Esempio n. 1
0
int main()
{
    long iter;
    flint_rand_t state;

    printf("exp....");
    fflush(stdout);

    flint_randinit(state);

    /* check exp(a+b) = exp(a)*exp(b) */
    for (iter = 0; iter < 10000; iter++)
    {
        acb_t a, b, c, d, e;
        long prec;

        acb_init(a);
        acb_init(b);
        acb_init(c);
        acb_init(d);
        acb_init(e);

        acb_randtest(a, state, 1 + n_randint(state, 200), 3);
        acb_randtest(b, state, 1 + n_randint(state, 200), 3);
        acb_randtest(c, state, 1 + n_randint(state, 200), 3);

        prec = 2 + n_randint(state, 200);

        acb_add(c, a, b, prec);
        acb_exp(c, c, prec);

        acb_exp(d, a, prec);
        acb_exp(e, b, prec);
        acb_mul(d, d, e, prec);

        if (!acb_overlaps(c, d))
        {
            printf("FAIL: overlap\n\n");
            printf("a = "); acb_print(a); printf("\n\n");
            printf("b = "); acb_print(b); printf("\n\n");
            printf("c = "); acb_print(c); printf("\n\n");
            printf("d = "); acb_print(d); printf("\n\n");
            abort();
        }

        acb_clear(a);
        acb_clear(b);
        acb_clear(c);
        acb_clear(d);
        acb_clear(e);
    }

    flint_randclear(state);
    flint_cleanup();
    printf("PASS\n");
    return EXIT_SUCCESS;
}
Esempio n. 2
0
File: cot.c Progetto: isuruf/arb
void
acb_cot(acb_t r, const acb_t z, slong prec)
{
    if (arb_is_zero(acb_imagref(z)))
    {
        arb_cot(acb_realref(r), acb_realref(z), prec);
        arb_zero(acb_imagref(r));
    }
    else if (arb_is_zero(acb_realref(z)))
    {
        arb_coth(acb_imagref(r), acb_imagref(z), prec);
        arb_neg(acb_imagref(r), acb_imagref(r));
        arb_zero(acb_realref(r));
    }
    else
    {
        acb_t t;
        acb_init(t);

        if (arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 0) < 0)
        {
            acb_sin_cos(r, t, z, prec + 4);
            acb_div(r, t, r, prec);
        }
        else
        {
            acb_mul_2exp_si(t, z, 1);

            if (arf_sgn(arb_midref(acb_imagref(z))) > 0)
            {
                acb_mul_onei(t, t);
                acb_exp(t, t, prec + 4);
                acb_sub_ui(r, t, 1, prec + 4);
                acb_div(r, t, r, prec + 4);
                acb_mul_2exp_si(r, r, 1);
                acb_sub_ui(r, r, 1, prec);
                acb_mul_onei(r, r);
            }
            else
            {
                acb_div_onei(t, t);
                acb_exp(t, t, prec + 4);
                acb_sub_ui(r, t, 1, prec + 4);
                acb_div(r, t, r, prec + 4);
                acb_mul_2exp_si(r, r, 1);
                acb_sub_ui(r, r, 1, prec);
                acb_div_onei(r, r);
            }
        }

        acb_clear(t);
    }
}
Esempio n. 3
0
/* f(z) = erf(z/sqrt(0.0002)*0.5 +1.5)*exp(-z), example provided by Silviu-Ioan Filip */
int
f_erf_bent(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    acb_t t;

    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    acb_init(t);

    acb_set_ui(t, 1250);
    acb_sqrt(t, t, prec);
    acb_mul(t, t, z, prec);
    acb_set_d(res, 1.5);
    acb_add(res, res, t, prec);
    acb_hypgeom_erf(res, res, prec);

    acb_neg(t, z);
    acb_exp(t, t, prec);
    acb_mul(res, res, t, prec);

    acb_clear(t);

    return 0;
}
Esempio n. 4
0
/* REAL: erf(x) = 2x/sqrt(pi) * exp(-x^2) 1F1(1, 3/2, x^2) */
void
acb_hypgeom_erf_1f1b(acb_t res, const acb_t z, slong prec)
{
    acb_t a, b, t, w;

    acb_init(a);
    acb_init(b);
    acb_init(t);
    acb_init(w);

    acb_set_ui(b, 3);
    acb_mul_2exp_si(b, b, -1);

    acb_mul(w, z, z, prec);

    acb_hypgeom_pfq_direct(t, a, 0, b, 1, w, -1, prec);

    acb_neg(w, w);
    acb_exp(w, w, prec);
    acb_mul(t, t, w, prec);

    acb_mul(t, t, z, prec);
    arb_const_sqrt_pi(acb_realref(w), prec);
    acb_div_arb(t, t, acb_realref(w), prec);

    acb_mul_2exp_si(res, t, 1);

    acb_clear(a);
    acb_clear(b);
    acb_clear(t);
    acb_clear(w);
}
Esempio n. 5
0
int
f_monster(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    acb_t t;

    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    acb_init(t);

    acb_exp(t, z, prec);
    acb_real_floor(res, t, order != 0, prec);

    if (acb_is_finite(res))
    {
        acb_sub(res, t, res, prec);
        acb_add(t, t, z, prec);
        acb_sin(t, t, prec);
        acb_mul(res, res, t, prec);
    }

    acb_clear(t);

    return 0;
}
Esempio n. 6
0
/* f(z) = |z^4 + 10z^3 + 19z^2 - 6z - 6| exp(z)   (for real z) --
   Helfgott's integral on MathOverflow */
int
f_helfgott(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    acb_add_si(res, z, 10, prec);
    acb_mul(res, res, z, prec);
    acb_add_si(res, res, 19, prec);
    acb_mul(res, res, z, prec);
    acb_add_si(res, res, -6, prec);
    acb_mul(res, res, z, prec);
    acb_add_si(res, res, -6, prec);

    acb_real_abs(res, res, order != 0, prec);

    if (acb_is_finite(res))
    {
        acb_t t;
        acb_init(t);
        acb_exp(t, z, prec);
        acb_mul(res, res, t, prec);
        acb_clear(t);
    }

    return 0;
}
Esempio n. 7
0
/* todo: remove radii */
void
acb_lambertw_halley_step(acb_t res, acb_t ew, const acb_t z, const acb_t w, slong prec)
{
    acb_t t, u, v;

    acb_init(t);
    acb_init(u);
    acb_init(v);

    acb_exp(ew, w, prec);
    acb_add_ui(u, w, 2, prec);
    acb_add_ui(v, w, 1, prec);
    acb_mul_2exp_si(v, v, 1);
    acb_div(v, u, v, prec);
    acb_mul(t, ew, w, prec);
    acb_sub(u, t, z, prec);
    acb_mul(v, v, u, prec);
    acb_neg(v, v);
    acb_add(v, v, t, prec);
    acb_add(v, v, ew, prec);
    acb_div(t, u, v, prec);

    acb_sub(t, w, t, prec);

    acb_swap(res, t);

    acb_clear(t);
    acb_clear(u);
    acb_clear(v);
}
Esempio n. 8
0
static void
_acb_gamma(acb_t y, const acb_t x, long prec, int inverse)
{
    int reflect;
    long r, n, wp;
    acb_t t, u, v;

    wp = prec + FLINT_BIT_COUNT(prec);

    acb_gamma_stirling_choose_param(&reflect, &r, &n, x, 1, 0, wp);

    acb_init(t);
    acb_init(u);
    acb_init(v);

    if (reflect)
    {
        /* gamma(x) = (rf(1-x, r) * pi) / (gamma(1-x+r) sin(pi x)) */
        acb_sub_ui(t, x, 1, wp);
        acb_neg(t, t);
        acb_rising_ui_rec(u, t, r, wp);
        arb_const_pi(acb_realref(v), wp);
        acb_mul_arb(u, u, acb_realref(v), wp);
        acb_add_ui(t, t, r, wp);
        acb_gamma_stirling_eval(v, t, n, 0, wp);
        acb_exp(v, v, wp);
        acb_sin_pi(t, x, wp);
        acb_mul(v, v, t, wp);
    }
    else
    {
        /* gamma(x) = gamma(x+r) / rf(x,r) */
        acb_add_ui(t, x, r, wp);
        acb_gamma_stirling_eval(u, t, n, 0, wp);
        acb_exp(u, u, prec);
        acb_rising_ui_rec(v, x, r, wp);
    }

    if (inverse)
        acb_div(y, v, u, prec);
    else
        acb_div(y, u, v, prec);

    acb_clear(t);
    acb_clear(u);
    acb_clear(v);
}
Esempio n. 9
0
File: m.c Progetto: argriffing/arb
void
acb_hypgeom_m_asymp(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec)
{
    acb_t t, u, v, c;

    acb_init(t);
    acb_init(u);
    acb_init(v);
    acb_init(c);

    acb_sub(c, b, a, prec);
    acb_neg(v, z);

    acb_hypgeom_u_asymp(t, a, b, z, -1, prec);
    acb_hypgeom_u_asymp(u, c, b, v, -1, prec);

    /* gamma(b-a) */
    acb_rgamma(v, c, prec);
    acb_mul(t, t, v, prec);

    /* z^(a-b) */
    acb_neg(c, c);
    acb_pow(v, z, c, prec);
    acb_mul(u, u, v, prec);

    /* gamma(a) */
    acb_rgamma(v, a, prec);
    acb_mul(u, u, v, prec);

    /* exp(z) */
    acb_exp(v, z, prec);
    acb_mul(u, u, v, prec);

    /* (-z)^(-a) */
    acb_neg(c, a);
    acb_neg(v, z);
    acb_pow(v, v, c, prec);
    acb_mul(t, t, v, prec);

    acb_add(t, t, u, prec);

    if (!regularized)
    {
        acb_gamma(v, b, prec);
        acb_mul(t, t, v, prec);
    }

    if (acb_is_real(a) && acb_is_real(b) && acb_is_real(z))
    {
        arb_zero(acb_imagref(t));
    }

    acb_swap(res, t);

    acb_clear(t);
    acb_clear(u);
    acb_clear(v);
    acb_clear(c);
}
Esempio n. 10
0
/* f(z) = exp(z) */
int
f_exp(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    acb_exp(res, z, prec);

    return 0;
}
Esempio n. 11
0
void
_acb_pow_arb_exp(acb_t z, const acb_t x, const arb_t y, long prec)
{
    acb_t t;
    acb_init(t);
    acb_log(t, x, prec);
    acb_mul_arb(t, t, y, prec);
    acb_exp(z, t, prec);
    acb_clear(t);
}
Esempio n. 12
0
/* f(z) = exp(-z^2+iz) */
int
f_gaussian_twist(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    acb_mul_onei(res, z);
    acb_submul(res, z, z, prec);
    acb_exp(res, res, prec);

    return 0;
}
Esempio n. 13
0
File: erf.c Progetto: isuruf/arb
void
acb_hypgeom_erf_asymp(acb_t res, const acb_t z, slong prec, slong prec2)
{
    acb_t a, t, u;

    acb_init(a);
    acb_init(t);
    acb_init(u);

    acb_one(a);
    acb_mul_2exp_si(a, a, -1);
    acb_mul(t, z, z, prec2);

    acb_hypgeom_u_asymp(u, a, a, t, -1, prec2);

    acb_neg(t, t);
    acb_exp(t, t, prec2);
    acb_mul(u, u, t, prec2);

    acb_const_pi(t, prec2);
    acb_sqrt(t, t, prec2);
    acb_mul(t, t, z, prec2);

    acb_div(u, u, t, prec2);

    /* branch cut term: -1 or 1 */
    if (arb_contains_zero(acb_realref(z)))
    {
        arb_zero(acb_imagref(t));
        arf_zero(arb_midref(acb_realref(t)));
        mag_one(arb_radref(acb_realref(t)));
    }
    else
    {
        acb_set_si(t, arf_sgn(arb_midref(acb_realref(z))));
    }

    acb_sub(t, t, u, prec);

    if (arb_is_zero(acb_imagref(z)))
        arb_zero(acb_imagref(t));
    else if (arb_is_zero(acb_realref(z)))
        arb_zero(acb_realref(t));

    acb_set(res, t);

    acb_clear(a);
    acb_clear(t);
    acb_clear(u);
}
Esempio n. 14
0
/* f(z) = exp(-z) Ai(-z) */
int
f_exp_airy(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    acb_t t;

    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    acb_init(t);
    acb_neg(t, z);
    acb_hypgeom_airy(res, NULL, NULL, NULL, t, prec);
    acb_exp(t, t, prec);
    acb_mul(res, res, t, prec);
    acb_clear(t);

    return 0;
}
Esempio n. 15
0
/* f(z) = exp(-z) z^1000 */
int
f_factorial1000(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    acb_t t;

    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    acb_init(t);
    acb_pow_ui(t, z, 1000, prec);
    acb_neg(res, z);
    acb_exp(res, res, prec);
    acb_mul(res, res, t, prec);
    acb_clear(t);

    return 0;
}
Esempio n. 16
0
/* f(z) = sin(z) + exp(-200-z^2) */
int
f_sin_plus_small(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    acb_t t;

    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    acb_init(t);
    acb_mul(t, z, z, prec);
    acb_add_ui(t, t, 200, prec);
    acb_neg(t, t);
    acb_exp(t, t, prec);
    acb_sin(res, z, prec);
    acb_add(res, res, t, prec);
    acb_clear(t);

    return 0;
}
Esempio n. 17
0
/* f(z) = z exp(-z) / (1 + exp(-z)) */
int
f_log_div1p_transformed(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    acb_t t;

    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    acb_init(t);
    acb_neg(t, z);
    acb_exp(t, t, prec);
    acb_add_ui(res, t, 1, prec);
    acb_div(res, t, res, prec);
    acb_mul(res, res, z, prec);

    acb_clear(t);

    return 0;
}
Esempio n. 18
0
void
acb_hypgeom_m_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, long prec)
{
    acb_t t;

    if (regularized)
    {
        acb_init(t);
        acb_rgamma(t, b, prec);
    }

    if (arf_sgn(arb_midref(acb_realref(z))) >= 0
        || (acb_is_int(a) && arb_is_nonpositive(acb_realref(a))))
    {
        _acb_hypgeom_m_1f1(res, a, b, z, prec);
    }
    else
    {
        /* Kummer's transformation */
        acb_t u, v;
        acb_init(u);
        acb_init(v);

        acb_sub(u, b, a, prec);
        acb_neg(v, z);

        _acb_hypgeom_m_1f1(u, u, b, v, prec);
        acb_exp(v, z, prec);
        acb_mul(res, u, v, prec);

        acb_clear(u);
        acb_clear(v);
    }

    if (regularized)
    {
        acb_mul(res, res, t, prec);
        acb_clear(t);
    }
}
Esempio n. 19
0
void
acb_hypgeom_bessel_k_asymp(acb_t res, const acb_t nu, const acb_t z, slong prec)
{
    acb_t t, a, b, w;

    acb_init(t);
    acb_init(a);
    acb_init(b);
    acb_init(w);

    acb_one(a);
    acb_mul_2exp_si(a, a, -1);
    acb_add(a, a, nu, prec);

    acb_mul_2exp_si(b, nu, 1);
    acb_add_ui(b, b, 1, prec);

    acb_mul_2exp_si(w, z, 1);

    acb_hypgeom_u_asymp(t, a, b, w, -1, prec);

    acb_neg(w, z);
    acb_exp(w, w, prec);    
    acb_mul(t, t, w, prec);

    acb_mul_2exp_si(w, z, 1);
    acb_rsqrt(w, w, prec);
    acb_mul(res, t, w, prec);

    arb_const_sqrt_pi(acb_realref(w), prec);
    acb_mul_arb(res, res, acb_realref(w), prec);

    acb_clear(t);
    acb_clear(a);
    acb_clear(b);
    acb_clear(w);
}
Esempio n. 20
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("gamma_lower....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 2000 * arb_test_multiplier(); iter++)
    {
        acb_t a0, a1, b, z, w0, w1, t, u, enz;
        slong prec0, prec1;
        int regularized;

        acb_init(a0);
        acb_init(a1);
        acb_init(b);
        acb_init(z);
        acb_init(w0);
        acb_init(w1);
        acb_init(t);
        acb_init(u);
        acb_init(enz);

        regularized = n_randint(state, 3);

        prec0 = 2 + n_randint(state, 1000);
        prec1 = 2 + n_randint(state, 1000);

        acb_randtest_param(a0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
        acb_randtest(z, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
        acb_randtest(w0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
        acb_randtest(w1, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));

        acb_add_ui(a1, a0, 1, prec0);

        acb_hypgeom_gamma_lower(w0, a0, z, regularized, prec0);
        acb_hypgeom_gamma_lower(w1, a1, z, regularized, prec1);

        acb_neg(enz, z);
        acb_exp(enz, enz, prec0);

        /* recurrence relations */
        if (regularized == 2)
        {
            /* gamma^{*}(a,z) - exp(-z)/Gamma(a+1) - z gamma^{*}(a+1,z) = 0 */
            /* http://dlmf.nist.gov/8.8.E4 */
            acb_set(t, w0);
            acb_rgamma(u, a1, prec0);
            acb_submul(t, enz, u, prec0);
            acb_submul(t, z, w1, prec0);
        }
        else if (regularized == 1)
        {
            /* P(a,z) - exp(-z) z^a / Gamma(a+1) - P(a+1,z) = 0 */
            /* http://dlmf.nist.gov/8.8.E5 */
            acb_pow(u, z, a0, prec0);
            acb_rgamma(b, a1, prec0);
            acb_mul(u, u, b, prec0);
            acb_sub(t, w0, w1, prec0);
            acb_submul(t, enz, u, prec0);
        }
        else
        {
            /* a gamma(a,z) - exp(-z) z^a - gamma(a+1,z) = 0 */
            /* http://dlmf.nist.gov/8.8.E1 */
            acb_pow(u, z, a0, prec0);
            acb_mul(t, a0, w0, prec0);
            acb_submul(t, enz, u, prec0);
            acb_sub(t, t, w1, prec0);
        }

        if (!acb_contains_zero(t))
        {
            flint_printf("FAIL: recurrence relation\n\n");
            flint_printf("regularized = %d\n\n", regularized);
            flint_printf("a0 = "); acb_printd(a0, 30); flint_printf("\n\n");
            flint_printf("z = ");  acb_printd(z, 30); flint_printf("\n\n");
            flint_printf("w0 = "); acb_printd(w0, 30); flint_printf("\n\n");
            flint_printf("w1 = "); acb_printd(w1, 30); flint_printf("\n\n");
            flint_printf("t = "); acb_printd(t, 30); flint_printf("\n\n");
            abort();
        }

        /* identities relating lower and upper incomplete gamma functions */
        if (regularized == 0 || regularized == 1)
        {
            acb_t u0;
            acb_init(u0);
            acb_hypgeom_gamma_upper(u0, a0, z, regularized, prec0);

            acb_zero(t);

            if (regularized == 1)
            {
                /* P(s,z) + Q(s,z) - 1 = 0 */
                /* http://dlmf.nist.gov/8.2.E5 */
                acb_add(t, w0, u0, prec0);
                acb_sub_ui(t, t, 1, prec0);
            }
            else
            {
                /* gamma(s,z) + Gamma(s,z) - Gamma(s) = 0 */
                /* excludes non-positive integer values of s */
                /* http://dlmf.nist.gov/8.2.E3 */
                if (!acb_is_int(a0) || arb_is_positive(acb_realref(a0)))
                {
                    acb_gamma(b, a0, prec0);
                    acb_add(t, w0, u0, prec0);
                    acb_sub(t, t, b, prec0);
                }
            }

            if (!acb_contains_zero(t))
            {
                flint_printf("FAIL: lower plus upper\n\n");
                flint_printf("regularized = %d\n\n", regularized);
                flint_printf("a0 = "); acb_printd(a0, 30); flint_printf("\n\n");
                flint_printf("z = ");  acb_printd(z, 30); flint_printf("\n\n");
                flint_printf("w0 = "); acb_printd(w0, 30); flint_printf("\n\n");
                flint_printf("w1 = "); acb_printd(w1, 30); flint_printf("\n\n");
                flint_printf("t = "); acb_printd(t, 30); flint_printf("\n\n");
                abort();
            }

            acb_clear(u0);
        }

        acb_clear(a0);
        acb_clear(a1);
        acb_clear(b);
        acb_clear(z);
        acb_clear(w0);
        acb_clear(w1);
        acb_clear(t);
        acb_clear(u);
        acb_clear(enz);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Esempio n. 21
0
File: chi.c Progetto: isuruf/arb
void
acb_hypgeom_chi_asymp(acb_t res, const acb_t z, slong prec)
{
    acb_t t, u, v, one;

    acb_init(t);
    acb_init(u);
    acb_init(v);
    acb_init(one);

    acb_one(one);

    /* u = U(1,1,z) */
    acb_hypgeom_u_asymp(u, one, one, z, -1, prec);
    /* v = e^(-z) */
    acb_neg(v, z);
    acb_exp(v, v, prec);
    acb_mul(t, u, v, prec);

    if (arb_is_zero(acb_realref(z)))
    {
        arb_div(acb_realref(t), acb_imagref(t), acb_imagref(z), prec);
        arb_zero(acb_imagref(t));
        acb_neg(t, t);
    }
    else
    {
        /* u = U(1,1,-z) */
        acb_neg(u, z);
        acb_hypgeom_u_asymp(u, one, one, u, -1, prec);
        acb_inv(v, v, prec);
        acb_submul(t, u, v, prec);

        acb_div(t, t, z, prec);
        acb_mul_2exp_si(t, t, -1);
        acb_neg(t, t);
    }

    if (acb_is_real(z))
    {
        if (arb_is_positive(acb_realref(z)))
        {
            arb_zero(acb_imagref(t));
        }
        else if (arb_is_negative(acb_realref(z)))
        {
            arb_const_pi(acb_imagref(t), prec);
        }
        else
        {
            /* add [-pi,pi]/2 i */
            acb_const_pi(u, prec);
            arb_zero(acb_imagref(t));
            arb_add_error(acb_imagref(t), acb_realref(u));
        }
    }
    else
    {
        /* -pi/2 if positive real or in lower half plane
           pi/2 if negative real or in upper half plane */
        if (arb_is_negative(acb_imagref(z)))
        {
            acb_const_pi(u, prec);
            acb_mul_2exp_si(u, u, -1);
            arb_sub(acb_imagref(t), acb_imagref(t), acb_realref(u), prec);
        }
        else if (arb_is_positive(acb_imagref(z)))
        {
            acb_const_pi(u, prec);
            acb_mul_2exp_si(u, u, -1);
            arb_add(acb_imagref(t), acb_imagref(t), acb_realref(u), prec);
        }
        else
        {
            /* add [-pi,pi]/2 i */
            acb_const_pi(u, prec);
            acb_mul_2exp_si(u, u, -1);
            arb_add_error(acb_imagref(t), acb_realref(u));
        }
    }

    acb_swap(res, t);

    acb_clear(t);
    acb_clear(u);
    acb_clear(v);
    acb_clear(one);
}
Esempio n. 22
0
int main(int argc, char *argv[])
{
    acb_t s, t, a, b;
    mag_t tol;
    slong prec, goal;
    slong N;
    ulong k;
    int integral, ifrom, ito;
    int i, twice, havegoal, havetol;
    acb_calc_integrate_opt_t options;

    ifrom = ito = -1;

    for (i = 1; i < argc; i++)
    {
        if (!strcmp(argv[i], "-i"))
        {
            if (!strcmp(argv[i+1], "all"))
            {
                ifrom = 0;
                ito = NUM_INTEGRALS - 1;
            }
            else
            {
                ifrom = ito = atol(argv[i+1]);
                if (ito < 0 || ito >= NUM_INTEGRALS)
                    flint_abort();
            }
        }
    }

    if (ifrom == -1)
    {
        flint_printf("Compute integrals using acb_calc_integrate.\n");
        flint_printf("Usage: integrals -i n [-prec p] [-tol eps] [-twice] [...]\n\n");
        flint_printf("-i n       - compute integral n (0 <= n <= %d), or \"-i all\"\n", NUM_INTEGRALS - 1);
        flint_printf("-prec p    - precision in bits (default p = 64)\n");
        flint_printf("-goal p    - approximate relative accuracy goal (default p)\n");
        flint_printf("-tol eps   - approximate absolute error goal (default 2^-p)\n");
        flint_printf("-twice     - run twice (to see overhead of computing nodes)\n");
        flint_printf("-heap      - use heap for subinterval queue\n");
        flint_printf("-verbose   - show information\n");
        flint_printf("-verbose2  - show more information\n");
        flint_printf("-deg n     - use quadrature degree up to n\n");
        flint_printf("-eval n    - limit number of function evaluations to n\n");
        flint_printf("-depth n   - limit subinterval queue size to n\n\n");
        flint_printf("Implemented integrals:\n");
        for (integral = 0; integral < NUM_INTEGRALS; integral++)
            flint_printf("I%d = %s\n", integral, descr[integral]);
        flint_printf("\n");
        return 1;
    }

    acb_calc_integrate_opt_init(options);

    prec = 64;
    twice = 0;
    goal = 0;
    havetol = havegoal = 0;

    acb_init(a);
    acb_init(b);
    acb_init(s);
    acb_init(t);
    mag_init(tol);

    for (i = 1; i < argc; i++)
    {
        if (!strcmp(argv[i], "-prec"))
        {
            prec = atol(argv[i+1]);
        }
        else if (!strcmp(argv[i], "-twice"))
        {
            twice = 1;
        }
        else if (!strcmp(argv[i], "-goal"))
        {
            goal = atol(argv[i+1]);
            if (goal < 0)
            {
                flint_printf("expected goal >= 0\n");
                return 1;
            }
            havegoal = 1;
        }
        else if (!strcmp(argv[i], "-tol"))
        {
            arb_t x;
            arb_init(x);
            arb_set_str(x, argv[i+1], 10);
            arb_get_mag(tol, x);
            arb_clear(x);
            havetol = 1;
        }
        else if (!strcmp(argv[i], "-deg"))
        {
            options->deg_limit = atol(argv[i+1]);
        }
        else if (!strcmp(argv[i], "-eval"))
        {
            options->eval_limit = atol(argv[i+1]);
        }
        else if (!strcmp(argv[i], "-depth"))
        {
            options->depth_limit = atol(argv[i+1]);
        }
        else if (!strcmp(argv[i], "-verbose"))
        {
            options->verbose = 1;
        }
        else if (!strcmp(argv[i], "-verbose2"))
        {
            options->verbose = 2;
        }
        else if (!strcmp(argv[i], "-heap"))
        {
            options->use_heap = 1;
        }
    }

    if (!havegoal)
        goal = prec;

    if (!havetol)
        mag_set_ui_2exp_si(tol, 1, -prec);

    for (integral = ifrom; integral <= ito; integral++)
    {
        flint_printf("I%d = %s ...\n", integral, descr[integral]);

        for (i = 0; i < 1 + twice; i++)
        {
            TIMEIT_ONCE_START
            switch (integral)
            {
            case 0:
                acb_set_d(a, 0);
                acb_set_d(b, 100);
                acb_calc_integrate(s, f_sin, NULL, a, b, goal, tol, options, prec);
                break;

            case 1:
                acb_set_d(a, 0);
                acb_set_d(b, 1);
                acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec);
                acb_mul_2exp_si(s, s, 2);
                break;

            case 2:
                acb_set_d(a, 0);
                acb_one(b);
                acb_mul_2exp_si(b, b, goal);
                acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec);
                arb_add_error_2exp_si(acb_realref(s), -goal);
                acb_mul_2exp_si(s, s, 1);
                break;

            case 3:
                acb_set_d(a, 0);
                acb_set_d(b, 1);
                acb_calc_integrate(s, f_circle, NULL, a, b, goal, tol, options, prec);
                acb_mul_2exp_si(s, s, 2);
                break;

            case 4:
                acb_set_d(a, 0);
                acb_set_d(b, 8);
                acb_calc_integrate(s, f_rump, NULL, a, b, goal, tol, options, prec);
                break;

            case 5:
                acb_set_d(a, 1);
                acb_set_d(b, 101);
                acb_calc_integrate(s, f_floor, NULL, a, b, goal, tol, options, prec);
                break;

            case 6:
                acb_set_d(a, 0);
                acb_set_d(b, 1);
                acb_calc_integrate(s, f_helfgott, NULL, a, b, goal, tol, options, prec);
                break;

            case 7:
                acb_zero(s);

                acb_set_d_d(a, -1.0, -1.0);
                acb_set_d_d(b, 2.0, -1.0);
                acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, 2.0, -1.0);
                acb_set_d_d(b, 2.0, 1.0);
                acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, 2.0, 1.0);
                acb_set_d_d(b, -1.0, 1.0);
                acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, -1.0, 1.0);
                acb_set_d_d(b, -1.0, -1.0);
                acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_const_pi(t, prec);
                acb_div(s, s, t, prec);
                acb_mul_2exp_si(s, s, -1);
                acb_div_onei(s, s);
                break;

            case 8:
                acb_set_d(a, 0);
                acb_set_d(b, 1);
                acb_calc_integrate(s, f_essing, NULL, a, b, goal, tol, options, prec);
                break;

            case 9:
                acb_set_d(a, 0);
                acb_set_d(b, 1);
                acb_calc_integrate(s, f_essing2, NULL, a, b, goal, tol, options, prec);
                break;

            case 10:
                acb_set_d(a, 0);
                acb_set_d(b, 10000);
                acb_calc_integrate(s, f_factorial1000, NULL, a, b, goal, tol, options, prec);
                break;

            case 11:
                acb_set_d_d(a, 1.0, 0.0);
                acb_set_d_d(b, 1.0, 1000.0);
                acb_calc_integrate(s, f_gamma, NULL, a, b, goal, tol, options, prec);
                break;

            case 12:
                acb_set_d(a, -10.0);
                acb_set_d(b, 10.0);
                acb_calc_integrate(s, f_sin_plus_small, NULL, a, b, goal, tol, options, prec);
                break;

            case 13:
                acb_set_d(a, -1020.0);
                acb_set_d(b, -1010.0);
                acb_calc_integrate(s, f_exp, NULL, a, b, goal, tol, options, prec);
                break;

            case 14:
                acb_set_d(a, 0);
                acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0));
                acb_calc_integrate(s, f_gaussian, NULL, a, b, goal, tol, options, prec);
                acb_mul(b, b, b, prec);
                acb_neg(b, b);
                acb_exp(b, b, prec);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

            case 15:
                acb_set_d(a, 0.0);
                acb_set_d(b, 1.0);
                acb_calc_integrate(s, f_spike, NULL, a, b, goal, tol, options, prec);
                break;

            case 16:
                acb_set_d(a, 0.0);
                acb_set_d(b, 8.0);
                acb_calc_integrate(s, f_monster, NULL, a, b, goal, tol, options, prec);
                break;

            case 17:
                acb_set_d(a, 0);
                acb_set_d(b, ceil(goal * 0.693147181 + 1.0));
                acb_calc_integrate(s, f_sech, NULL, a, b, goal, tol, options, prec);
                acb_neg(b, b);
                acb_exp(b, b, prec);
                acb_mul_2exp_si(b, b, 1);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

            case 18:
                acb_set_d(a, 0);
                acb_set_d(b, ceil(goal * 0.693147181 / 3.0 + 2.0));
                acb_calc_integrate(s, f_sech3, NULL, a, b, goal, tol, options, prec);
                acb_neg(b, b);
                acb_mul_ui(b, b, 3, prec);
                acb_exp(b, b, prec);
                acb_mul_2exp_si(b, b, 3);
                acb_div_ui(b, b, 3, prec);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

            case 19:
                if (goal < 0)
                    abort();
                /* error bound 2^-N (1+N) when truncated at 2^-N */
                N = goal + FLINT_BIT_COUNT(goal);
                acb_one(a);
                acb_mul_2exp_si(a, a, -N);
                acb_one(b);
                acb_calc_integrate(s, f_log_div1p, NULL, a, b, goal, tol, options, prec);
                acb_set_ui(b, N + 1);
                acb_mul_2exp_si(b, b, -N);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

           case 20:
                if (goal < 0)
                    abort();
                /* error bound (N+1) exp(-N) when truncated at N */
                N = goal + FLINT_BIT_COUNT(goal);
                acb_zero(a);
                acb_set_ui(b, N);
                acb_calc_integrate(s, f_log_div1p_transformed, NULL, a, b, goal, tol, options, prec);
                acb_neg(b, b);
                acb_exp(b, b, prec);
                acb_mul_ui(b, b, N + 1, prec);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

            case 21:

                acb_zero(s);

                N = 10;

                acb_set_d_d(a, 0.5, -0.5);
                acb_set_d_d(b, 0.5, 0.5);
                acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, 0.5, 0.5);
                acb_set_d_d(b, -0.5, 0.5);
                acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, -0.5, 0.5);
                acb_set_d_d(b, -0.5, -0.5);
                acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, -0.5, -0.5);
                acb_set_d_d(b, 0.5, -0.5);
                acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_const_pi(t, prec);
                acb_div(s, s, t, prec);
                acb_mul_2exp_si(s, s, -1);
                acb_div_onei(s, s);
                break;

            case 22:

                acb_zero(s);

                N = 1000;

                acb_set_d_d(a, 100.0, 0.0);
                acb_set_d_d(b, 100.0, N);
                acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, 100, N);
                acb_set_d_d(b, 0.5, N);
                acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_div_onei(s, s);
                arb_zero(acb_imagref(s));

                acb_set_ui(t, N);
                acb_dirichlet_hardy_theta(t, t, NULL, NULL, 1, prec);
                acb_add(s, s, t, prec);

                acb_const_pi(t, prec);
                acb_div(s, s, t, prec);
                acb_add_ui(s, s, 1, prec);
                break;

            case 23:
                acb_set_d(a, 0.0);
                acb_set_d(b, 1000.0);
                acb_calc_integrate(s, f_lambertw, NULL, a, b, goal, tol, options, prec);
                break;

            case 24:
                acb_set_d(a, 0.0);
                acb_const_pi(b, prec);
                acb_calc_integrate(s, f_max_sin_cos, NULL, a, b, goal, tol, options, prec);
                break;

            case 25:
                acb_set_si(a, -1);
                acb_set_si(b, 1);
                acb_calc_integrate(s, f_erf_bent, NULL, a, b, goal, tol, options, prec);
                break;

            case 26:
                acb_set_si(a, -10);
                acb_set_si(b, 10);
                acb_calc_integrate(s, f_airy_ai, NULL, a, b, goal, tol, options, prec);
                break;

            case 27:
                acb_set_si(a, 0);
                acb_set_si(b, 10);
                acb_calc_integrate(s, f_horror, NULL, a, b, goal, tol, options, prec);
                break;

            case 28:
                acb_set_d_d(a, -1, -1);
                acb_set_d_d(b, -1, 1);
                acb_calc_integrate(s, f_sqrt, NULL, a, b, goal, tol, options, prec);
                break;

            case 29:
                acb_set_d(a, 0);
                acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0));
                acb_calc_integrate(s, f_gaussian_twist, NULL, a, b, goal, tol, options, prec);
                acb_mul(b, b, b, prec);
                acb_neg(b, b);
                acb_exp(b, b, prec);
                arb_add_error(acb_realref(s), acb_realref(b));
                arb_add_error(acb_imagref(s), acb_realref(b));
                break;

            case 30:
                acb_set_d(a, 0);
                acb_set_d(b, ceil(goal * 0.693147181 + 1.0));
                acb_calc_integrate(s, f_exp_airy, NULL, a, b, goal, tol, options, prec);
                acb_neg(b, b);
                acb_exp(b, b, prec);
                acb_mul_2exp_si(b, b, 1);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

            case 31:
                acb_zero(a);
                acb_const_pi(b, prec);
                acb_calc_integrate(s, f_sin_cos_frac, NULL, a, b, goal, tol, options, prec);
                break;

            case 32:
                acb_zero(a);
                acb_set_ui(b, 3);
                acb_calc_integrate(s, f_sin_near_essing, NULL, a, b, goal, tol, options, prec);
                break;

            case 33:
                acb_zero(a);
                acb_zero(b);
                k = 3;
                scaled_bessel_select_N(acb_realref(b), k, prec);
                acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec);
                scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec);
                arb_add_error(acb_realref(s), acb_realref(a));
                break;

            case 34:
                acb_zero(a);
                acb_zero(b);
                k = 15;
                scaled_bessel_select_N(acb_realref(b), k, prec);
                acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec);
                scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec);
                arb_add_error(acb_realref(s), acb_realref(a));
                break;

            case 35:
                acb_set_d_d(a, -1, -1);
                acb_set_d_d(b, -1, 1);
                acb_calc_integrate(s, f_rsqrt, NULL, a, b, goal, tol, options, prec);
                break;

            default:
                abort();
            }

            TIMEIT_ONCE_STOP
        }
        flint_printf("I%d = ", integral);
        acb_printn(s, 3.333 * prec, 0);
        flint_printf("\n\n");
    }

    acb_clear(a);
    acb_clear(b);
    acb_clear(s);
    acb_clear(t);
    mag_clear(tol);

    flint_cleanup();
    return 0;
}
Esempio n. 23
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("exp_pi_i....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        acb_t a, b, c, d;
        slong prec;

        acb_init(a);
        acb_init(b);
        acb_init(c);
        acb_init(d);

        acb_randtest(a, state, 1 + n_randint(state, 200), 3);
        acb_randtest(b, state, 1 + n_randint(state, 200), 3);
        acb_randtest(c, state, 1 + n_randint(state, 200), 3);
        acb_randtest(d, state, 1 + n_randint(state, 200), 3);

        prec = 2 + n_randint(state, 200);

        acb_exp_pi_i(b, a, prec);

        acb_const_pi(c, prec);
        acb_mul(c, c, a, prec);
        acb_mul_onei(c, c);
        acb_exp(d, c, prec);

        if (!acb_overlaps(d, b))
        {
            flint_printf("FAIL: overlap\n\n");
            flint_printf("a = "); acb_printd(a, 30); flint_printf("\n\n");
            flint_printf("b = "); acb_printd(b, 30); flint_printf("\n\n");
            flint_printf("c = "); acb_printd(c, 30); flint_printf("\n\n");
            flint_printf("d = "); acb_printd(d, 30); flint_printf("\n\n");
            abort();
        }

        acb_set(c, a);
        acb_exp_pi_i(c, c, prec);

        if (!acb_overlaps(c, d))
        {
            flint_printf("FAIL: aliasing\n\n");
            flint_printf("a = "); acb_print(a); flint_printf("\n\n");
            flint_printf("b = "); acb_print(b); flint_printf("\n\n");
            flint_printf("c = "); acb_print(c); flint_printf("\n\n");
            flint_printf("d = "); acb_print(d); flint_printf("\n\n");
            abort();
        }

        acb_clear(a);
        acb_clear(b);
        acb_clear(c);
        acb_clear(d);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Esempio n. 24
0
File: m.c Progetto: argriffing/arb
void
_acb_hypgeom_m_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z,
    int regularized, slong prec, slong gamma_prec, int kummer)
{
    if (regularized)
    {
        /* Remove singularity */
        if (acb_is_int(b) && arb_is_nonpositive(acb_realref(b)) &&
            arf_cmpabs_2exp_si(arb_midref(acb_realref(b)), 30) < 0)
        {
            acb_t c, d, t, u;
            slong n;

            n = arf_get_si(arb_midref(acb_realref(b)), ARF_RND_DOWN);

            acb_init(c);
            acb_init(d);
            acb_init(t);
            acb_init(u);

            acb_sub(c, a, b, prec);
            acb_add_ui(c, c, 1, prec);

            acb_neg(d, b);
            acb_add_ui(d, d, 2, prec);

            _acb_hypgeom_m_1f1(t, c, d, z, 0, prec, gamma_prec, kummer);

            acb_pow_ui(u, z, 1 - n, prec);
            acb_mul(t, t, u, prec);

            acb_rising_ui(u, a, 1 - n, prec);
            acb_mul(t, t, u, prec);

            arb_fac_ui(acb_realref(u), 1 - n, prec);
            acb_div_arb(res, t, acb_realref(u), prec);

            acb_clear(c);
            acb_clear(d);
            acb_clear(t);
            acb_clear(u);
        }
        else
        {
            acb_t t;
            acb_init(t);
            acb_rgamma(t, b, gamma_prec);
            _acb_hypgeom_m_1f1(res, a, b, z, 0, prec, gamma_prec, kummer);
            acb_mul(res, res, t, prec);
            acb_clear(t);
        }
        return;
    }

    /* Kummer's transformation */
    if (kummer)
    {
        acb_t u, v;
        acb_init(u);
        acb_init(v);

        acb_sub(u, b, a, prec);
        acb_neg(v, z);

        _acb_hypgeom_m_1f1(u, u, b, v, regularized, prec, gamma_prec, 0);
        acb_exp(v, z, prec);
        acb_mul(res, u, v, prec);

        acb_clear(u);
        acb_clear(v);
        return;
    }

    if (acb_is_one(a))
    {
        acb_hypgeom_pfq_direct(res, NULL, 0, b, 1, z, -1, prec);
    }
    else
    {
        acb_struct c[3];
        c[0] = *a;
        c[1] = *b;

        acb_init(c + 2);
        acb_one(c + 2);

        acb_hypgeom_pfq_direct(res, c, 1, c + 1, 2, z, -1, prec);

        acb_clear(c + 2);
    }
}
Esempio n. 25
0
void
acb_hypgeom_erf_asymp(acb_t res, const acb_t z, int complementary, slong prec, slong prec2)
{
    acb_t a, t, u;

    acb_init(a);
    acb_init(t);
    acb_init(u);

    if (!acb_is_exact(z) &&
        (arf_cmpabs_ui(arb_midref(acb_realref(z)), prec) < 0) &&
        (arf_cmpabs_ui(arb_midref(acb_imagref(z)), prec) < 0))
    {
        acb_t zmid;
        mag_t re_err, im_err;

        acb_init(zmid);
        mag_init(re_err);
        mag_init(im_err);

        acb_hypgeom_erf_propagated_error(re_err, im_err, z);
        arf_set(arb_midref(acb_realref(zmid)), arb_midref(acb_realref(z)));
        arf_set(arb_midref(acb_imagref(zmid)), arb_midref(acb_imagref(z)));

        acb_hypgeom_erf_asymp(res, zmid, complementary, prec, prec2);

        arb_add_error_mag(acb_realref(res), re_err);
        arb_add_error_mag(acb_imagref(res), im_err);

        acb_clear(zmid);
        mag_clear(re_err);
        mag_clear(im_err);

        return;
    }

    acb_one(a);
    acb_mul_2exp_si(a, a, -1);
    acb_mul(t, z, z, prec2);

    acb_hypgeom_u_asymp(u, a, a, t, -1, prec2);

    acb_neg(t, t);
    acb_exp(t, t, prec2);
    acb_mul(u, u, t, prec2);

    arb_const_sqrt_pi(acb_realref(t), prec2);
    arb_zero(acb_imagref(t));
    acb_mul(t, t, z, prec2);
    acb_div(u, u, t, prec2);

    /* branch cut term: -1 or 1 */
    acb_csgn(acb_realref(t), z);
    arb_zero(acb_imagref(t));

    if (complementary)
    {
        /* erfc(z) = 1 - erf(z) = u - (sgn - 1) */
        acb_sub_ui(t, t, 1, prec);
        acb_sub(t, u, t, prec);
    }
    else
    {
        /* erf(z) = sgn - u */
        acb_sub(t, t, u, prec);
    }

    if (arb_is_zero(acb_imagref(z)))
    {
        arb_zero(acb_imagref(t));
    }
    else if (arb_is_zero(acb_realref(z)))
    {
        if (complementary)
            arb_one(acb_realref(t));
        else
            arb_zero(acb_realref(t));
    }

    acb_set(res, t);

    acb_clear(a);
    acb_clear(t);
    acb_clear(u);
}
Esempio n. 26
0
/* note: z should be exact here */
void acb_lambertw_main(acb_t res, const acb_t z,
                const acb_t ez1, const fmpz_t k, int flags, slong prec)
{
    acb_t w, t, oldw, ew;
    mag_t err;
    slong i, wp, accuracy, ebits, kbits, mbits, wp_initial, extraprec;
    int have_ew;

    acb_init(t);
    acb_init(w);
    acb_init(oldw);
    acb_init(ew);
    mag_init(err);

    /* We need higher precision for large k, large exponents, or very close
       to the branch point at -1/e. todo: we should be recomputing
       ez1 to higher precision when close... */
    acb_get_mag(err, z);
    if (fmpz_is_zero(k) && mag_cmp_2exp_si(err, 0) < 0)
        ebits = 0;
    else
        ebits = fmpz_bits(MAG_EXPREF(err));

    if (fmpz_is_zero(k) || (fmpz_is_one(k) && arb_is_negative(acb_imagref(z)))
                        || (fmpz_equal_si(k, -1) && arb_is_nonnegative(acb_imagref(z))))
    {
        acb_get_mag(err, ez1);
        mbits = -MAG_EXP(err);
        mbits = FLINT_MAX(mbits, 0);
        mbits = FLINT_MIN(mbits, prec);
    }
    else
    {
        mbits = 0;
    }

    kbits = fmpz_bits(k);

    extraprec = FLINT_MAX(ebits, kbits);
    extraprec = FLINT_MAX(extraprec, mbits);

    wp = wp_initial = 40 + extraprec;

    accuracy = acb_lambertw_initial(w, z, ez1, k, wp_initial);
    mag_zero(arb_radref(acb_realref(w)));
    mag_zero(arb_radref(acb_imagref(w)));

    /* We should be able to compute e^w for the final certification
       during the Halley iteration. */
    have_ew = 0;

    for (i = 0; i < 5 + FLINT_BIT_COUNT(prec + extraprec); i++)
    {
        /* todo: should we restart? */
        if (!acb_is_finite(w))
            break;

        wp = FLINT_MIN(3 * accuracy, 1.1 * prec + 10);
        wp = FLINT_MAX(wp, 40);
        wp += extraprec;

        acb_set(oldw, w);
        acb_lambertw_halley_step(t, ew, z, w, wp);

        /* estimate the error (conservatively) */
        acb_sub(w, w, t, wp);
        acb_get_mag(err, w);
        acb_set(w, t);
        acb_add_error_mag(t, err);
        accuracy = acb_rel_accuracy_bits(t);

        if (accuracy > 2 * extraprec)
            accuracy *= 2.9;  /* less conservatively */

        accuracy = FLINT_MIN(accuracy, wp);
        accuracy = FLINT_MAX(accuracy, 0);

        if (accuracy > prec + extraprec)
        {
            /* e^w = e^oldw * e^(w-oldw) */
            acb_sub(t, w, oldw, wp);
            acb_exp(t, t, wp);
            acb_mul(ew, ew, t, wp);
            have_ew = 1;
            break;
        }

        mag_zero(arb_radref(acb_realref(w)));
        mag_zero(arb_radref(acb_imagref(w)));
    }

    wp = FLINT_MIN(3 * accuracy, 1.1 * prec + 10);
    wp = FLINT_MAX(wp, 40);
    wp += extraprec;

    if (acb_lambertw_check_branch(w, k, wp))
    {
        acb_t u, r, eu1;
        mag_t err, rad;

        acb_init(u);
        acb_init(r);
        acb_init(eu1);

        mag_init(err);
        mag_init(rad);

        if (have_ew)
            acb_set(t, ew);
        else
            acb_exp(t, w, wp);
        /* t = w e^w */
        acb_mul(t, t, w, wp);

        acb_sub(r, t, z, wp);

        /* Bound W' on the straight line path between t and z */
        acb_union(u, t, z, wp);

        arb_const_e(acb_realref(eu1), wp);
        arb_zero(acb_imagref(eu1));
        acb_mul(eu1, eu1, u, wp);
        acb_add_ui(eu1, eu1, 1, wp);

        if (acb_lambertw_branch_crossing(u, eu1, k))
        {
            mag_inf(err);
        }
        else
        {
            acb_lambertw_bound_deriv(err, u, eu1, k);
            acb_get_mag(rad, r);
            mag_mul(err, err, rad);
        }

        acb_add_error_mag(w, err);

        acb_set(res, w);

        acb_clear(u);
        acb_clear(r);
        acb_clear(eu1);
        mag_clear(err);
        mag_clear(rad);
    }
    else
    {
        acb_indeterminate(res);
    }

    acb_clear(t);
    acb_clear(w);
    acb_clear(oldw);
    acb_clear(ew);
    mag_clear(err);
}
Esempio n. 27
0
int main()
{
    long iter;
    flint_rand_t state;

    printf("log....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 10000; iter++)
    {
        acb_t x, a, b;
        long prec1, prec2;

        prec1 = 2 + n_randint(state, 1000);
        prec2 = prec1 + 30;

        acb_init(x);
        acb_init(a);
        acb_init(b);

        acb_randtest_special(x, state, 1 + n_randint(state, 1000), 2 + n_randint(state, 100));
        acb_randtest_special(a, state, 1 + n_randint(state, 1000), 2 + n_randint(state, 100));
        acb_randtest_special(b, state, 1 + n_randint(state, 1000), 2 + n_randint(state, 100));

        acb_log(a, x, prec1);
        acb_log(b, x, prec2);

        /* check consistency */
        if (!acb_overlaps(a, b))
        {
            printf("FAIL: overlap\n\n");
            printf("x = "); acb_printd(x, 15); printf("\n\n");
            printf("a = "); acb_printd(a, 15); printf("\n\n");
            printf("b = "); acb_printd(b, 15); printf("\n\n");
            abort();
        }

        /* check exp(log(x)) = x */
        acb_exp(b, b, prec1);

        if (!acb_contains(b, x))
        {
            printf("FAIL: functional equation\n\n");
            printf("x = "); acb_printd(x, 15); printf("\n\n");
            printf("b = "); acb_printd(b, 15); printf("\n\n");
            abort();
        }

        acb_log(x, x, prec1);

        if (!acb_overlaps(a, x))
        {
            printf("FAIL: aliasing\n\n");
            printf("a = "); acb_printd(a, 15); printf("\n\n");
            printf("x = "); acb_printd(x, 15); printf("\n\n");
            abort();
        }

        acb_clear(x);
        acb_clear(a);
        acb_clear(b);
    }

    flint_randclear(state);
    flint_cleanup();
    printf("PASS\n");
    return EXIT_SUCCESS;
}
Esempio n. 28
0
File: ci.c Progetto: isuruf/arb
void
acb_hypgeom_ci_asymp(acb_t res, const acb_t z, slong prec)
{
    acb_t t, u, w, v, one;

    acb_init(t);
    acb_init(u);
    acb_init(w);
    acb_init(v);
    acb_init(one);

    acb_one(one);
    acb_mul_onei(w, z);

    /* u = U(1,1,iz) */
    acb_hypgeom_u_asymp(u, one, one, w, -1, prec);
    /* v = e^(-iz) */
    acb_neg(v, w);
    acb_exp(v, v, prec);
    acb_mul(t, u, v, prec);

    if (acb_is_real(z))
    {
        arb_div(acb_realref(t), acb_imagref(t), acb_realref(z), prec);
        arb_zero(acb_imagref(t));
        acb_neg(t, t);
    }
    else
    {
        /* u = U(1,1,-iz) */
        acb_neg(w, w);
        acb_hypgeom_u_asymp(u, one, one, w, -1, prec);
        acb_inv(v, v, prec);
        acb_submul(t, u, v, prec);

        acb_div(t, t, w, prec);
        acb_mul_2exp_si(t, t, -1);
    }

    if (arb_is_zero(acb_realref(z)))
    {
        if (arb_is_positive(acb_imagref(z)))
        {
            arb_const_pi(acb_imagref(t), prec);
            arb_mul_2exp_si(acb_imagref(t), acb_imagref(t), -1);
        }
        else if (arb_is_negative(acb_imagref(z)))
        {
            arb_const_pi(acb_imagref(t), prec);
            arb_mul_2exp_si(acb_imagref(t), acb_imagref(t), -1);
            arb_neg(acb_imagref(t), acb_imagref(t));
        }
        else
        {
            acb_const_pi(u, prec);
            acb_mul_2exp_si(u, u, -1);
            arb_zero(acb_imagref(t));
            arb_add_error(acb_imagref(t), acb_realref(u));
        }
    }
    else
    {
        /* 0 if positive or positive imaginary
           pi if upper left quadrant (including negative real axis)
           -pi if lower left quadrant (including negative imaginary axis) */
        if (arb_is_positive(acb_realref(z)))
        {
            /* do nothing */
        }
        else if (arb_is_negative(acb_realref(z)) && arb_is_nonnegative(acb_imagref(z)))
        {
            acb_const_pi(u, prec);
            arb_add(acb_imagref(t), acb_imagref(t), acb_realref(u), prec);
        }
        else if (arb_is_nonpositive(acb_realref(z)) && arb_is_negative(acb_imagref(z)))
        {
            acb_const_pi(u, prec);
            arb_sub(acb_imagref(t), acb_imagref(t), acb_realref(u), prec);
        }
        else
        {
            /* add [-pi,pi] */
            acb_const_pi(u, prec);
            arb_add_error(acb_imagref(t), acb_realref(u));
        }
    }

    acb_swap(res, t);

    acb_clear(t);
    acb_clear(u);
    acb_clear(w);
    acb_clear(v);
    acb_clear(one);
}
int main()
{
    long iter;
    flint_rand_t state;

    printf("gamma_upper....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 2000; iter++)
    {
        acb_t a0, a1, b, z, w0, w1, t, u;
        long prec0, prec1;
        int modified;

        acb_init(a0);
        acb_init(a1);
        acb_init(b);
        acb_init(z);
        acb_init(w0);
        acb_init(w1);
        acb_init(t);
        acb_init(u);

        modified = n_randint(state, 2);

        prec0 = 2 + n_randint(state, 1000);
        prec1 = 2 + n_randint(state, 1000);

        acb_randtest_maybe_half_int(a0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
        acb_randtest(z, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
        acb_randtest(w0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
        acb_randtest(w1, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));

        acb_add_ui(a1, a0, 1, prec0);

        switch (n_randint(state, 4))
        {
            case 0:
                acb_hypgeom_gamma_upper_asymp(w0, a0, z, modified, prec0);
                break;
            case 1:
                acb_hypgeom_gamma_upper_1f1a(w0, a0, z, modified, prec0);
                break;
            case 2:
                acb_hypgeom_gamma_upper_1f1b(w0, a0, z, modified, prec0);
                break;
            default:
                acb_hypgeom_gamma_upper(w0, a0, z, modified, prec0);
        }

        switch (n_randint(state, 4))
        {
            case 0:
                acb_hypgeom_gamma_upper_asymp(w1, a0, z, modified, prec1);
                break;
            case 1:
                acb_hypgeom_gamma_upper_1f1a(w1, a0, z, modified, prec1);
                break;
            case 2:
                acb_hypgeom_gamma_upper_1f1b(w1, a0, z, modified, prec1);
                break;
            default:
                acb_hypgeom_gamma_upper(w1, a0, z, modified, prec1);
        }

        if (!acb_overlaps(w0, w1))
        {
            printf("FAIL: consistency\n\n");
            printf("nu = "); acb_printd(a0, 30); printf("\n\n");
            printf("z = "); acb_printd(z, 30); printf("\n\n");
            printf("w0 = "); acb_printd(w0, 30); printf("\n\n");
            printf("w1 = "); acb_printd(w1, 30); printf("\n\n");
            abort();
        }

        switch (n_randint(state, 4))
        {
            case 0:
                acb_hypgeom_gamma_upper_asymp(w1, a1, z, modified, prec1);
                break;
            case 1:
                acb_hypgeom_gamma_upper_1f1a(w1, a1, z, modified, prec1);
                break;
            case 2:
                acb_hypgeom_gamma_upper_1f1b(w1, a1, z, modified, prec1);
                break;
            default:
                acb_hypgeom_gamma_upper(w1, a1, z, modified, prec1);
        }

        /* a Gamma(a,z) + exp(-z) z^a = Gamma(a+1,z) */
        if (modified)
            acb_one(t);
        else
            acb_pow(t, z, a0, prec0);

        acb_neg(u, z);
        acb_exp(u, u, prec0);
        acb_mul(t, t, u, prec0);

        if (modified)
        {
            acb_mul(b, w1, z, prec0);
            acb_addmul(t, a0, w0, prec0);
            acb_sub(t, t, b, prec0);
        }
        else
        {
            acb_addmul(t, a0, w0, prec0);
            acb_sub(t, t, w1, prec0);
        }

        if (!acb_contains_zero(t))
        {
            printf("FAIL: contiguous relation\n\n");
            printf("nu = "); acb_printd(a0, 30); printf("\n\n");
            printf("z = ");  acb_printd(z, 30); printf("\n\n");
            printf("w0 = "); acb_printd(w0, 30); printf("\n\n");
            printf("w1 = "); acb_printd(w1, 30); printf("\n\n");
            printf("t = "); acb_printd(t, 30); printf("\n\n");
            abort();
        }

        acb_clear(a0);
        acb_clear(a1);
        acb_clear(b);
        acb_clear(z);
        acb_clear(w0);
        acb_clear(w1);
        acb_clear(t);
        acb_clear(u);
    }

    flint_randclear(state);
    flint_cleanup();
    printf("PASS\n");
    return EXIT_SUCCESS;
}