_S8_Sat(
	mlib_u8 *z,
	const mlib_s8 *x,
	mlib_s32 n)
{
	if (n < 1)
		return (MLIB_FAILURE);

	mlib_s32 i, ax, az, nstep, n1, n2, n3, xval;
	mlib_s8 *px = (mlib_s8 *)x;
	mlib_u8 *pz = (mlib_u8 *)z;
	__m128i zbuf, xbuf, zero, mask;
	zero = _mm_setzero_si128();

	ax = (mlib_addr)x & 15;
	az = (mlib_addr)z & 15;

	nstep = 16 / sizeof (mlib_u8);
	n1 = ((16 - ax) & 15) / sizeof (mlib_u8);
	n2 = (n - n1) / nstep;
	n3 = n - n1 - n2 * nstep;

	if (n2 < 1) {
		for (i = 0; i < n; i++) {
			xval = *px++;
			if (xval < 0)
				xval = 0;
			*pz++ = xval;
		}
	} else {
		for (i = 0; i < n1; i++) {
			xval = *px++;
			if (xval < 0)
				xval = 0;
			*pz++ = xval;
		}

		for (i = 0; i < n2; i++) {
			xbuf = _mm_load_si128((__m128i *)px);
			mask = _mm_cmpgt_epi8(zero, xbuf);
			zbuf = _mm_andnot_si128(mask, xbuf);
			_mm_storeu_si128((__m128i *)pz, zbuf);
			px += nstep;
			pz += nstep;
		}

		for (i = 0; i < n3; i++) {
			xval = *px++;
			if (xval < 0)
				xval = 0;
			*pz++ = xval;
		}
	}

	return (MLIB_SUCCESS);
}
Esempio n. 8
0
__m64 _m_pcmpgtb(__m64 _MM1, __m64 _MM2)
{
    __m128i lhs = {0}, rhs = {0};
    lhs.m128i_i64[0] = _MM1.m64_i64;

    rhs.m128i_i64[0] = _MM2.m64_i64;

    lhs = _mm_cmpgt_epi8(lhs, rhs);

    _MM1.m64_i64 = lhs.m128i_i64[0];
    return _MM1;
}
// The function assumes that the image pointers are 16 byte aligned, and the source and destination strides as well
// It processes the pixels in a width which is the next highest multiple of 16 after dstWidth
static int HafCpu_Histogram1Threshold_DATA_U8
	(
		vx_uint32     dstHist[],
		vx_uint8      distThreshold,
		vx_uint32     srcWidth,
		vx_uint32     srcHeight,
		vx_uint8    * pSrcImage,
		vx_uint32     srcImageStrideInBytes
	)
{
	// offset: to convert the range from 0..255 to -128..127, because SSE does not have compare instructions for unsigned bytes
	// thresh: source threshold in -128..127 range
	__m128i offset = _mm_set1_epi8((char)0x80);
	__m128i thresh = _mm_set1_epi8((char)((distThreshold - 1) ^ 0x80));
	__m128i onemask = _mm_set1_epi8((char)1);
	// process one pixel row at a time that counts "pixel < srcThreshold"
	__m128i count = _mm_set1_epi8((char)0);
	vx_uint8 * srcRow = pSrcImage;
	vx_uint32 width = (srcWidth + 15) >> 4;
	for (unsigned int y = 0; y < srcHeight; y++) {
		__m128i * src = (__m128i *)srcRow;
		for (unsigned int x = 0; x < width; x++) {
			__m128i pixels = _mm_load_si128(src++);
			pixels = _mm_xor_si128(pixels, offset);
			pixels = _mm_cmpgt_epi8(pixels, thresh);
			pixels = _mm_and_si128(pixels, onemask);
			pixels = _mm_sad_epu8(pixels, onemask);
			count = _mm_add_epi32(count, pixels);
		}
		srcRow += srcImageStrideInBytes;
	}
	// extract histogram from count
	dstHist[0] = M128I(count).m128i_u32[0] + M128I(count).m128i_u32[2];
	dstHist[1] = srcWidth * srcHeight - dstHist[0];
	return AGO_SUCCESS;
}
static inline __m128i _mm_min_epi8_rpl(__m128i a, __m128i b) {
    __m128i mask = _mm_cmpgt_epi8(b, a);
    a = _mm_and_si128(a, mask);
    b = _mm_andnot_si128(mask, b);
    return _mm_or_si128(a, b);
}
Esempio n. 11
0
ColumnPtr ColumnFixedString::filter(const IColumn::Filter & filt, ssize_t result_size_hint) const
{
    size_t col_size = size();
    if (col_size != filt.size())
        throw Exception("Size of filter doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);

    auto res = ColumnFixedString::create(n);

    if (result_size_hint)
        res->chars.reserve(result_size_hint > 0 ? result_size_hint * n : chars.size());

    const UInt8 * filt_pos = &filt[0];
    const UInt8 * filt_end = filt_pos + col_size;
    const UInt8 * data_pos = &chars[0];

#if __SSE2__
    /** A slightly more optimized version.
        * Based on the assumption that often pieces of consecutive values
        *  completely pass or do not pass the filter.
        * Therefore, we will optimistically check the parts of `SIMD_BYTES` values.
        */

    static constexpr size_t SIMD_BYTES = 16;
    const __m128i zero16 = _mm_setzero_si128();
    const UInt8 * filt_end_sse = filt_pos + col_size / SIMD_BYTES * SIMD_BYTES;
    const size_t chars_per_simd_elements = SIMD_BYTES * n;

    while (filt_pos < filt_end_sse)
    {
        int mask = _mm_movemask_epi8(_mm_cmpgt_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(filt_pos)), zero16));

        if (0 == mask)
        {
            /// Nothing is inserted.
            data_pos += chars_per_simd_elements;
        }
        else if (0xFFFF == mask)
        {
            res->chars.insert(data_pos, data_pos + chars_per_simd_elements);
            data_pos += chars_per_simd_elements;
        }
        else
        {
            size_t res_chars_size = res->chars.size();
            for (size_t i = 0; i < SIMD_BYTES; ++i)
            {
                if (filt_pos[i])
                {
                    res->chars.resize(res_chars_size + n);
                    memcpySmallAllowReadWriteOverflow15(&res->chars[res_chars_size], data_pos, n);
                    res_chars_size += n;
                }
                data_pos += n;
            }
        }

        filt_pos += SIMD_BYTES;
    }
#endif

    size_t res_chars_size = res->chars.size();
    while (filt_pos < filt_end)
    {
        if (*filt_pos)
        {
            res->chars.resize(res_chars_size + n);
            memcpySmallAllowReadWriteOverflow15(&res->chars[res_chars_size], data_pos, n);
            res_chars_size += n;
        }

        ++filt_pos;
        data_pos += n;
    }

    return std::move(res);
}
Esempio n. 12
0
mlib_status
__mlib_VectorSumAbsDiff_S8_Sat(
    mlib_d64 *z,
    const mlib_s8 *x,
    const mlib_s8 *y,
    mlib_s32 n)
{
    if (n <= 0)
        return (MLIB_FAILURE);

    mlib_s32 i, nstep, ax, ay, n1, n2, n3, diff, sum = 0;
    mlib_s8 *px = (mlib_s8 *)x, *py = (mlib_s8 *)y;
    __m128i zero, xbuf, ybuf, zbuf, mext, mbuf;
    zero = _mm_setzero_si128();
    zbuf = zero;

    nstep = 16 / sizeof (mlib_s8);
    ax = (mlib_addr)x & 15;
    ay = (mlib_addr)y & 15;
    n1 = ((16 - ax) & 15) / sizeof (mlib_s8);
    n2 = (n - n1) / nstep;
    n3 = n - n1 - n2 * nstep;

    if (n2 < 1) {
        for (i = 0; i < n; i++) {
            diff = (mlib_s32)(*px++) - (*py++);
            sum += ABS_VALUE(diff);
        }
        *z = sum;
    } else {
        for (i = 0; i < n1; i++) {
            diff = (mlib_s32)(*px++) - (*py++);
            sum += ABS_VALUE(diff);
        }
        if (ax == ay) {
            for (i = 0; i < n2; i++) {
                xbuf = _mm_load_si128((__m128i *)px);
                ybuf = _mm_load_si128((__m128i *)py);
                mext = _mm_cmpgt_epi8(ybuf, xbuf);
                mbuf = _mm_sub_epi8(xbuf, ybuf);
                mbuf = _mm_xor_si128(mbuf, mext);
                mbuf = _mm_sub_epi8(mbuf, mext);
                mbuf = _mm_sad_epu8(mbuf, zero);
                zbuf = _mm_add_epi64(zbuf, mbuf);
                px += nstep;
                py += nstep;
            }
        } else {
            for (i = 0; i < n2; i++) {
                xbuf = _mm_load_si128((__m128i *)px);
                ybuf = _mm_loadu_si128((__m128i *)py);
                mext = _mm_cmpgt_epi8(ybuf, xbuf);
                mbuf = _mm_sub_epi8(xbuf, ybuf);
                mbuf = _mm_xor_si128(mbuf, mext);
                mbuf = _mm_sub_epi8(mbuf, mext);
                mbuf = _mm_sad_epu8(mbuf, zero);
                zbuf = _mm_add_epi64(zbuf, mbuf);
                px += nstep;
                py += nstep;
            }
        }
        for (i = 0; i < n3; i++) {
            diff = (mlib_s32)(*px++) - (*py++);
            sum += ABS_VALUE(diff);
        }

        mlib_d64 dsum = sum;
        long long pz[2];
        _mm_storeu_si128((__m128i *)pz, zbuf);
        dsum += pz[0];
        dsum += pz[1];
        *z = dsum;
    }
    return (MLIB_SUCCESS);
}
Esempio n. 13
0
int vp8_denoiser_filter_sse2(unsigned char *mc_running_avg_y,
                             int mc_avg_y_stride, unsigned char *running_avg_y,
                             int avg_y_stride, unsigned char *sig,
                             int sig_stride, unsigned int motion_magnitude,
                             int increase_denoising) {
  unsigned char *running_avg_y_start = running_avg_y;
  unsigned char *sig_start = sig;
  unsigned int sum_diff_thresh;
  int r;
  int shift_inc =
      (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
          ? 1
          : 0;
  __m128i acc_diff = _mm_setzero_si128();
  const __m128i k_0 = _mm_setzero_si128();
  const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
  const __m128i k_8 = _mm_set1_epi8(8);
  const __m128i k_16 = _mm_set1_epi8(16);
  /* Modify each level's adjustment according to motion_magnitude. */
  const __m128i l3 = _mm_set1_epi8(
      (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6);
  /* Difference between level 3 and level 2 is 2. */
  const __m128i l32 = _mm_set1_epi8(2);
  /* Difference between level 2 and level 1 is 1. */
  const __m128i l21 = _mm_set1_epi8(1);

  for (r = 0; r < 16; ++r) {
    /* Calculate differences */
    const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0]));
    const __m128i v_mc_running_avg_y =
        _mm_loadu_si128((__m128i *)(&mc_running_avg_y[0]));
    __m128i v_running_avg_y;
    const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
    const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
    /* Obtain the sign. FF if diff is negative. */
    const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
    /* Clamp absolute difference to 16 to be used to get mask. Doing this
     * allows us to use _mm_cmpgt_epi8, which operates on signed byte. */
    const __m128i clamped_absdiff =
        _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_16);
    /* Get masks for l2 l1 and l0 adjustments */
    const __m128i mask2 = _mm_cmpgt_epi8(k_16, clamped_absdiff);
    const __m128i mask1 = _mm_cmpgt_epi8(k_8, clamped_absdiff);
    const __m128i mask0 = _mm_cmpgt_epi8(k_4, clamped_absdiff);
    /* Get adjustments for l2, l1, and l0 */
    __m128i adj2 = _mm_and_si128(mask2, l32);
    const __m128i adj1 = _mm_and_si128(mask1, l21);
    const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff);
    __m128i adj, padj, nadj;

    /* Combine the adjustments and get absolute adjustments. */
    adj2 = _mm_add_epi8(adj2, adj1);
    adj = _mm_sub_epi8(l3, adj2);
    adj = _mm_andnot_si128(mask0, adj);
    adj = _mm_or_si128(adj, adj0);

    /* Restore the sign and get positive and negative adjustments. */
    padj = _mm_andnot_si128(diff_sign, adj);
    nadj = _mm_and_si128(diff_sign, adj);

    /* Calculate filtered value. */
    v_running_avg_y = _mm_adds_epu8(v_sig, padj);
    v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj);
    _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);

    /* Adjustments <=7, and each element in acc_diff can fit in signed
     * char.
     */
    acc_diff = _mm_adds_epi8(acc_diff, padj);
    acc_diff = _mm_subs_epi8(acc_diff, nadj);

    /* Update pointers for next iteration. */
    sig += sig_stride;
    mc_running_avg_y += mc_avg_y_stride;
    running_avg_y += avg_y_stride;
  }

  {
    /* Compute the sum of all pixel differences of this MB. */
    unsigned int abs_sum_diff = abs_sum_diff_16x1(acc_diff);
    sum_diff_thresh = SUM_DIFF_THRESHOLD;
    if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH;
    if (abs_sum_diff > sum_diff_thresh) {
      // Before returning to copy the block (i.e., apply no denoising),
      // check if we can still apply some (weaker) temporal filtering to
      // this block, that would otherwise not be denoised at all. Simplest
      // is to apply an additional adjustment to running_avg_y to bring it
      // closer to sig. The adjustment is capped by a maximum delta, and
      // chosen such that in most cases the resulting sum_diff will be
      // within the acceptable range given by sum_diff_thresh.

      // The delta is set by the excess of absolute pixel diff over the
      // threshold.
      int delta = ((abs_sum_diff - sum_diff_thresh) >> 8) + 1;
      // Only apply the adjustment for max delta up to 3.
      if (delta < 4) {
        const __m128i k_delta = _mm_set1_epi8(delta);
        sig -= sig_stride * 16;
        mc_running_avg_y -= mc_avg_y_stride * 16;
        running_avg_y -= avg_y_stride * 16;
        for (r = 0; r < 16; ++r) {
          __m128i v_running_avg_y =
              _mm_loadu_si128((__m128i *)(&running_avg_y[0]));
          // Calculate differences.
          const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0]));
          const __m128i v_mc_running_avg_y =
              _mm_loadu_si128((__m128i *)(&mc_running_avg_y[0]));
          const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
          const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
          // Obtain the sign. FF if diff is negative.
          const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
          // Clamp absolute difference to delta to get the adjustment.
          const __m128i adj = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta);
          // Restore the sign and get positive and negative adjustments.
          __m128i padj, nadj;
          padj = _mm_andnot_si128(diff_sign, adj);
          nadj = _mm_and_si128(diff_sign, adj);
          // Calculate filtered value.
          v_running_avg_y = _mm_subs_epu8(v_running_avg_y, padj);
          v_running_avg_y = _mm_adds_epu8(v_running_avg_y, nadj);
          _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);

          // Accumulate the adjustments.
          acc_diff = _mm_subs_epi8(acc_diff, padj);
          acc_diff = _mm_adds_epi8(acc_diff, nadj);

          // Update pointers for next iteration.
          sig += sig_stride;
          mc_running_avg_y += mc_avg_y_stride;
          running_avg_y += avg_y_stride;
        }
        abs_sum_diff = abs_sum_diff_16x1(acc_diff);
        if (abs_sum_diff > sum_diff_thresh) {
          return COPY_BLOCK;
        }
      } else {
        return COPY_BLOCK;
      }
    }
  }
Esempio n. 14
0
// count genotype sum and number of calls, not requiring 16-aligned p
COREARRAY_DLL_DEFAULT C_UInt8* vec_u8_geno_count(C_UInt8 *p,
	size_t n, C_Int32 &out_sum, C_Int32 &out_num)
{
	C_Int32 sum=0, num=0;

#if defined(COREARRAY_SIMD_AVX2)

	const __m256i three = _mm256_set1_epi8(3);
	const __m256i zero = _mm256_setzero_si256();
	__m256i sum32 = zero, num32 = zero;
	size_t limit_by_U8 = 0;

	for (; n >= 32; )
	{
		__m256i v = _mm256_loadu_si256((__m256i const*)p);
		p += 32;
		__m256i m = _mm256_cmpgt_epi8(three, _mm256_min_epu8(v, three));
		sum32 = _mm256_add_epi8(sum32, _mm256_and_si256(v, m));
		num32 = _mm256_sub_epi8(num32, m);
		n -= 32;
		limit_by_U8 ++;
		if ((limit_by_U8 >= 127) || (n < 32))
		{
			// add to sum
			sum32 = _mm256_sad_epu8(sum32, zero);
			sum32 = _mm256_add_epi32(sum32,
				_mm256_permute4x64_epi64(sum32, _MM_SHUFFLE(1,0,3,2)));
			sum32 = _mm256_add_epi32(sum32,
				_mm256_permute4x64_epi64(sum32, _MM_SHUFFLE(0,0,0,1)));
			sum += _mm_cvtsi128_si32(_mm256_castsi256_si128(sum32));
			// add to num
			num32 = _mm256_sad_epu8(num32, zero);
			num32 = _mm256_add_epi32(num32,
				_mm256_permute4x64_epi64(num32, _MM_SHUFFLE(1,0,3,2)));
			num32 = _mm256_add_epi32(num32,
				_mm256_permute4x64_epi64(num32, _MM_SHUFFLE(0,0,0,1)));
			num += _mm_cvtsi128_si32(_mm256_castsi256_si128(num32));
			// reset
			sum32 = num32 = zero;
			limit_by_U8 = 0;
		}
	}

#elif defined(COREARRAY_SIMD_SSE2)

	// header, 16-byte aligned
	size_t h = (16 - ((size_t)p & 0x0F)) & 0x0F;
	for (; (n > 0) && (h > 0); n--, h--, p++)
		if (*p <= 2) { sum += *p; num++; }

	const __m128i three = _mm_set1_epi8(3);
	const __m128i zero = _mm_setzero_si128();
	__m128i sum16=zero, num16=zero;
	size_t limit_by_U8 = 0;

	for (; n >= 16; )
	{
		__m128i v = _mm_load_si128((__m128i const*)p);
		p += 16;
		__m128i m = _mm_cmpgt_epi8(three, _mm_min_epu8(v, three));
		sum16 = _mm_add_epi8(sum16, v & m);
		num16 = _mm_sub_epi8(num16, m);
		n -= 16;
		limit_by_U8 ++;
		if ((limit_by_U8 >= 127) || (n < 16))
		{
			// add to sum
			sum16 = _mm_sad_epu8(sum16, zero);
			sum += _mm_cvtsi128_si32(sum16);
			sum += _mm_cvtsi128_si32(_mm_shuffle_epi32(sum16, 2));
			// add to num
			num16 = _mm_sad_epu8(num16, zero);
			num += _mm_cvtsi128_si32(num16);
			num += _mm_cvtsi128_si32(_mm_shuffle_epi32(num16, 2));
			// reset
			sum16 = num16 = zero;
			limit_by_U8 = 0;
		}
	}

#endif

	for (; n > 0; n--, p++)
		if (*p <= 2) { sum += *p; num++; }
	out_sum = sum;
	out_num = num;
	return p;
}
Esempio n. 15
0
void FAST_t(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression)
{
    Mat img = _img.getMat();
    const int K = patternSize/2, N = patternSize + K + 1;
#if CV_SSE2
    const int quarterPatternSize = patternSize/4;
    (void)quarterPatternSize;
#endif
    int i, j, k, pixel[25];
    makeOffsets(pixel, (int)img.step, patternSize);

    keypoints.clear();

    threshold = std::min(std::max(threshold, 0), 255);

#if CV_SSE2
    __m128i delta = _mm_set1_epi8(-128), t = _mm_set1_epi8((char)threshold), K16 = _mm_set1_epi8((char)K);
    (void)K16;
    (void)delta;
    (void)t;
#endif
    uchar threshold_tab[512];
    for( i = -255; i <= 255; i++ )
        threshold_tab[i+255] = (uchar)(i < -threshold ? 1 : i > threshold ? 2 : 0);

    AutoBuffer<uchar> _buf((img.cols+16)*3*(sizeof(int) + sizeof(uchar)) + 128);
    uchar* buf[3];
    buf[0] = _buf; buf[1] = buf[0] + img.cols; buf[2] = buf[1] + img.cols;
    int* cpbuf[3];
    cpbuf[0] = (int*)alignPtr(buf[2] + img.cols, sizeof(int)) + 1;
    cpbuf[1] = cpbuf[0] + img.cols + 1;
    cpbuf[2] = cpbuf[1] + img.cols + 1;
    memset(buf[0], 0, img.cols*3);

    for(i = 3; i < img.rows-2; i++)
    {
        const uchar* ptr = img.ptr<uchar>(i) + 3;
        uchar* curr = buf[(i - 3)%3];
        int* cornerpos = cpbuf[(i - 3)%3];
        memset(curr, 0, img.cols);
        int ncorners = 0;

        if( i < img.rows - 3 )
        {
            j = 3;
    #if CV_SSE2
            if( patternSize == 16 )
            {
                for(; j < img.cols - 16 - 3; j += 16, ptr += 16)
                {
                    __m128i m0, m1;
                    __m128i v0 = _mm_loadu_si128((const __m128i*)ptr);
                    __m128i v1 = _mm_xor_si128(_mm_subs_epu8(v0, t), delta);
                    v0 = _mm_xor_si128(_mm_adds_epu8(v0, t), delta);

                    __m128i x0 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[0])), delta);
                    __m128i x1 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[quarterPatternSize])), delta);
                    __m128i x2 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[2*quarterPatternSize])), delta);
                    __m128i x3 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[3*quarterPatternSize])), delta);
                    m0 = _mm_and_si128(_mm_cmpgt_epi8(x0, v0), _mm_cmpgt_epi8(x1, v0));
                    m1 = _mm_and_si128(_mm_cmpgt_epi8(v1, x0), _mm_cmpgt_epi8(v1, x1));
                    m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x1, v0), _mm_cmpgt_epi8(x2, v0)));
                    m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x1), _mm_cmpgt_epi8(v1, x2)));
                    m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x2, v0), _mm_cmpgt_epi8(x3, v0)));
                    m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x2), _mm_cmpgt_epi8(v1, x3)));
                    m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x3, v0), _mm_cmpgt_epi8(x0, v0)));
                    m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x3), _mm_cmpgt_epi8(v1, x0)));
                    m0 = _mm_or_si128(m0, m1);
                    int mask = _mm_movemask_epi8(m0);
                    if( mask == 0 )
                        continue;
                    if( (mask & 255) == 0 )
                    {
                        j -= 8;
                        ptr -= 8;
                        continue;
                    }

                    __m128i c0 = _mm_setzero_si128(), c1 = c0, max0 = c0, max1 = c0;
                    for( k = 0; k < N; k++ )
                    {
                        __m128i x = _mm_xor_si128(_mm_loadu_si128((const __m128i*)(ptr + pixel[k])), delta);
                        m0 = _mm_cmpgt_epi8(x, v0);
                        m1 = _mm_cmpgt_epi8(v1, x);

                        c0 = _mm_and_si128(_mm_sub_epi8(c0, m0), m0);
                        c1 = _mm_and_si128(_mm_sub_epi8(c1, m1), m1);

                        max0 = _mm_max_epu8(max0, c0);
                        max1 = _mm_max_epu8(max1, c1);
                    }

                    max0 = _mm_max_epu8(max0, max1);
                    int m = _mm_movemask_epi8(_mm_cmpgt_epi8(max0, K16));

                    for( k = 0; m > 0 && k < 16; k++, m >>= 1 )
                        if(m & 1)
                        {
                            cornerpos[ncorners++] = j+k;
                            if(nonmax_suppression)
                                curr[j+k] = (uchar)cornerScore<patternSize>(ptr+k, pixel, threshold);
                        }
                }
            }
    #endif
            for( ; j < img.cols - 3; j++, ptr++ )
            {
                int v = ptr[0];
                const uchar* tab = &threshold_tab[0] - v + 255;
                int d = tab[ptr[pixel[0]]] | tab[ptr[pixel[8]]];

                if( d == 0 )
                    continue;

                d &= tab[ptr[pixel[2]]] | tab[ptr[pixel[10]]];
                d &= tab[ptr[pixel[4]]] | tab[ptr[pixel[12]]];
                d &= tab[ptr[pixel[6]]] | tab[ptr[pixel[14]]];

                if( d == 0 )
                    continue;

                d &= tab[ptr[pixel[1]]] | tab[ptr[pixel[9]]];
                d &= tab[ptr[pixel[3]]] | tab[ptr[pixel[11]]];
                d &= tab[ptr[pixel[5]]] | tab[ptr[pixel[13]]];
                d &= tab[ptr[pixel[7]]] | tab[ptr[pixel[15]]];

                if( d & 1 )
                {
                    int vt = v - threshold, count = 0;

                    for( k = 0; k < N; k++ )
                    {
                        int x = ptr[pixel[k]];
                        if(x < vt)
                        {
                            if( ++count > K )
                            {
                                cornerpos[ncorners++] = j;
                                if(nonmax_suppression)
                                    curr[j] = (uchar)cornerScore<patternSize>(ptr, pixel, threshold);
                                break;
                            }
                        }
                        else
                            count = 0;
                    }
                }

                if( d & 2 )
                {
                    int vt = v + threshold, count = 0;

                    for( k = 0; k < N; k++ )
                    {
                        int x = ptr[pixel[k]];
                        if(x > vt)
                        {
                            if( ++count > K )
                            {
                                cornerpos[ncorners++] = j;
                                if(nonmax_suppression)
                                    curr[j] = (uchar)cornerScore<patternSize>(ptr, pixel, threshold);
                                break;
                            }
                        }
                        else
                            count = 0;
                    }
                }
            }
        }

        cornerpos[-1] = ncorners;

        if( i == 3 )
            continue;

        const uchar* prev = buf[(i - 4 + 3)%3];
        const uchar* pprev = buf[(i - 5 + 3)%3];
        cornerpos = cpbuf[(i - 4 + 3)%3];
        ncorners = cornerpos[-1];

        for( k = 0; k < ncorners; k++ )
        {
            j = cornerpos[k];
            int score = prev[j];
            if( !nonmax_suppression ||
               (score > prev[j+1] && score > prev[j-1] &&
                score > pprev[j-1] && score > pprev[j] && score > pprev[j+1] &&
                score > curr[j-1] && score > curr[j] && score > curr[j+1]) )
            {
                keypoints.push_back(KeyPoint((float)j, (float)(i-1), 7.f, -1, (float)score));
            }
        }
    }
Esempio n. 16
0
ColumnPtr ColumnVector<T>::filter(const IColumn::Filter & filt, ssize_t result_size_hint) const
{
    size_t size = data.size();
    if (size != filt.size())
        throw Exception("Size of filter doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);

    auto res = this->create();
    Container & res_data = res->getData();

    if (result_size_hint)
        res_data.reserve(result_size_hint > 0 ? result_size_hint : size);

    const UInt8 * filt_pos = &filt[0];
    const UInt8 * filt_end = filt_pos + size;
    const T * data_pos = &data[0];

#if __SSE2__
    /** A slightly more optimized version.
        * Based on the assumption that often pieces of consecutive values
        *  completely pass or do not pass the filter.
        * Therefore, we will optimistically check the parts of `SIMD_BYTES` values.
        */

    static constexpr size_t SIMD_BYTES = 16;
    const __m128i zero16 = _mm_setzero_si128();
    const UInt8 * filt_end_sse = filt_pos + size / SIMD_BYTES * SIMD_BYTES;

    while (filt_pos < filt_end_sse)
    {
        int mask = _mm_movemask_epi8(_mm_cmpgt_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(filt_pos)), zero16));

        if (0 == mask)
        {
            /// Nothing is inserted.
        }
        else if (0xFFFF == mask)
        {
            res_data.insert(data_pos, data_pos + SIMD_BYTES);
        }
        else
        {
            for (size_t i = 0; i < SIMD_BYTES; ++i)
                if (filt_pos[i])
                    res_data.push_back(data_pos[i]);
        }

        filt_pos += SIMD_BYTES;
        data_pos += SIMD_BYTES;
    }
#endif

    while (filt_pos < filt_end)
    {
        if (*filt_pos)
            res_data.push_back(*data_pos);

        ++filt_pos;
        ++data_pos;
    }

    return std::move(res);
}
Esempio n. 17
0
/// Element-wise comparison for greater than.
inline xmm_i8 operator > (const xmm_i8 &a, const xmm_i8 &b) { return _mm_cmpgt_epi8(a, b); }
Esempio n. 18
0
test (__m128i s1, __m128i s2)
{
  return _mm_cmpgt_epi8 (s1, s2); 
}
Esempio n. 19
0
__m128i test_mm_cmpgt_epi8(__m128i A, __m128i B) {
  // CHECK-LABEL: test_mm_cmpgt_epi8
  // CHECK: icmp sgt <16 x i8>
  return _mm_cmpgt_epi8(A, B);
}
int vp8_denoiser_filter_sse2(YV12_BUFFER_CONFIG *mc_running_avg,
                             YV12_BUFFER_CONFIG *running_avg,
                             MACROBLOCK *signal, unsigned int motion_magnitude,
                             int y_offset, int uv_offset)
{
    unsigned char *sig = signal->thismb;
    int sig_stride = 16;
    unsigned char *mc_running_avg_y = mc_running_avg->y_buffer + y_offset;
    int mc_avg_y_stride = mc_running_avg->y_stride;
    unsigned char *running_avg_y = running_avg->y_buffer + y_offset;
    int avg_y_stride = running_avg->y_stride;
    int r;
    (void)uv_offset;
    __m128i acc_diff = _mm_setzero_si128();
    const __m128i k_0 = _mm_setzero_si128();
    const __m128i k_4 = _mm_set1_epi8(4);
    const __m128i k_8 = _mm_set1_epi8(8);
    const __m128i k_16 = _mm_set1_epi8(16);
    /* Modify each level's adjustment according to motion_magnitude. */
    const __m128i l3 = _mm_set1_epi8(
                      (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 : 6);
    /* Difference between level 3 and level 2 is 2. */
    const __m128i l32 = _mm_set1_epi8(2);
    /* Difference between level 2 and level 1 is 1. */
    const __m128i l21 = _mm_set1_epi8(1);

    for (r = 0; r < 16; ++r)
    {
        /* Calculate differences */
        const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0]));
        const __m128i v_mc_running_avg_y = _mm_loadu_si128(
                                           (__m128i *)(&mc_running_avg_y[0]));
        __m128i v_running_avg_y;
        const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
        const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
        /* Obtain the sign. FF if diff is negative. */
        const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
        /* Clamp absolute difference to 16 to be used to get mask. Doing this
         * allows us to use _mm_cmpgt_epi8, which operates on signed byte. */
        const __m128i clamped_absdiff = _mm_min_epu8(
                                        _mm_or_si128(pdiff, ndiff), k_16);
        /* Get masks for l2 l1 and l0 adjustments */
        const __m128i mask2 = _mm_cmpgt_epi8(k_16, clamped_absdiff);
        const __m128i mask1 = _mm_cmpgt_epi8(k_8, clamped_absdiff);
        const __m128i mask0 = _mm_cmpgt_epi8(k_4, clamped_absdiff);
        /* Get adjustments for l2, l1, and l0 */
        __m128i adj2 = _mm_and_si128(mask2, l32);
        const __m128i adj1 = _mm_and_si128(mask1, l21);
        const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff);
        __m128i adj,  padj, nadj;

        /* Combine the adjustments and get absolute adjustments. */
        adj2 = _mm_add_epi8(adj2, adj1);
        adj = _mm_sub_epi8(l3, adj2);
        adj = _mm_andnot_si128(mask0, adj);
        adj = _mm_or_si128(adj, adj0);

        /* Restore the sign and get positive and negative adjustments. */
        padj = _mm_andnot_si128(diff_sign, adj);
        nadj = _mm_and_si128(diff_sign, adj);

        /* Calculate filtered value. */
        v_running_avg_y = _mm_adds_epu8(v_sig, padj);
        v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj);
        _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);

        /* Adjustments <=7, and each element in acc_diff can fit in signed
         * char.
         */
        acc_diff = _mm_adds_epi8(acc_diff, padj);
        acc_diff = _mm_subs_epi8(acc_diff, nadj);

        /* Update pointers for next iteration. */
        sig += sig_stride;
        mc_running_avg_y += mc_avg_y_stride;
        running_avg_y += avg_y_stride;
    }

    {
        /* Compute the sum of all pixel differences of this MB. */
        union sum_union s;
        int sum_diff = 0;
        s.v = acc_diff;
        sum_diff = s.e[0] + s.e[1] + s.e[2] + s.e[3] + s.e[4] + s.e[5]
                 + s.e[6] + s.e[7] + s.e[8] + s.e[9] + s.e[10] + s.e[11]
                 + s.e[12] + s.e[13] + s.e[14] + s.e[15];

        if (abs(sum_diff) > SUM_DIFF_THRESHOLD)
        {
            return COPY_BLOCK;
        }
    }

    vp8_copy_mem16x16(running_avg->y_buffer + y_offset, avg_y_stride,
                      signal->thismb, sig_stride);
    return FILTER_BLOCK;
}
static int HafCpu_Histogram16Bins_DATA_U8
	(
		vx_uint32   * dstHist,
		vx_uint8      distOffset, 
		vx_uint8      distWindow,
		vx_uint32     srcWidth,
		vx_uint32     srcHeight,
		vx_uint8    * pSrcImage,
		vx_uint32     srcImageStrideInBytes
	)
{
	// offset: to convert the range from 0..255 to -128..127, because SSE does not have compare instructions for unsigned bytes
	// thresh: source threshold in -128..127 range
	__m128i offset = _mm_set1_epi8((char)0x80);
	__m128i T0 = _mm_set1_epi8((char)(((distOffset ? distOffset : distWindow) - 1) ^ 0x80));
	__m128i dT = _mm_set1_epi8((char)distWindow);
	__m128i onemask = _mm_set1_epi8((char)1);
	// process one pixel row at a time that counts "pixel < srcThreshold"
	vx_uint32 count[16] = { 0 };
	vx_uint8 * srcRow = pSrcImage;
	vx_uint32 width = (srcWidth + 15) >> 4;
	for (unsigned int y = 0; y < srcHeight; y++) {
		__m128i * src = (__m128i *)srcRow;
		__m128i count0 = _mm_set1_epi8((char)0);
		__m128i count1 = _mm_set1_epi8((char)0);
		__m128i count2 = _mm_set1_epi8((char)0);
		__m128i count3 = _mm_set1_epi8((char)0);
		for (unsigned int x = 0; x < width; x++) {
			__m128i pixels = _mm_load_si128(src++);
			pixels = _mm_xor_si128(pixels, offset);
			__m128i cmpout, Tnext = T0;
			// 0..3
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			count0 = _mm_add_epi32(count0, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 16);
			count0 = _mm_add_epi32(count0, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 32);
			count0 = _mm_add_epi32(count0, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 48);
			count0 = _mm_add_epi32(count0, cmpout);
			// 4..7
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			count1 = _mm_add_epi32(count1, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 16);
			count1 = _mm_add_epi32(count1, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 32);
			count1 = _mm_add_epi32(count1, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 48);
			count1 = _mm_add_epi32(count1, cmpout);
			// 8..11
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			count2 = _mm_add_epi32(count2, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 16);
			count2 = _mm_add_epi32(count2, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 32);
			count2 = _mm_add_epi32(count2, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 48);
			count2 = _mm_add_epi32(count2, cmpout);
			// 12..15
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			count3 = _mm_add_epi32(count3, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 16);
			count3 = _mm_add_epi32(count3, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 32);
			count3 = _mm_add_epi32(count3, cmpout);
			Tnext = _mm_add_epi8(Tnext, dT);
			cmpout = _mm_cmpgt_epi8(pixels, Tnext);
			cmpout = _mm_and_si128(cmpout, onemask);
			cmpout = _mm_sad_epu8(cmpout, onemask);
			cmpout = _mm_slli_epi64(cmpout, 48);
			count3 = _mm_add_epi32(count3, cmpout);
		}
		srcRow += srcImageStrideInBytes;
		// move counts from count0..2 into count[]
		for (int i = 0; i < 4; i++) {
			count[ 0 + i] += M128I(count0).m128i_u16[i] + M128I(count0).m128i_u16[4 + i];
			count[ 4 + i] += M128I(count1).m128i_u16[i] + M128I(count1).m128i_u16[4 + i];
			count[ 8 + i] += M128I(count2).m128i_u16[i] + M128I(count2).m128i_u16[4 + i];
			count[12 + i] += M128I(count3).m128i_u16[i] + M128I(count3).m128i_u16[4 + i];
		}
	}
	// extract histogram from count
	if (distOffset == 0) {
		vx_uint32 last = (distWindow >= 16) ? srcWidth * srcHeight : count[15];
		for (int i = 14; i >= 0; i--) {
			count[i] = last - count[i];
			last -= count[i];
		}
		dstHist[0] = last;
		for (int i = 1; i < 16; i++)
			dstHist[i] = count[i - 1];
	}
	else {
		vx_uint32 last = srcWidth * srcHeight;
		for (int i = 15; i >= 0; i--) {
			count[i] = last - count[i];
			last -= count[i];
			dstHist[i] = count[i];
		}
	}
	return AGO_SUCCESS;
}
}bool validate_utf8_sse(const char *src, size_t len) {
  const char *end = src + len;
  while (src + 16 < end) {
    __m128i chunk = _mm_loadu_si128((const __m128i *)(src));

    int asciiMask = _mm_movemask_epi8(chunk);
    if (!asciiMask) {
      src += 16;
      continue;
    }

    __m128i chunk_signed = _mm_add_epi8(chunk, _mm_set1_epi8(0x80));
    __m128i cond2 =
        _mm_cmplt_epi8(_mm_set1_epi8(0xc2 - 1 - 0x80), chunk_signed);
    __m128i state = _mm_set1_epi8((char)(0x0 | 0x80));
    state = _mm_blendv_epi8(state, _mm_set1_epi8((char)(0x2 | 0xc0)), cond2);

    __m128i cond3 =
        _mm_cmplt_epi8(_mm_set1_epi8(0xe0 - 1 - 0x80), chunk_signed);

    state = _mm_blendv_epi8(state, _mm_set1_epi8((char)(0x3 | 0xe0)), cond3);
    __m128i mask3 = _mm_slli_si128(cond3, 1);

    __m128i cond4 =
        _mm_cmplt_epi8(_mm_set1_epi8(0xf0 - 1 - 0x80), chunk_signed);

    // Fall back to the scalar processing
    if (_mm_movemask_epi8(cond4)) {
      break;
    }

    __m128i count = _mm_and_si128(state, _mm_set1_epi8(0x7));

    __m128i count_sub1 = _mm_subs_epu8(count, _mm_set1_epi8(0x1));

    __m128i counts = _mm_add_epi8(count, _mm_slli_si128(count_sub1, 1));

    __m128i shifts = count_sub1;
    shifts = _mm_add_epi8(shifts, _mm_slli_si128(shifts, 1));
    counts = _mm_add_epi8(
        counts, _mm_slli_si128(_mm_subs_epu8(counts, _mm_set1_epi8(0x2)), 2));
    shifts = _mm_add_epi8(shifts, _mm_slli_si128(shifts, 2));

    if (asciiMask ^ _mm_movemask_epi8(_mm_cmpgt_epi8(counts, _mm_set1_epi8(0))))
      return false; // error
    shifts = _mm_add_epi8(shifts, _mm_slli_si128(shifts, 4));

    if (_mm_movemask_epi8(_mm_cmpgt_epi8(
            _mm_sub_epi8(_mm_slli_si128(counts, 1), counts), _mm_set1_epi8(1))))
      return false; // error

    shifts = _mm_add_epi8(shifts, _mm_slli_si128(shifts, 8));

    __m128i mask = _mm_and_si128(state, _mm_set1_epi8(0xf8));
    shifts =
        _mm_and_si128(shifts, _mm_cmplt_epi8(counts, _mm_set1_epi8(2))); // <=1

    chunk =
        _mm_andnot_si128(mask, chunk); // from now on, we only have usefull bits

    shifts = _mm_blendv_epi8(shifts, _mm_srli_si128(shifts, 1),
                             _mm_srli_si128(_mm_slli_epi16(shifts, 7), 1));

    __m128i chunk_right = _mm_slli_si128(chunk, 1);

    __m128i chunk_low = _mm_blendv_epi8(
        chunk,
        _mm_or_si128(chunk, _mm_and_si128(_mm_slli_epi16(chunk_right, 6),
                                          _mm_set1_epi8(0xc0))),
        _mm_cmpeq_epi8(counts, _mm_set1_epi8(1)));

    __m128i chunk_high =
        _mm_and_si128(chunk, _mm_cmpeq_epi8(counts, _mm_set1_epi8(2)));

    shifts = _mm_blendv_epi8(shifts, _mm_srli_si128(shifts, 2),
                             _mm_srli_si128(_mm_slli_epi16(shifts, 6), 2));
    chunk_high = _mm_srli_epi32(chunk_high, 2);

    shifts = _mm_blendv_epi8(shifts, _mm_srli_si128(shifts, 4),
                             _mm_srli_si128(_mm_slli_epi16(shifts, 5), 4));
    chunk_high = _mm_or_si128(
        chunk_high, _mm_and_si128(_mm_and_si128(_mm_slli_epi32(chunk_right, 4),
                                                _mm_set1_epi8(0xf0)),
                                  mask3));
    int c = _mm_extract_epi16(counts, 7);
    int source_advance = !(c & 0x0200) ? 16 : !(c & 0x02) ? 15 : 14;

    __m128i high_bits = _mm_and_si128(chunk_high, _mm_set1_epi8(0xf8));
    if (!_mm_testz_si128(
            mask3,
            _mm_or_si128(_mm_cmpeq_epi8(high_bits, _mm_set1_epi8(0x00)),
                         _mm_cmpeq_epi8(high_bits, _mm_set1_epi8(0xd8)))))
      return false;

    shifts = _mm_blendv_epi8(shifts, _mm_srli_si128(shifts, 8),
                             _mm_srli_si128(_mm_slli_epi16(shifts, 4), 8));

    chunk_high = _mm_slli_si128(chunk_high, 1);

    __m128i shuf =
        _mm_add_epi8(shifts, _mm_set_epi8(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
                                          4, 3, 2, 1, 0));

    chunk_low = _mm_shuffle_epi8(chunk_low, shuf);
    chunk_high = _mm_shuffle_epi8(chunk_high, shuf);
    __m128i utf16_low = _mm_unpacklo_epi8(chunk_low, chunk_high);
    __m128i utf16_high = _mm_unpackhi_epi8(chunk_low, chunk_high);

    if (_mm_cmpestrc(_mm_cvtsi64_si128(0xfdeffdd0fffffffe), 4, utf16_high, 8,
                     _SIDD_UWORD_OPS | _SIDD_CMP_RANGES) |
        _mm_cmpestrc(_mm_cvtsi64_si128(0xfdeffdd0fffffffe), 4, utf16_low, 8,
                     _SIDD_UWORD_OPS | _SIDD_CMP_RANGES)) {
      return false;
    }

    src += source_advance;
  }
  return validate_utf8(src, end - src);
}
Esempio n. 23
0
static void mb_lpf_horizontal_edge_w_avx2_16(unsigned char *s, int p,
                                             const unsigned char *_blimit,
                                             const unsigned char *_limit,
                                             const unsigned char *_thresh) {
  __m128i mask, hev, flat, flat2;
  const __m128i zero = _mm_set1_epi16(0);
  const __m128i one = _mm_set1_epi8(1);
  __m128i p7, p6, p5;
  __m128i p4, p3, p2, p1, p0, q0, q1, q2, q3, q4;
  __m128i q5, q6, q7;
  __m256i p256_7, q256_7, p256_6, q256_6, p256_5, q256_5, p256_4, q256_4,
      p256_3, q256_3, p256_2, q256_2, p256_1, q256_1, p256_0, q256_0;

  const __m128i thresh =
      _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_thresh[0]));
  const __m128i limit = _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_limit[0]));
  const __m128i blimit =
      _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_blimit[0]));

  p256_4 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 5 * p)));
  p256_3 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 4 * p)));
  p256_2 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 3 * p)));
  p256_1 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 2 * p)));
  p256_0 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 1 * p)));
  q256_0 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 0 * p)));
  q256_1 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 1 * p)));
  q256_2 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 2 * p)));
  q256_3 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 3 * p)));
  q256_4 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 4 * p)));

  p4 = _mm256_castsi256_si128(p256_4);
  p3 = _mm256_castsi256_si128(p256_3);
  p2 = _mm256_castsi256_si128(p256_2);
  p1 = _mm256_castsi256_si128(p256_1);
  p0 = _mm256_castsi256_si128(p256_0);
  q0 = _mm256_castsi256_si128(q256_0);
  q1 = _mm256_castsi256_si128(q256_1);
  q2 = _mm256_castsi256_si128(q256_2);
  q3 = _mm256_castsi256_si128(q256_3);
  q4 = _mm256_castsi256_si128(q256_4);

  {
    const __m128i abs_p1p0 =
        _mm_or_si128(_mm_subs_epu8(p1, p0), _mm_subs_epu8(p0, p1));
    const __m128i abs_q1q0 =
        _mm_or_si128(_mm_subs_epu8(q1, q0), _mm_subs_epu8(q0, q1));
    const __m128i fe = _mm_set1_epi8(0xfe);
    const __m128i ff = _mm_cmpeq_epi8(abs_p1p0, abs_p1p0);
    __m128i abs_p0q0 =
        _mm_or_si128(_mm_subs_epu8(p0, q0), _mm_subs_epu8(q0, p0));
    __m128i abs_p1q1 =
        _mm_or_si128(_mm_subs_epu8(p1, q1), _mm_subs_epu8(q1, p1));
    __m128i work;
    flat = _mm_max_epu8(abs_p1p0, abs_q1q0);
    hev = _mm_subs_epu8(flat, thresh);
    hev = _mm_xor_si128(_mm_cmpeq_epi8(hev, zero), ff);

    abs_p0q0 = _mm_adds_epu8(abs_p0q0, abs_p0q0);
    abs_p1q1 = _mm_srli_epi16(_mm_and_si128(abs_p1q1, fe), 1);
    mask = _mm_subs_epu8(_mm_adds_epu8(abs_p0q0, abs_p1q1), blimit);
    mask = _mm_xor_si128(_mm_cmpeq_epi8(mask, zero), ff);
    // mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2  > blimit) * -1;
    mask = _mm_max_epu8(flat, mask);
    // mask |= (abs(p1 - p0) > limit) * -1;
    // mask |= (abs(q1 - q0) > limit) * -1;
    work = _mm_max_epu8(
        _mm_or_si128(_mm_subs_epu8(p2, p1), _mm_subs_epu8(p1, p2)),
        _mm_or_si128(_mm_subs_epu8(p3, p2), _mm_subs_epu8(p2, p3)));
    mask = _mm_max_epu8(work, mask);
    work = _mm_max_epu8(
        _mm_or_si128(_mm_subs_epu8(q2, q1), _mm_subs_epu8(q1, q2)),
        _mm_or_si128(_mm_subs_epu8(q3, q2), _mm_subs_epu8(q2, q3)));
    mask = _mm_max_epu8(work, mask);
    mask = _mm_subs_epu8(mask, limit);
    mask = _mm_cmpeq_epi8(mask, zero);
  }

  // lp filter
  {
    const __m128i t4 = _mm_set1_epi8(4);
    const __m128i t3 = _mm_set1_epi8(3);
    const __m128i t80 = _mm_set1_epi8(0x80);
    const __m128i te0 = _mm_set1_epi8(0xe0);
    const __m128i t1f = _mm_set1_epi8(0x1f);
    const __m128i t1 = _mm_set1_epi8(0x1);
    const __m128i t7f = _mm_set1_epi8(0x7f);

    __m128i ps1 = _mm_xor_si128(p1, t80);
    __m128i ps0 = _mm_xor_si128(p0, t80);
    __m128i qs0 = _mm_xor_si128(q0, t80);
    __m128i qs1 = _mm_xor_si128(q1, t80);
    __m128i filt;
    __m128i work_a;
    __m128i filter1, filter2;
    __m128i flat2_p6, flat2_p5, flat2_p4, flat2_p3, flat2_p2, flat2_p1,
        flat2_p0, flat2_q0, flat2_q1, flat2_q2, flat2_q3, flat2_q4, flat2_q5,
        flat2_q6, flat_p2, flat_p1, flat_p0, flat_q0, flat_q1, flat_q2;

    filt = _mm_and_si128(_mm_subs_epi8(ps1, qs1), hev);
    work_a = _mm_subs_epi8(qs0, ps0);
    filt = _mm_adds_epi8(filt, work_a);
    filt = _mm_adds_epi8(filt, work_a);
    filt = _mm_adds_epi8(filt, work_a);
    /* (vpx_filter + 3 * (qs0 - ps0)) & mask */
    filt = _mm_and_si128(filt, mask);

    filter1 = _mm_adds_epi8(filt, t4);
    filter2 = _mm_adds_epi8(filt, t3);

    /* Filter1 >> 3 */
    work_a = _mm_cmpgt_epi8(zero, filter1);
    filter1 = _mm_srli_epi16(filter1, 3);
    work_a = _mm_and_si128(work_a, te0);
    filter1 = _mm_and_si128(filter1, t1f);
    filter1 = _mm_or_si128(filter1, work_a);
    qs0 = _mm_xor_si128(_mm_subs_epi8(qs0, filter1), t80);

    /* Filter2 >> 3 */
    work_a = _mm_cmpgt_epi8(zero, filter2);
    filter2 = _mm_srli_epi16(filter2, 3);
    work_a = _mm_and_si128(work_a, te0);
    filter2 = _mm_and_si128(filter2, t1f);
    filter2 = _mm_or_si128(filter2, work_a);
    ps0 = _mm_xor_si128(_mm_adds_epi8(ps0, filter2), t80);

    /* filt >> 1 */
    filt = _mm_adds_epi8(filter1, t1);
    work_a = _mm_cmpgt_epi8(zero, filt);
    filt = _mm_srli_epi16(filt, 1);
    work_a = _mm_and_si128(work_a, t80);
    filt = _mm_and_si128(filt, t7f);
    filt = _mm_or_si128(filt, work_a);
    filt = _mm_andnot_si128(hev, filt);
    ps1 = _mm_xor_si128(_mm_adds_epi8(ps1, filt), t80);
    qs1 = _mm_xor_si128(_mm_subs_epi8(qs1, filt), t80);
    // loopfilter done

    {
      __m128i work;
      work = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p2, p0), _mm_subs_epu8(p0, p2)),
          _mm_or_si128(_mm_subs_epu8(q2, q0), _mm_subs_epu8(q0, q2)));
      flat = _mm_max_epu8(work, flat);
      work = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p3, p0), _mm_subs_epu8(p0, p3)),
          _mm_or_si128(_mm_subs_epu8(q3, q0), _mm_subs_epu8(q0, q3)));
      flat = _mm_max_epu8(work, flat);
      work = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p4, p0), _mm_subs_epu8(p0, p4)),
          _mm_or_si128(_mm_subs_epu8(q4, q0), _mm_subs_epu8(q0, q4)));
      flat = _mm_subs_epu8(flat, one);
      flat = _mm_cmpeq_epi8(flat, zero);
      flat = _mm_and_si128(flat, mask);

      p256_5 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s - 6 * p)));
      q256_5 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s + 5 * p)));
      p5 = _mm256_castsi256_si128(p256_5);
      q5 = _mm256_castsi256_si128(q256_5);
      flat2 = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p5, p0), _mm_subs_epu8(p0, p5)),
          _mm_or_si128(_mm_subs_epu8(q5, q0), _mm_subs_epu8(q0, q5)));

      flat2 = _mm_max_epu8(work, flat2);
      p256_6 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s - 7 * p)));
      q256_6 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s + 6 * p)));
      p6 = _mm256_castsi256_si128(p256_6);
      q6 = _mm256_castsi256_si128(q256_6);
      work = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p6, p0), _mm_subs_epu8(p0, p6)),
          _mm_or_si128(_mm_subs_epu8(q6, q0), _mm_subs_epu8(q0, q6)));

      flat2 = _mm_max_epu8(work, flat2);

      p256_7 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s - 8 * p)));
      q256_7 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s + 7 * p)));
      p7 = _mm256_castsi256_si128(p256_7);
      q7 = _mm256_castsi256_si128(q256_7);
      work = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p7, p0), _mm_subs_epu8(p0, p7)),
          _mm_or_si128(_mm_subs_epu8(q7, q0), _mm_subs_epu8(q0, q7)));

      flat2 = _mm_max_epu8(work, flat2);
      flat2 = _mm_subs_epu8(flat2, one);
      flat2 = _mm_cmpeq_epi8(flat2, zero);
      flat2 = _mm_and_si128(flat2, flat);  // flat2 & flat & mask
    }

    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    // flat and wide flat calculations
    {
      const __m256i eight = _mm256_set1_epi16(8);
      const __m256i four = _mm256_set1_epi16(4);
      __m256i pixelFilter_p, pixelFilter_q, pixetFilter_p2p1p0,
          pixetFilter_q2q1q0, sum_p7, sum_q7, sum_p3, sum_q3, res_p, res_q;

      const __m256i filter =
          _mm256_load_si256((__m256i const *)filt_loopfilter_avx2);
      p256_7 = _mm256_shuffle_epi8(p256_7, filter);
      p256_6 = _mm256_shuffle_epi8(p256_6, filter);
      p256_5 = _mm256_shuffle_epi8(p256_5, filter);
      p256_4 = _mm256_shuffle_epi8(p256_4, filter);
      p256_3 = _mm256_shuffle_epi8(p256_3, filter);
      p256_2 = _mm256_shuffle_epi8(p256_2, filter);
      p256_1 = _mm256_shuffle_epi8(p256_1, filter);
      p256_0 = _mm256_shuffle_epi8(p256_0, filter);
      q256_0 = _mm256_shuffle_epi8(q256_0, filter);
      q256_1 = _mm256_shuffle_epi8(q256_1, filter);
      q256_2 = _mm256_shuffle_epi8(q256_2, filter);
      q256_3 = _mm256_shuffle_epi8(q256_3, filter);
      q256_4 = _mm256_shuffle_epi8(q256_4, filter);
      q256_5 = _mm256_shuffle_epi8(q256_5, filter);
      q256_6 = _mm256_shuffle_epi8(q256_6, filter);
      q256_7 = _mm256_shuffle_epi8(q256_7, filter);

      pixelFilter_p = _mm256_add_epi16(_mm256_add_epi16(p256_6, p256_5),
                                       _mm256_add_epi16(p256_4, p256_3));
      pixelFilter_q = _mm256_add_epi16(_mm256_add_epi16(q256_6, q256_5),
                                       _mm256_add_epi16(q256_4, q256_3));

      pixetFilter_p2p1p0 =
          _mm256_add_epi16(p256_0, _mm256_add_epi16(p256_2, p256_1));
      pixelFilter_p = _mm256_add_epi16(pixelFilter_p, pixetFilter_p2p1p0);

      pixetFilter_q2q1q0 =
          _mm256_add_epi16(q256_0, _mm256_add_epi16(q256_2, q256_1));
      pixelFilter_q = _mm256_add_epi16(pixelFilter_q, pixetFilter_q2q1q0);

      pixelFilter_p = _mm256_add_epi16(
          eight, _mm256_add_epi16(pixelFilter_p, pixelFilter_q));

      pixetFilter_p2p1p0 = _mm256_add_epi16(
          four, _mm256_add_epi16(pixetFilter_p2p1p0, pixetFilter_q2q1q0));

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(p256_7, p256_0)), 4);

      flat2_p0 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(q256_7, q256_0)), 4);

      flat2_q0 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      res_p =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0,
                                             _mm256_add_epi16(p256_3, p256_0)),
                            3);

      flat_p0 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0,
                                             _mm256_add_epi16(q256_3, q256_0)),
                            3);

      flat_q0 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(p256_7, p256_7);

      sum_q7 = _mm256_add_epi16(q256_7, q256_7);

      sum_p3 = _mm256_add_epi16(p256_3, p256_3);

      sum_q3 = _mm256_add_epi16(q256_3, q256_3);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_p, p256_6);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_6);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_1)), 4);

      flat2_p1 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_1)), 4);

      flat2_q1 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      pixetFilter_q2q1q0 = _mm256_sub_epi16(pixetFilter_p2p1p0, p256_2);

      pixetFilter_p2p1p0 = _mm256_sub_epi16(pixetFilter_p2p1p0, q256_2);

      res_p =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0,
                                             _mm256_add_epi16(sum_p3, p256_1)),
                            3);

      flat_p1 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_q2q1q0,
                                             _mm256_add_epi16(sum_q3, q256_1)),
                            3);

      flat_q1 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(sum_p7, p256_7);

      sum_q7 = _mm256_add_epi16(sum_q7, q256_7);

      sum_p3 = _mm256_add_epi16(sum_p3, p256_3);

      sum_q3 = _mm256_add_epi16(sum_q3, q256_3);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_5);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_5);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_2)), 4);

      flat2_p2 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_2)), 4);

      flat2_q2 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      pixetFilter_p2p1p0 = _mm256_sub_epi16(pixetFilter_p2p1p0, q256_1);

      pixetFilter_q2q1q0 = _mm256_sub_epi16(pixetFilter_q2q1q0, p256_1);

      res_p =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0,
                                             _mm256_add_epi16(sum_p3, p256_2)),
                            3);

      flat_p2 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_q2q1q0,
                                             _mm256_add_epi16(sum_q3, q256_2)),
                            3);

      flat_q2 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(sum_p7, p256_7);

      sum_q7 = _mm256_add_epi16(sum_q7, q256_7);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_4);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_4);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_3)), 4);

      flat2_p3 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_3)), 4);

      flat2_q3 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(sum_p7, p256_7);

      sum_q7 = _mm256_add_epi16(sum_q7, q256_7);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_3);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_3);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_4)), 4);

      flat2_p4 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_4)), 4);

      flat2_q4 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(sum_p7, p256_7);

      sum_q7 = _mm256_add_epi16(sum_q7, q256_7);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_2);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_2);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_5)), 4);

      flat2_p5 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_5)), 4);

      flat2_q5 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(sum_p7, p256_7);

      sum_q7 = _mm256_add_epi16(sum_q7, q256_7);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_1);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_1);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_6)), 4);

      flat2_p6 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_6)), 4);

      flat2_q6 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));
    }

    // wide flat
    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    p2 = _mm_andnot_si128(flat, p2);
    flat_p2 = _mm_and_si128(flat, flat_p2);
    p2 = _mm_or_si128(flat_p2, p2);

    p1 = _mm_andnot_si128(flat, ps1);
    flat_p1 = _mm_and_si128(flat, flat_p1);
    p1 = _mm_or_si128(flat_p1, p1);

    p0 = _mm_andnot_si128(flat, ps0);
    flat_p0 = _mm_and_si128(flat, flat_p0);
    p0 = _mm_or_si128(flat_p0, p0);

    q0 = _mm_andnot_si128(flat, qs0);
    flat_q0 = _mm_and_si128(flat, flat_q0);
    q0 = _mm_or_si128(flat_q0, q0);

    q1 = _mm_andnot_si128(flat, qs1);
    flat_q1 = _mm_and_si128(flat, flat_q1);
    q1 = _mm_or_si128(flat_q1, q1);

    q2 = _mm_andnot_si128(flat, q2);
    flat_q2 = _mm_and_si128(flat, flat_q2);
    q2 = _mm_or_si128(flat_q2, q2);

    p6 = _mm_andnot_si128(flat2, p6);
    flat2_p6 = _mm_and_si128(flat2, flat2_p6);
    p6 = _mm_or_si128(flat2_p6, p6);
    _mm_storeu_si128((__m128i *)(s - 7 * p), p6);

    p5 = _mm_andnot_si128(flat2, p5);
    flat2_p5 = _mm_and_si128(flat2, flat2_p5);
    p5 = _mm_or_si128(flat2_p5, p5);
    _mm_storeu_si128((__m128i *)(s - 6 * p), p5);

    p4 = _mm_andnot_si128(flat2, p4);
    flat2_p4 = _mm_and_si128(flat2, flat2_p4);
    p4 = _mm_or_si128(flat2_p4, p4);
    _mm_storeu_si128((__m128i *)(s - 5 * p), p4);

    p3 = _mm_andnot_si128(flat2, p3);
    flat2_p3 = _mm_and_si128(flat2, flat2_p3);
    p3 = _mm_or_si128(flat2_p3, p3);
    _mm_storeu_si128((__m128i *)(s - 4 * p), p3);

    p2 = _mm_andnot_si128(flat2, p2);
    flat2_p2 = _mm_and_si128(flat2, flat2_p2);
    p2 = _mm_or_si128(flat2_p2, p2);
    _mm_storeu_si128((__m128i *)(s - 3 * p), p2);

    p1 = _mm_andnot_si128(flat2, p1);
    flat2_p1 = _mm_and_si128(flat2, flat2_p1);
    p1 = _mm_or_si128(flat2_p1, p1);
    _mm_storeu_si128((__m128i *)(s - 2 * p), p1);

    p0 = _mm_andnot_si128(flat2, p0);
    flat2_p0 = _mm_and_si128(flat2, flat2_p0);
    p0 = _mm_or_si128(flat2_p0, p0);
    _mm_storeu_si128((__m128i *)(s - 1 * p), p0);

    q0 = _mm_andnot_si128(flat2, q0);
    flat2_q0 = _mm_and_si128(flat2, flat2_q0);
    q0 = _mm_or_si128(flat2_q0, q0);
    _mm_storeu_si128((__m128i *)(s - 0 * p), q0);

    q1 = _mm_andnot_si128(flat2, q1);
    flat2_q1 = _mm_and_si128(flat2, flat2_q1);
    q1 = _mm_or_si128(flat2_q1, q1);
    _mm_storeu_si128((__m128i *)(s + 1 * p), q1);

    q2 = _mm_andnot_si128(flat2, q2);
    flat2_q2 = _mm_and_si128(flat2, flat2_q2);
    q2 = _mm_or_si128(flat2_q2, q2);
    _mm_storeu_si128((__m128i *)(s + 2 * p), q2);

    q3 = _mm_andnot_si128(flat2, q3);
    flat2_q3 = _mm_and_si128(flat2, flat2_q3);
    q3 = _mm_or_si128(flat2_q3, q3);
    _mm_storeu_si128((__m128i *)(s + 3 * p), q3);

    q4 = _mm_andnot_si128(flat2, q4);
    flat2_q4 = _mm_and_si128(flat2, flat2_q4);
    q4 = _mm_or_si128(flat2_q4, q4);
    _mm_storeu_si128((__m128i *)(s + 4 * p), q4);

    q5 = _mm_andnot_si128(flat2, q5);
    flat2_q5 = _mm_and_si128(flat2, flat2_q5);
    q5 = _mm_or_si128(flat2_q5, q5);
    _mm_storeu_si128((__m128i *)(s + 5 * p), q5);

    q6 = _mm_andnot_si128(flat2, q6);
    flat2_q6 = _mm_and_si128(flat2, flat2_q6);
    q6 = _mm_or_si128(flat2_q6, q6);
    _mm_storeu_si128((__m128i *)(s + 6 * p), q6);
  }
}