int main (int argc, char ** argv) { char filename [256]; int rank; int NX = 10; double t[NX]; char result[1024], s[32]; int i; /* ADIOS variables declarations for matching gread_temperature.ch */ int adios_err; uint64_t adios_groupsize, adios_totalsize, adios_buf_size; int64_t adios_handle; MPI_Comm comm = MPI_COMM_WORLD; MPI_Init (&argc, &argv); MPI_Comm_rank (MPI_COMM_WORLD, &rank); sprintf (filename, "restart.bp"); adios_init ("config.xml", comm); adios_open (&adios_handle, "temperature", filename, "r", comm); #include "gread_temperature.ch" adios_close (adios_handle); adios_finalize (rank); MPI_Finalize (); sprintf(result, "rank=%d t=[%g", rank, t[0]); for (i=1; i<NX; i++) { sprintf (s, ",%g", t[i]); strcat (result, s); } printf("%s]\n", result); return 0; }
int main (int argc, char ** argv) { char filename [256]; int rank, size, i; int NX = 10; double t[NX]; MPI_Comm comm = MPI_COMM_WORLD; /* ADIOS variables declarations for matching gwrite_temperature.ch */ int adios_err; uint64_t adios_groupsize, adios_totalsize; int64_t adios_handle; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); for (i = 0; i < NX; i++) t[i] = rank*NX + i; strcpy (filename, "adios_global.bp"); adios_init ("adios_global.xml", comm); adios_open (&adios_handle, "temperature", filename, "w", comm); #include "gwrite_temperature.ch" adios_close (adios_handle); MPI_Barrier (comm); adios_finalize (rank); MPI_Finalize (); return 0; }
int main (int argc, char ** argv) { int err; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); init_vars(); adios_init_noxml (comm); err = adios_read_init_method(ADIOS_READ_METHOD_BP, comm, "verbose=2"); if (err) { printE ("%s\n", adios_errmsg()); } if (!err) err = declare_group (); if (!err) err = write_file ("reuse_dim.bp"); if (!err) err = read_file ("reuse_dim.bp"); adios_finalize (rank); fini_vars(); MPI_Finalize (); return err; }
void DumpData(simulation_data *sim, char *Filename, int tindex, const char *postfix) { char lname[512]; #ifdef ADIOS if(sim->cycle == 1){ //fprintf(stderr,"Calling adios_init()\n"); //adios_init ("/users/jfavre/Projects/ADIOS/benchmark.xml"); //adios_init ("/users/jfavre/Projects/ADIOS/benchmark.xml", sim->comm_cart); adios_init ("benchmark.xml", sim->comm_cart); } sprintf(lname,"%s.%04d.%s", Filename, tindex, postfix); ADIOS_WriteData(sim, lname); if(sim->cycle == NUMBER_OF_ITERATIONS){ //fprintf(stderr, "Calling adios_finalize()\n"); adios_finalize (sim->par_rank); } #elif NETCDF4 sprintf(lname,"%s.%04d.%s", Filename, tindex, postfix); NETCDF4_WriteData(sim, Filename); #elif HDF5 sprintf(lname,"%s.%04d.%s", Filename, tindex, postfix); HDF5_WriteData(sim, lname); #elif BOV if(gzipped) BOV_WriteData(sim, Filename, tindex, "bof.gz"); else BOV_WriteData(sim, Filename, tindex, "bof"); if(sim->par_rank == 0) { sprintf(lname,"%s.%04d.bov", Filename, tindex); FILE *fp = fopen(lname,"w"); fprintf(fp,"# BOV version: 1.0\n"); fprintf(fp,"# file written by IO benchmark program\n"); if(gzipped) fprintf(fp,"DATA_FILE: %s.%%05d.%04d.bof.gz\n", Filename, tindex); else fprintf(fp,"DATA_FILE: %s.%%05d.%04d.bof\n", Filename, tindex); fprintf(fp,"DATA SIZE: %d %d %d\n", sim->global_dims[0], sim->global_dims[1], sim->global_dims[2]); fprintf(fp,"DATA_BRICKLETS: %d %d %d\n", sim->grid.Nrows, sim->grid.Ncolumns, sim->grid.Nlevels); fprintf(fp,"DATA FORMAT: FLOAT\n"); fprintf(fp,"VARIABLE: node_data\n"); //fprintf(fp,"VARIABLE PALETTE MIN: 0\n"); //fprintf(fp,"VARIABLE PALETTE MAX: 14.7273\n"); fprintf(fp,"BRICK ORIGIN: 0.0 0.0 0.0\n"); fprintf(fp,"BRICK SIZE: %f %f %f\n", 1.0*sim->global_dims[0], 1.0*sim->global_dims[1], 1.0*sim->global_dims[2]); fprintf(fp,"BRICK X_AXIS: 1.000 0.000 0.000\n"); fprintf(fp,"BRICK Y_AXIS: 0.000 1.000 0.000\n"); fprintf(fp,"BRICK Z_AXIS: 0.000 0.000 1.000\n"); fprintf(fp,"DATA_ENDIAN: LITTLE\n"); fprintf(fp,"CENTERING: nodal\n"); fprintf(fp,"BYTE_OFFSET: 0\n"); fclose(fp); } #else sprintf(lname,"%s.%04d.%s", Filename, tindex, postfix); MPIIO_WriteData(sim, lname); #endif }
int main(int argc, char ** argv){ int rank=0, size=0; int NX = NX_DIM; // size of 1D array we will write double t[NX_DIM]; // this will contain the variables MPI_Comm comm = MPI_COMM_WORLD; // required for ADIOS int64_t adios_handle; // the ADIOS file handler int retval; struct adios_tsprt_opts adios_opts; int err_count = 0; GET_ENTRY_OPTIONS(adios_opts, "Runs writers. It is recommended to run as many writers as readers."); // I assume that I have all required options set in adios_opts // sanity check assert(NX==NX_DIM); // ADIOS initialization MPI_Init(&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); SET_ERROR_IF_NOT_ZERO(adios_init(adios_opts.xml_adios_init_filename, comm), err_count); RET_IF_ERROR(err_count, rank); // init the array that I will transport if (gen_1D_array(t, NX, rank) == DIAG_ERR){ printf("ERROR: Generating 1D array. Quitting ...\n"); return DIAG_ERR; } uint64_t adios_groupsize, adios_totalsize; // open with the group name as specified in the xml file adios_open( &adios_handle, "temperature", FILE_NAME, "w", comm); adios_groupsize = 4 + 4 + 4 + 8 * (NX); retval=adios_group_size (adios_handle, adios_groupsize, &adios_totalsize); fprintf(stderr, "Rank=%d adios_group_size(): adios_groupsize=%" PRIu64 ", adios_totalsize=%" PRIu64 ", retval=%d\n", rank, adios_groupsize, adios_totalsize, retval); // write; don't check errors for simplicity reasons adios_write(adios_handle, "NX", &NX); adios_write(adios_handle, "size", &size); adios_write(adios_handle, "rank", &rank); adios_write(adios_handle, "var_1d_array", t); fprintf(stderr, "Rank=%d committed write\n", rank); adios_close(adios_handle); // clean and finalize the system adios_finalize(rank); MPI_Finalize(); return DIAG_OK; }
int main (int argc, char ** argv) { char filename [256]; int rank; MPI_Comm comm = MPI_COMM_WORLD; uint64_t adios_groupsize, adios_totalsize; int64_t adios_handle; int8_t v1 = -4; int16_t v2 = -3; int32_t v3 = -2; int64_t v4 = -1; uint8_t v5 = 1; uint16_t v6 = 2; uint32_t v7 = 3; uint64_t v8 = 4; float v9 = 5.0; double v10 = 6.0; char * v11 = "ADIOS example"; complex v12; v12.r = 8.0; v12.i = 9.0; double_complex v13; v13.r = 10.0; v13.i = 11.0; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); strcpy (filename, "scalars.bp"); /* adios_open() opens a "group in a file", here the "scalars" group. GWRITE is the convenient way to write all variables defined in the xml file but of course one can write the individual adios_write() statements here too */ adios_init ("scalars.xml", comm); adios_open (&adios_handle, "scalars", filename, "w", comm); #include "gwrite_scalars.ch" adios_close (adios_handle); MPI_Barrier (comm); adios_finalize (rank); MPI_Finalize (); return 0; }
int main(int argc, char **argv) { parseArgs(argc, argv); if (datafile.empty() || varName.empty()) { std::cout << "Usage:\n" << *argv << " -f data-file-name" << " -n variable-name" << " [-p variable-path]" << " [-a attribute-name]" //<< " [-m file-format [HDF5(default), H5PART, NETCDF]" << " [-v verboseness]" << " [-x (xport)]\n\n" << "\tFor More detailed usage description and examples," " please see file GUIDE" << std::endl; return -1; } #ifndef FQ_NOMPI MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); #endif adios_init_noxml(); adios_allocate_buffer(ADIOS_BUFFER_ALLOC_NOW, 1000); LOGGER(ibis::gVerbose >= 0 && mpi_rank == 0) << "BPread running with mpi_size = " << mpi_size << " ..."; if (logfile.str().empty() != true){ if (ibis::gVerbose > 1) std::cout << "DEBUG: using logfile \"" << logfile.str().c_str() << "\" ...\n"; logfile << "-" << mpi_rank << ".log"; } bool berr = doRead(); adios_finalize(mpi_rank); LOGGER(ibis::gVerbose >= 0) << *argv << " invoked adios_finalize(" << mpi_rank << ")\n"; #ifndef FQ_NOMPI MPI_Finalize(); #endif if (berr) { LOGGER(ibis::gVerbose > 0) << *argv << " successfully complete reading data"; return 0; } else { LOGGER(ibis::gVerbose > 0) << "Warning -- " << *argv << " failed to complete reading data"; return -1; } }
int main(int argc, char **argv) { MPI_Init(&argc, &argv); adios_init("transforms.xml", comm); double *arr = malloc(N * sizeof(double)); memset(arr, 123, N * sizeof(double)); write_test_file(arr); read_test_file(arr); adios_finalize(0); MPI_Finalize(); }
/// Destructor. BPCommon::~BPCommon() { int rank=0; int ierr; #ifndef FQ_NOMPI ierr = MPI_Comm_rank(MPI_COMM_WORLD, &rank); if (ierr != MPI_SUCCESS) { std::cerr << "BPCommon::dtor failed to determine the MPI rank" << std::endl; exit(-1); } #endif ierr = adios_finalize(rank); if (ierr != 0) { std::cerr << "BPCommon::dtor failed to invoke adios_finalize, " << adios_errmsg() << std::endl; } }
int main (int argc, char ** argv) { MPI_Comm comm = 0; // dummy mpi /* ADIOS variables declarations for matching gwrite_temperature.ch */ uint64_t adios_groupsize, adios_totalsize; int64_t g; int64_t f; int64_t Tid, Pid, Vid; // variable IDs char dimstr[32]; sprintf (dimstr, "%d,%d", NX, NY); adios_init_noxml (comm); adios_set_max_buffer_size (1); adios_declare_group (&g, "vars", "", adios_flag_yes); adios_select_method (g, "POSIX", "", ""); Tid = adios_define_var (g, "T" ,"", adios_double, dimstr, dimstr, "0,0"); adios_set_transform (Tid, "none"); Pid = adios_define_var (g, "P" ,"", adios_double, dimstr, dimstr, "0,0"); adios_set_transform (Pid, "none"); Vid = adios_define_var (g, "V" ,"", adios_double, dimstr, dimstr, "0,0"); adios_set_transform (Vid, "none"); adios_read_init_method(ADIOS_READ_METHOD_BP,0,""); if (adios_query_is_method_available (ADIOS_QUERY_METHOD_ALACRITY)) { adios_set_transform (Tid, "alacrity"); adios_set_transform (Pid, "alacrity"); adios_set_transform (Vid, "alacrity"); printf ("Turned on ALACRITY transformation for array variables\n"); } adios_open (&f, "vars", "vars.bp", "w", comm); adios_groupsize = 3*NX*NY*sizeof(double); adios_group_size (f, adios_groupsize, &adios_totalsize); adios_write (f, "T", T); adios_write (f, "P", P); adios_write (f, "V", V); adios_close (f); adios_finalize (0); return 0; }
int main (int argc, char ** argv) { char filename [256]; int rank, size; int NX = 10; int N = 3; /* number of files to write */ double t[NX]; int i; /* ADIOS variables declarations for matching gwrite_temperature.ch */ uint64_t adios_groupsize, adios_totalsize; int64_t adios_handle; int color, key; MPI_Comm comm; MPI_Init (&argc, &argv); MPI_Comm_rank (MPI_COMM_WORLD, &rank); MPI_Comm_size (MPI_COMM_WORLD, &size); /* MPI_Comm_split partitions the world group into N disjoint subgroups, * the processes are ranked in terms of the argument key. * A new communicator comm is returned for this specific grid configuration */ color = rank % N; key = rank / N; MPI_Comm_split (MPI_COMM_WORLD, color, key, &comm); for (i=0; i<NX; i++) t[i] = rank*NX + i; /* every P/N processes write into the same file * there are N files generated. */ sprintf (filename, "restart_%5.5d.bp", color); adios_init ("config.xml", MPI_COMM_WORLD); adios_open (&adios_handle, "temperature", filename, "w", comm); #include "gwrite_temperature.ch" adios_close (adios_handle); adios_finalize (rank); MPI_Finalize (); return 0; }
int main (int argc, char ** argv) { int size, i, block; MPI_Comm comm = 0; // dummy mpi /* ADIOS variables declarations for matching gwrite_temperature.ch */ uint64_t adios_groupsize, adios_totalsize; int64_t g; int64_t f; char dimstr[32]; adios_init_noxml (comm); adios_allocate_buffer (ADIOS_BUFFER_ALLOC_NOW, 1); adios_declare_group (&g, "table", "", adios_flag_yes); adios_select_method (g, "POSIX1", "", ""); sprintf (dimstr, "%d,%d", NX, NY); adios_define_var (g, "A" ,"", adios_integer, dimstr, dimstr, "0,0"); sprintf (dimstr, "%d,%d", n_of_elements, Elements_length); adios_define_var (g, "Elements" ,"", adios_byte, dimstr, dimstr, "0,0"); sprintf (dimstr, "%d,%d", NY, Columns_length); adios_define_var (g, "Columns" ,"", adios_byte, dimstr, dimstr, "0,0"); adios_open (&f, "table", "table.bp", "w", comm); adios_groupsize = NX*NY*sizeof(int32_t) /* size of A */ + n_of_elements * Elements_length /* size of Elements */ + NY * Columns_length; /* size of Columns */ adios_group_size (f, adios_groupsize, &adios_totalsize); adios_write (f, "A", A); adios_write (f, "Elements", Elements); adios_write (f, "Columns", Columns); adios_close (f); adios_finalize (0); return 0; }
int main (int argc, char ** argv) { char filename [256]; int rank, size, i, j; int NX = 10, NY = 100; double t[NX][NY]; int p[NX]; MPI_Comm comm = MPI_COMM_WORLD; int adios_err; uint64_t adios_groupsize, adios_totalsize; int64_t adios_handle; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); for (i = 0; i < NX; i++) for (j = 0; j< NY; j++) t[i][j] = rank * NX + i + j*(1.0/NY); for (i = 0; i < NX; i++) p[i] = rank * NX + i; strcpy (filename, "arrays.bp"); adios_init ("arrays.xml", comm); adios_open (&adios_handle, "arrays", filename, "w", comm); #include "gwrite_arrays.ch" adios_close (adios_handle); MPI_Barrier (comm); adios_finalize (rank); MPI_Finalize (); return 0; }
int write_blocks () { int NX, G, O; double *t; /* ADIOS variables declarations for matching gwrite_temperature.ch */ int it, i, r; uint64_t adios_groupsize, adios_totalsize; if (!rank) printf ("------- Write blocks -------\n"); // We will have "3 steps * 2 blocks per process * number of processes" blocks nsteps = 3; nblocks_per_step = 2; block_offset = (uint64_t*) malloc (sizeof(uint64_t) * nsteps * nblocks_per_step * size); block_count = (uint64_t*) malloc (sizeof(uint64_t) * nsteps * nblocks_per_step * size); gdims = (uint64_t*) malloc (sizeof(uint64_t) * nsteps); adios_init_noxml (comm); adios_set_max_buffer_size (10); int64_t m_adios_group; int64_t m_adios_file; adios_declare_group (&m_adios_group, "restart", "", adios_flag_yes); adios_select_method (m_adios_group, "MPI", "", ""); adios_define_var (m_adios_group, "NX" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "G" ,"", adios_integer ,0, 0, 0); /* have to define O and temperature as many times as we write them within one step (twice) */ for (it=0; it < nblocks_per_step; it++) { adios_define_var (m_adios_group, "O" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "t" ,"", adios_double ,"NX", "G", "O"); } for (it =0; it < nsteps; it++) { if (!rank) printf ("Step %d:\n", it); NX = 10+it; G = nblocks_per_step * NX * size; t = (double *) malloc (NX*sizeof(double)); for (i = 0; i < NX; i++) t[i] = rank + it*0.1 + 0.01; MPI_Barrier (comm); if (it==0) adios_open (&m_adios_file, "restart", fname, "w", comm); else adios_open (&m_adios_file, "restart", fname, "a", comm); adios_groupsize = 4 + 4 + 4 + NX * 8 + 4 + 4 + 4 + NX * 8; adios_group_size (m_adios_file, adios_groupsize, &adios_totalsize); adios_write(m_adios_file, "NX", (void *) &NX); adios_write(m_adios_file, "G", (void *) &G); O = rank * nblocks_per_step * NX; adios_write(m_adios_file, "O", (void *) &O); adios_write(m_adios_file, "t", t); printf ("rank %d: block 1: size=%d, offset=%d\n", rank, NX, O); for (r = 0; r < size; r++) { block_count [it*nblocks_per_step*size + nblocks_per_step*r] = NX; block_offset [it*nblocks_per_step*size + nblocks_per_step*r] = r * nblocks_per_step * NX; } for (i = 0; i < NX; i++) t[i] += 0.01; O = rank * nblocks_per_step * NX + NX; adios_write(m_adios_file, "O", (void *) &O); adios_write(m_adios_file, "t", t); printf ("rank %d: block 2: size=%d, offset=%d\n", rank, NX, O); for (r = 0; r < size; r++) { block_count [it*nblocks_per_step*size + nblocks_per_step*r + 1] = NX; block_offset [it*nblocks_per_step*size + nblocks_per_step*r + 1] = r * nblocks_per_step * NX + NX; } gdims [it] = G; adios_close (m_adios_file); MPI_Barrier (comm); free(t); } adios_finalize (rank); return 0; }
/* --------------------------------- Main --------------------------------- */ int main( int argc, char ** argv) { char filename [256]; MPI_Comm comm = MPI_COMM_WORLD; int rank, size; /* ADIOS variables declarations for matching gwrite_schema.ch */ int adios_err; uint64_t adios_groupsize, adios_totalsize; int64_t adios_handle; float tmax = 10.0; float dt = 0.5; // run from 0.0 increasing with 'dt' up to 'tmax' int i; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); adios_init ("local_array_time.xml", comm); strcpy(filename, "local_array_time.bp"); // Declare and Initialize essential variables int num_points = 37; float angles[num_points]; float cos_of_angles[num_points]; float sin_of_angles[num_points]; float pi; // Obtain pi once for all pi = 4.0*atan(1.0); // Initialize angles in degrees float angle_degree = 0; for (i=0; i<num_points; i++) { angles[i] = pi * angle_degree/180.0; angle_degree = angle_degree + 10.0; } // Scan over time float timestep = 0.0; for (timestep = 0.0; timestep <= tmax; timestep = timestep + dt) { if (timestep == 0.0) { printf("\n\n\nopen file\n\n\n"); adios_open (&adios_handle, "schema", filename, "w", comm); } else { adios_open (&adios_handle, "schema", filename, "a", comm); } for (i=0; i<num_points; i++) { cos_of_angles[i] = cos(angles[i]*timestep); sin_of_angles[i] = sin(angles[i]*timestep); } adios_groupsize = 4 + 4 \ + 4*num_points \ + 4*num_points; if (timestep == 0 && rank == 0) { adios_groupsize += 4 + 4 + 4*num_points; } adios_group_size (adios_handle, adios_groupsize, &adios_totalsize); adios_write (adios_handle, "num_points", &num_points); adios_write (adios_handle, "t", ×tep); if (timestep == 0 && rank == 0) { adios_write (adios_handle, "tmax", &tmax); adios_write (adios_handle, "dt", &dt); adios_write (adios_handle, "angles", angles); } adios_write (adios_handle, "cos", cos_of_angles); adios_write (adios_handle, "sin", sin_of_angles); adios_close (adios_handle); // Write out raw data print_data_1D(timestep, num_points, angles, sin_of_angles, 0); } MPI_Barrier (comm); adios_finalize (rank); MPI_Finalize (); return 0; }
int main (int argc, char ** argv) { char filename [256]; int rank, size, i, block; int NX = 100, Global_bounds, Offsets; double t[NX]; int sub_blocks = 3; MPI_Comm comm = MPI_COMM_WORLD; /* ADIOS variables declarations for matching gwrite_temperature.ch */ uint64_t adios_groupsize, adios_totalsize; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); Global_bounds = sub_blocks * NX * size; strcpy (filename, "adios_global_no_xml.bp"); adios_init_noxml (comm); adios_allocate_buffer (ADIOS_BUFFER_ALLOC_NOW, 10); int64_t m_adios_group; int64_t m_adios_file; adios_declare_group (&m_adios_group, "restart", "iter", adios_flag_yes); adios_select_method (m_adios_group, "MPI", "", ""); adios_define_var (m_adios_group, "NX" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "Global_bounds" ,"", adios_integer ,0, 0, 0); for (i=0;i<sub_blocks;i++) { adios_define_var (m_adios_group, "Offsets" ,"", adios_integer ,0, 0, 0); int64_t varid; varid = adios_define_var (m_adios_group, "temperature" ,"", adios_double ,"NX", "Global_bounds", "Offsets"); adios_set_transform (varid, "none"); } adios_open (&m_adios_file, "restart", filename, "w", comm); adios_groupsize = sub_blocks * (4 + 4 + 4 + NX * 8); adios_group_size (m_adios_file, adios_groupsize, &adios_totalsize); adios_write(m_adios_file, "NX", (void *) &NX); adios_write(m_adios_file, "Global_bounds", (void *) &Global_bounds); /* now we will write the data for each sub block */ for (block=0;block<sub_blocks;block++) { Offsets = rank * sub_blocks * NX + block*NX; adios_write(m_adios_file, "Offsets", (void *) &Offsets); for (i = 0; i < NX; i++) t[i] = Offsets + i; adios_write(m_adios_file, "temperature", t); } adios_close (m_adios_file); MPI_Barrier (comm); adios_finalize (rank); MPI_Finalize (); return 0; }
int main (int argc, char ** argv) { int err, step ; int do_write = 1; int do_read = 1; int m = 0; char write_method[16]; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); if (argc > 1) { m = strtol (argv[1], NULL, 10); if (errno) { printf("Invalid 1st argument %s\n", argv[1]); Usage(); return 1;} } if (argc > 2) { if (argv[2][0] == 'w' || argv[2][0] == 'W') { do_read = 0; } else if (argv[2][0] == 'r' || argv[2][0] == 'R') { do_write = 0; } else { printE ("Invalid command line argument %s. Allowed ones:\n" " w: do write only\n" " r: do read only\n", argv[2]); MPI_Finalize (); return 1; } } if (m==0) { read_method = ADIOS_READ_METHOD_BP; strcpy(write_method,"MPI"); } else { read_method = ADIOS_READ_METHOD_DATASPACES; strcpy(write_method,"DATASPACES"); } log ("Writing: %s method=%s\n" "Reading: %s method=%d\n", (do_write ? "yes" : "no"), write_method, (do_read ? "yes" : "no"), read_method); alloc_vars(); if (do_write) { adios_init_noxml (comm); adios_allocate_buffer (ADIOS_BUFFER_ALLOC_NOW, 10); } if (do_read) { err = adios_read_init_method(read_method, comm, "verbose=2"); if (err) { printE ("%s\n", adios_errmsg()); } } if (do_write) { adios_declare_group (&m_adios_group, "selections", "iter", adios_flag_yes); adios_select_method (m_adios_group, write_method, "verbose=2", ""); define_vars(); for (step=0; step<NSTEPS; step++) { if (!err) { set_vars (step); err = write_file (step); sleep(1); } } adios_free_group (m_adios_group); } if (!err && do_read) err = read_points (); //if (!err && do_read) // err = read_writerblocks (); if (do_read) { adios_read_finalize_method (read_method); } fini_vars(); if (do_write) { adios_finalize (rank); } MPI_Finalize (); return err; }
int main (int argc, char ** argv) { int err,i,M; int iconnect; MPI_Init (&argc, &argv); MPI_Comm_rank (wcomm, &wrank); MPI_Comm_size (wcomm, &wsize); if (argc < 2) { Usage(); return 1; } errno = 0; M = strtol (argv[1], NULL, 10); if (errno || M < 1 || M > wsize) { printE("Invalid 1st argument %s\n", argv[1]); Usage(); return 1; } iconnect = (wrank >= wsize-M); // connect to server from ranks N-M, N-M+1, ..., N MPI_Comm_split (wcomm, iconnect, wrank+M-wsize, &subcomm); MPI_Comm_rank (subcomm, &subrank); MPI_Comm_size (subcomm, &subsize); if (iconnect) { if (subsize != M) { printE ("Something wrong with communicator split: N=%d, M=%d, splitted size=%d\n", wsize, M, subsize); return 2; } log ("connect as subrank %d\n", subrank); } alloc_vars(); adios_read_init_method(ADIOS_READ_METHOD_DATASPACES, subcomm, "verbose=4"); adios_init_noxml (subcomm); adios_allocate_buffer (ADIOS_BUFFER_ALLOC_NOW, 1); if (iconnect) { adios_declare_group (&m_adios_group, "connect", "iter", adios_flag_yes); adios_select_method (m_adios_group, "DATASPACES", "verbose=4", ""); adios_define_var (m_adios_group, "ldim1", "", adios_integer, 0, 0, 0); adios_define_var (m_adios_group, "gdim1", "", adios_integer, 0, 0, 0); adios_define_var (m_adios_group, "offs1", "", adios_integer, 0, 0, 0); adios_define_var (m_adios_group, "a1", "", adios_integer, "ldim1", "gdim1", "offs1"); for (i=0; i<NSTEPS; i++) { if (!err) { set_vars (i); err = write_file (i); } } } log ("done with work, sync with others...\n"); MPI_Barrier (wcomm); log ("call adios_finalize...\n"); adios_finalize (wrank); log ("call adios_read_finalize_method...\n"); adios_read_finalize_method (ADIOS_READ_METHOD_DATASPACES); fini_vars(); MPI_Finalize (); return err; }
int main (int argc, char ** argv ) { MPI_Comm comm = MPI_COMM_WORLD; int rank; int ndx, ndy; // size of array per processor double *data; double *X; //X coordinate double *Y; //Y coordinate // Offsets and sizes int offs_x, offs_y; //offset in x and y direction int nx_local, ny_local; //local address int nx_global, ny_global; //global address int posx, posy; // position index in the array int i,j; /* ADIOS variables declarations for matching gwrite_temperature.ch */ uint64_t adios_groupsize, adios_totalsize; int64_t adios_handle; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &nproc); if (processArgs(argc, argv)) { return 1; } //will work with each core writing ndx = 65, ndy = 129, (65*3,129*4) global ndx = 65; ndy = 129; //2D array with block,block decomposition posx = rank%npx; // 1st dim posy = rank/npx; // 2nd dim offs_x = posx * ndx; offs_y = posy * ndy; nx_local = ndx; ny_local = ndy; nx_global = npx * ndx; ny_global = npy * ndy; data = malloc (ndx * ndy * sizeof(double)); for( i = 0; i < ndx; i++ ) for( j = 0; j < ndy; j++) data[i*ndy + j] = 1.0*rank; X = malloc (ndx * sizeof(double)); for( i = 0; i < ndx; i++ ) //X[i] = 0.1*i*i+ndx*posx; X[i] = 0.1*(i+offs_x)*(i+offs_x); Y = malloc (ndy * sizeof(double)); for( i = 0; i < ndy; i++ ) //Y[i] = 0.1*i*i+ndx*posy; Y[i] = 0.1*(i+offs_y)*(i+offs_y); adios_init ("rectilinear2d.xml", comm); adios_open (&adios_handle, "rectilinear2d", "rectilinear2d.bp", "w", comm); adios_groupsize = 7*sizeof(int) \ + sizeof(double) * (nx_local*ny_local) \ + sizeof(double) * (nx_local) \ + sizeof(double) * (ny_local); adios_group_size (adios_handle, adios_groupsize, &adios_totalsize); adios_write (adios_handle, "nproc", &nproc); adios_write (adios_handle, "nx_global", &nx_global); adios_write (adios_handle, "ny_global", &ny_global); adios_write (adios_handle, "offs_x", &offs_x); adios_write (adios_handle, "offs_y", &offs_y); adios_write (adios_handle, "nx_local", &nx_local); adios_write (adios_handle, "ny_local", &ny_local); if( rank < npx ) { adios_write (adios_handle, "X", X); } //printf ("rank %d: check if to print Y, rank%%npx=%d offs_y=%d\n", rank, rank%npx, offs_y); if( rank % npx == 0 ) { adios_write (adios_handle, "Y", Y); } adios_write (adios_handle, "data", data); adios_close (adios_handle); MPI_Barrier (comm); free (data); free (X); free (Y); adios_finalize (rank); MPI_Finalize (); return 0; }
int worker(int argc, char* argv[]) { TAU_PROFILE_TIMER(timer, __func__, __FILE__, TAU_USER); TAU_PROFILE_START(timer); my_printf("%d of %d In worker B\n", myrank, commsize); static bool announced = false; /* validate input */ validate_input(argc, argv); my_printf("Worker B will execute until it sees n iterations.\n", iterations); /* ADIOS: These declarations are required to match the generated * gread_/gwrite_ functions. (And those functions are * generated by calling 'gpp.py adios_config.xml') ... * EXCEPT THAT THE generation of Reader code is broken. * So, we will write the reader code manually. */ uint64_t adios_groupsize; uint64_t adios_totalsize; uint64_t adios_handle; void * data = NULL; uint64_t start[2], count[2]; int i, j, steps = 0; int NX = 10; int NY = 1; double t[NX]; double p[NX]; /* ADIOS: Can duplicate, split the world, whatever. * This allows you to have P writers to N files. * With no splits, everyone shares 1 file, but * can write lock-free by using different areas. */ MPI_Comm adios_comm, adios_comm_b_to_c; adios_comm = MPI_COMM_WORLD; //MPI_Comm_dup(MPI_COMM_WORLD, &adios_comm); adios_comm_b_to_c = MPI_COMM_WORLD; //MPI_Comm_dup(MPI_COMM_WORLD, &adios_comm_b_to_c); enum ADIOS_READ_METHOD method = ADIOS_READ_METHOD_FLEXPATH; adios_read_init_method(method, adios_comm, "verbose=3"); if (adios_errno != err_no_error) { fprintf (stderr, "rank %d: Error %d at init: %s\n", myrank, adios_errno, adios_errmsg()); exit(4); } if (send_to_c) { adios_init("adios_config.xml", adios_comm); } /* ADIOS: Set up the adios communications and buffers, open the file. */ ADIOS_FILE *fp; // file handler ADIOS_VARINFO *vi; // information about one variable ADIOS_SELECTION * sel; char adios_filename_a_to_b[256]; char adios_filename_b_to_c[256]; enum ADIOS_LOCKMODE lock_mode = ADIOS_LOCKMODE_NONE; double timeout_sec = 1.0; sprintf(adios_filename_a_to_b, "adios_a_to_b.bp"); sprintf(adios_filename_b_to_c, "adios_b_to_c.bp"); my_printf ("rank %d: Worker B opening file: %s\n", myrank, adios_filename_a_to_b); fp = adios_read_open(adios_filename_a_to_b, method, adios_comm, lock_mode, timeout_sec); if (adios_errno == err_file_not_found) { fprintf (stderr, "rank %d: Stream not found after waiting %d seconds: %s\n", myrank, timeout_sec, adios_errmsg()); exit(1); } else if (adios_errno == err_end_of_stream) { // stream has been gone before we tried to open fprintf (stderr, "rank %d: Stream terminated before open. %s\n", myrank, adios_errmsg()); exit(2); } else if (fp == NULL) { // some other error happened fprintf (stderr, "rank %d: Error %d at opening: %s\n", myrank, adios_errno, adios_errmsg()); exit(3); } else { my_printf("Found file %s\n", adios_filename_a_to_b); my_printf ("File info:\n"); my_printf (" current step: %d\n", fp->current_step); my_printf (" last step: %d\n", fp->last_step); my_printf (" # of variables: %d:\n", fp->nvars); vi = adios_inq_var(fp, "temperature"); adios_inq_var_blockinfo(fp, vi); printf ("ndim = %d\n", vi->ndim); printf ("nsteps = %d\n", vi->nsteps); printf ("dims[%llu][%llu]\n", vi->dims[0], vi->dims[1]); uint64_t slice_size = vi->dims[0]/commsize; if (myrank == commsize-1) { slice_size = slice_size + vi->dims[0]%commsize; } start[0] = myrank * slice_size; count[0] = slice_size; start[1] = 0; count[1] = vi->dims[1]; data = malloc (slice_size * vi->dims[1] * 8); /* Processing loop over the steps (we are already in the first one) */ while (adios_errno != err_end_of_stream && steps < iterations) { steps++; // steps start counting from 1 TAU_PROFILE_TIMER(adios_recv_timer, "ADIOS recv", __FILE__, TAU_USER); TAU_PROFILE_START(adios_recv_timer); sel = adios_selection_boundingbox (vi->ndim, start, count); adios_schedule_read (fp, sel, "temperature", 0, 1, data); adios_perform_reads (fp, 1); if (myrank == 0) printf ("--------- B Step: %d --------------------------------\n", fp->current_step); #if 0 printf("B rank=%d: [0:%lld,0:%lld] = [", myrank, vi->dims[0], vi->dims[1]); for (i = 0; i < slice_size; i++) { printf (" ["); for (j = 0; j < vi->dims[1]; j++) { printf ("%g ", *((double *)data + i * vi->dims[1] + j)); } printf ("]"); } printf (" ]\n\n"); #endif // advance to 1) next available step with 2) blocking wait adios_advance_step (fp, 0, timeout_sec); if (adios_errno == err_step_notready) { printf ("B rank %d: No new step arrived within the timeout. Quit. %s\n", myrank, adios_errmsg()); break; // quit while loop } TAU_PROFILE_STOP(adios_recv_timer); /* Do some exchanges with neighbors */ //do_neighbor_exchange(); /* "Compute" */ compute(steps); for (i = 0; i < NX; i++) { t[i] = steps*100.0 + myrank*NX + i; } for (i = 0; i < NY; i++) { p[i] = steps*1000.0 + myrank*NY + i; } if (send_to_c) { TAU_PROFILE_TIMER(adios_send_timer, "ADIOS send", __FILE__, TAU_USER); TAU_PROFILE_START(adios_send_timer); /* ADIOS: write to the next application in the workflow */ if (steps == 0) { adios_open(&adios_handle, "b_to_c", adios_filename_b_to_c, "w", adios_comm_b_to_c); } else { adios_open(&adios_handle, "b_to_c", adios_filename_b_to_c, "a", adios_comm_b_to_c); } /* ADIOS: Actually write the data out. * Yes, this is the recommended method, and this way, changes in * configuration with the .XML file will, even in the worst-case * scenario, merely require running 'gpp.py adios_config.xml' * and typing 'make'. */ #include "gwrite_b_to_c.ch" /* ADIOS: Close out the file completely and finalize. * If MPI is being used, this must happen before MPI_Finalize(). */ adios_close(adios_handle); TAU_PROFILE_STOP(adios_send_timer); #if 1 if (!announced) { SOS_val foo; foo.i_val = NX; SOS_pack(example_pub, "NX", SOS_VAL_TYPE_INT, foo); SOS_announce(example_pub); SOS_publish(example_pub); announced = true; } #endif } MPI_Barrier(adios_comm_b_to_c); } MPI_Barrier(MPI_COMM_WORLD); adios_read_close(fp); /* ADIOS: Close out the file completely and finalize. * If MPI is being used, this must happen before MPI_Finalize(). */ adios_read_finalize_method(method); } if (send_to_c) { adios_finalize(myrank); } free(data); //MPI_Comm_free(&adios_comm); //MPI_Comm_free(&adios_comm_b_to_c); TAU_PROFILE_STOP(timer); /* exit */ return 0; }
int main (int argc, char ** argv) { char filename [256]; char color_str[256]; int rank, size, i, color; int NX = 100, Global_bounds, Offsets; double t[NX]; MPI_Comm comm = MPI_COMM_WORLD; /* ADIOS variables declarations for matching gwrite_temperature.ch */ uint64_t adios_groupsize, adios_totalsize; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); Global_bounds = NX * size; strcpy (filename, "adios_global_aggregate_by_color.bp"); adios_init_noxml (comm); adios_allocate_buffer (ADIOS_BUFFER_ALLOC_NOW, 10); int64_t m_adios_group; int64_t m_adios_file; adios_declare_group (&m_adios_group, "restart", "iter", adios_flag_yes); // split into 2 groups color = (rank % 2 == 0 ? 0 : 1); sprintf (color_str, "color=%d", color); adios_select_method (m_adios_group, "MPI", color_str, ""); adios_define_var (m_adios_group, "NX" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "Global_bounds" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "Offsets" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "temperature" ,"", adios_double ,"NX", "Global_bounds", "Offsets"); adios_open (&m_adios_file, "restart", filename, "w", comm); adios_groupsize = 4 + 4 + 4 + NX * 8; adios_group_size (m_adios_file, adios_groupsize, &adios_totalsize); adios_write(m_adios_file, "NX", (void *) &NX); adios_write(m_adios_file, "Global_bounds", (void *) &Global_bounds); Offsets = rank * NX; adios_write(m_adios_file, "Offsets", (void *) &Offsets); for (i = 0; i < NX; i++) t[i] = Offsets + i; adios_write(m_adios_file, "temperature", t); adios_close (m_adios_file); MPI_Barrier (comm); adios_finalize (rank); MPI_Finalize (); return 0; }
int main (int argc, char ** argv) { int i = 0; if(argc < 4) { printf("wrong args\n"); usage(); return -1; } DIM_GLOBAL = atoi (argv[1]); DIM_LOCAL = atoi (argv[2]); char* option = argv[3]; char bp_file_name[NAME_LEN] = {0}; char xml_file_name[NAME_LEN] = {0}; snprintf(bp_file_name, NAME_LEN-1, "output/%s.bp", option); snprintf(xml_file_name, NAME_LEN-1, "conf/%s.xml", option); // MPI related intialization int rank, nproc; MPI_Comm comm = MPI_COMM_WORLD; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &nproc); double t1 = 0.0; double t2 = 0.0; double t3 = 0.0; double t4 = 0.0; // variable dimensions int gndx = DIM_GLOBAL; int gndy = DIM_GLOBAL; int gndz = DIM_GLOBAL; int ndx = DIM_LOCAL; int ndy = DIM_LOCAL; int ndz = DIM_LOCAL; int npx = gndx / ndx; int npy = gndy / ndy; int npz = gndz / ndz; if(nproc != npx * npy * npz) { printf("process num error! nproc != npx * npy * npz\n"); MPI_Finalize(); return -1; } int posx = rank / (npx * npy); int posy = rank % (npx * npy) / npy; int posz = rank % (npx * npy) % npy; // posx = mod(rank, npx) // 1st dim easy: 0, npx, 2npx... are in the same X position // posy = mod(rank/npx, npy) // 2nd dim: (0, npx-1) have the same dim (so divide with npx first) // posz = rank/(npx*npy) // 3rd dim: npx*npy processes belong into one dim int offx = posx * ndx; int offy = posy * ndy; int offz = posz * ndz; int timesteps = 0; srand(0); // all procs generate the same random datasets double* double_xyz = (double*) malloc (sizeof(double) * ndx * ndy * ndz); for(i = 0; i < ndx * ndy * ndz; i++) { double_xyz[i] = (double) rand () / RAND_MAX; } int adios_err; uint64_t adios_groupsize, adios_totalsize; int64_t adios_handle; if(rank == 0) t3 = dclock(); MPI_Barrier(comm); t1 = dclock(); adios_init (xml_file_name, comm); adios_open (&adios_handle, GROUP_NAME, bp_file_name, "w", comm); ////////////////////////////////////////////////////////////////////////////////////// adios_groupsize = 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 8 * (ndx) * (ndy) * (ndz) + 8 * (ndx) * (ndy) * (ndz); adios_group_size (adios_handle, adios_groupsize, &adios_totalsize); adios_write (adios_handle, "gndx", &gndx); adios_write (adios_handle, "gndy", &gndy); adios_write (adios_handle, "gndz", &gndz); adios_write (adios_handle, "nproc", &nproc); adios_write (adios_handle, "npx", &npx); adios_write (adios_handle, "npy", &npy); adios_write (adios_handle, "npz", &npz); adios_write (adios_handle, "offx", &offx); adios_write (adios_handle, "offy", &offy); adios_write (adios_handle, "offz", &offz); adios_write (adios_handle, "ndx", &ndx); adios_write (adios_handle, "ndy", &ndy); adios_write (adios_handle, "ndz", &ndz); adios_write (adios_handle, "temperature", double_xyz); adios_write (adios_handle, "preasure", double_xyz); ////////////////////////////////////////////////////////////////////////////////////// adios_close (adios_handle); /* t2 = dclock(); double tt = t2 - t1; MPI_Barrier (comm); if(rank == 0) { t4 = dclock(); } */ adios_finalize (rank); /* double* all_tt = (double*) malloc (sizeof(double) * nproc); // calling MPI_Gather int rtn = MPI_Gather (&tt, 1, MPI_DOUBLE, all_tt, 1, MPI_DOUBLE, 0, comm); MPI_Barrier (comm); if(rank == 0) { int k = 0; double sum = 0.0; for(k = 0; k < nproc; k++) { // printf("proc %d time %f\n", k, all_tt[k]); sum += all_tt[k]; } printf("%s average_write_time %f\n", xml_file_name, sum / nproc); printf("%s total_write_time %f\n", xml_file_name, t4 - t3); } if(all_tt) { free(all_tt); } */ MPI_Finalize (); if(double_xyz) { free(double_xyz); } return 0; }
int main (int argc, char ** argv) { //For varriable definitions: //gbounds = global bounds string, lbounds = local bounds string, offs = offset string, tstring = temp string to hold temperary stuff char gbounds[1007], lbounds[1007], offs[1007],tstring[100]; //size = number of cores, gidx = adios group index int rank, size, gidx, i, j, k, ii; //data = pointer to read-in data void * data = NULL; uint64_t s[] = {0,0,0,0,0,0,0,0,0,0}; //starting offset uint64_t c[] = {1,1,1,1,1,1,1,1,1,1}; //chunk block array uint64_t bytes_read = 0; int element_size; int64_t new_adios_group, m_adios_file; uint64_t var_size; //portion_bound, uint64_t adios_groupsize, adios_totalsize; int read_buffer; //possible maximum size you the user would like for each chunk in MB int write_buffer = 1536; //actual buffer size you use in MB int itime; int WRITEME=1; uint64_t chunk_size; //chunk size in # of elements char *var_path, *var_name; // full path cut into dir path and name MPI_Init(&argc,&argv); MPI_Comm_rank(comm,&rank); MPI_Comm_size(comm,&size); // timing numbers // we will time: // 0: adios_open, adios_group_size // 1: the total time to read in the data // 2: times around each write (will only work if we do NOT buffer.... // 3: the time in the close // 4: fopen, fclose // 5: total time // timers: the total I/O time int timers = 6; double start_time[timers], end_time[timers], total_time[timers]; if (TIMING==100) { for (itime=0;itime<timers;itime++) { start_time[itime] = 0; end_time[itime] = 0; total_time[itime]=0; } //MPI_Barrier(MPI_COMM_WORLD); start_time[5] = MPI_Wtime(); } if(rank==0) printf("converting...\n"); if (argc < 5) { if (rank==0) printf("Usage: %s <BP-file> <ADIOS-file> read_buffer(MB) write_buffer(MB) METHOD (LUSTRE_strip_count) (LUSTRE_strip_size) (LUSTRE_block_size)\n", argv[0]); return 1; } if(TIMING==100) start_time[4] = MPI_Wtime(); ADIOS_FILE * f = adios_fopen (argv[1], MPI_COMM_SELF); if(TIMING==100){ end_time[4] = MPI_Wtime(); total_time[4] = end_time[4]-start_time[4]; } adios_init_noxml(comm); // no xml will be used to write the new adios file read_buffer = atoi(argv[3]); write_buffer = atoi(argv[4]); adios_allocate_buffer (ADIOS_BUFFER_ALLOC_NOW, write_buffer); // allocate MB buffer if (f == NULL) { printf("rank=%d, file cant be opened\n", rank); if (DEBUG) printf ("%s\n", adios_errmsg()); return -1; } for (gidx = 0; gidx < f->groups_count; gidx++) { //group part adios_groupsize = 0; ADIOS_GROUP * g = adios_gopen (f, f->group_namelist[gidx]); if (g == NULL) { if (DEBUG) printf ("%s\n", adios_errmsg()); printf("rank %d: group cannot be opened.\n", rank); return -1; } /* First create all of the groups */ // now I need to create this group in the file that will be written adios_declare_group(&new_adios_group,f->group_namelist[gidx],"",adios_flag_yes); if(strcmp(argv[5],"MPI_LUSTRE")!=0) //see whether or not the user uses MPI_LUSTRE method adios_select_method (new_adios_group, argv[5], "", ""); //non-MPI_LUSTRE methods... like MPI, POSIX.... else{ char lustre_pars[1000]; strcpy(lustre_pars, ""); strcat(lustre_pars, "stripe_count="); sprintf(tstring, "%d", atoi(argv[6])); strcat(lustre_pars, tstring); strcat(lustre_pars, ",stripe_size="); sprintf(tstring, "%d", atoi(argv[7])); strcat(lustre_pars, tstring); strcat(lustre_pars, ",block_size="); sprintf(tstring, "%d", atoi(argv[8])); strcat(lustre_pars, tstring); if(rank==0) printf("lustre_pars=%s\n", lustre_pars); adios_select_method (new_adios_group, argv[5], lustre_pars, ""); //Use MPI Lustre method } // variable definition part for (i = 0; i < g->vars_count; i++) { ADIOS_VARINFO * v = adios_inq_var_byid (g, i); getbasename (g->var_namelist[i], &var_path, &var_name); if (v->ndim == 0) { // scalars: every process does them the same. adios_define_var(new_adios_group,var_name,var_path,v->type,0,0,0); getTypeInfo( v->type, &element_size); //element_size is size per element based on its type if (v->type == adios_string) { //special case when the scalar is string. adios_groupsize += strlen(v->value); } else { adios_groupsize += element_size; } } else { // vector variables getTypeInfo( v->type, &element_size); var_size=1; for (ii=0;ii<v->ndim;ii++) { var_size*=v->dims[ii]; } uint64_t total_size = var_size; //total_size tells you the total number of elements in the current vector variable var_size*=element_size; //var_size tells you the size of the current vector variable in bytess //re-initialize the s and c variables for(j=0; j<v->ndim; j++){ s[j] = 0; c[j] = 1; } //find the approximate chunk_size you would like to use. chunk_size = calcChunkSize(total_size, read_buffer*1024*1024/element_size, size); //set the chunk block array with the total size as close to chunk_size as possible calcC(chunk_size, v, c); strcpy(lbounds,""); for(j=0; j<v->ndim; j++){ sprintf(tstring, "%" PRId64 ",", c[j]); strcat(lbounds, tstring); } printf("rank=%d, name=%s, chunk_size1=%" PRId64 " c[]=%s\n",rank,g->var_namelist[i],chunk_size,lbounds); chunk_size = 1; for(ii=0; ii<v->ndim; ii++) //reset chunk_size based on the created c. Now the chunk_size is exact. chunk_size *= c[ii]; //current step points to where the process is in processing the vector. First sets with respect to rank. uint64_t current_step = rank*chunk_size; //First advance the starting point s by current_step. Of course, you don't do it if the current_step exceeds total_size. if(current_step<total_size) rS(v, s, current_step, rank); uint64_t elements_defined = 0; //First, the number of elements you have defined is 0. //You (the process) process your part of the vector when your current_step is smaller than the total_size while(current_step < total_size) { //ts, temporary s, is introduced for the sake of the inner do while loop below. Copy s to ts. uint64_t ts[] = {0,0,0,0,0,0,0,0,0,0}; arrCopy(s, ts); //for every outer while iteration, you always have the whole chunk_size remained to process. uint64_t remain_chunk = chunk_size; if(current_step+chunk_size>total_size) //except when you are nearing the end of the vector.... remain_chunk = total_size-current_step; //tc, temporary c, is introduced for the sake of the inner do while loop below. Copy s to tc. uint64_t tc[] = {1,1,1,1,1,1,1,1,1,1}; arrCopy(c, tc); do{ //how much of the remain chunk you wanna process? initially you think you can do all of it.... uint64_t used_chunk = remain_chunk; //you feel like you should process the vector with tc block size, but given ts, you might go over bound. uint64_t uc[] = {1,1,1,1,1,1,1,1,1,1}; //so you verify it by setting a new legit chunck block uc, and getting a new remain_chunk. remain_chunk = checkBound(v, ts, tc, uc, remain_chunk); //you check whether or not ts+uc goes over the bound. This is just checking to make sure there's no error. //Thereotically, there should be no problem at all. checkOverflow(0, v, ts, uc); //the below code fragment simply calculates gbounds, and sets place holders for lbounds and offs. strcpy(gbounds,""); strcpy(lbounds,""); strcpy(offs,""); for(j=0; j<v->ndim-1; j++){ sprintf(tstring, "%d,", (int)v->dims[j]); strcat(gbounds, tstring); //sprintf(tstring, "ldim%d_%s,", j, var_name); sprintf(tstring, "ldim%d,", j); strcat(lbounds, tstring); //sprintf(tstring, "offs%d_%s,", j, var_name); sprintf(tstring, "offs%d,", j); strcat(offs, tstring); } sprintf(tstring, "%d", (int)v->dims[v->ndim-1]); strcat(gbounds, tstring); //sprintf(tstring, "ldim%d_%s", v->ndim-1, var_name); sprintf(tstring, "ldim%d", v->ndim-1); strcat(lbounds, tstring); //sprintf(tstring, "offs%d_%s", v->ndim-1, var_name); sprintf(tstring, "offs%d", v->ndim-1); strcat(offs, tstring); //sprintf(tstring, "%d", v->ndim); for(j=0; j<v->ndim; j++){ //sprintf(tstring, "ldim%d_%s", j, var_name); sprintf(tstring, "ldim%d", j); adios_define_var(new_adios_group, tstring, "bp2bp", adios_unsigned_long, 0, 0, 0); //sprintf(tstring, "offs%d_%s", j, var_name); sprintf(tstring, "offs%d", j); adios_define_var(new_adios_group, tstring, "bp2bp", adios_unsigned_long, 0, 0, 0); } adios_define_var(new_adios_group,var_name,var_path,v->type,lbounds,gbounds,offs); if (DEBUG){ strcpy(lbounds,""); strcpy(offs,""); for(j=0; j<v->ndim; j++){ sprintf(tstring, "%" PRId64 ",", ts[j]); strcat(offs, tstring); sprintf(tstring, "%" PRId64 ",", uc[j]); strcat(lbounds, tstring); } printf("rank=%d, name=%s, gbounds=%s: lbounds=%s: offs=%s \n",rank,g->var_namelist[i],gbounds, lbounds, offs); } used_chunk -= remain_chunk; //you get the actual used_chunk here. elements_defined += used_chunk; if(remain_chunk!=0){ rS(v, ts, used_chunk, rank); //advance ts by used_chunk. for(k=0; k<10; k++) tc[k] = 1; calcC(remain_chunk, v, tc); //based on the remain_chunk, calculate new tc chunk block remained to process. } adios_groupsize+= used_chunk*element_size+2*v->ndim*8; }while(remain_chunk!=0); current_step += size*chunk_size; //once a whole chunk_size is processed, advance the current_step in roll-robin manner. if(current_step<total_size){ //advance s in the same way. rS(v, s, size*chunk_size, rank); } } //beside checkOverflow above, here you check whether or not the total number of elements processed across processes matches //the total number of elements in the original vector. if(DEBUG){ uint64_t* sb = (uint64_t *) malloc(sizeof(uint64_t)); uint64_t* rb = (uint64_t *) malloc(sizeof(uint64_t)); sb[0] = elements_defined; MPI_Reduce(sb,rb,1,MPI_UNSIGNED_LONG_LONG,MPI_SUM,0, comm); if(rank==0 && rb[0]!=total_size) printf("some array define mismatch. please use debug mode\n"); free(sb); free(rb); } } free (var_name); free (var_path); } // finished declaring all of the variables // Now we can define the attributes.... for (i = 0; i < g->attrs_count; i++) { enum ADIOS_DATATYPES atype; int asize; void *adata; adios_get_attr_byid (g, i, &atype, &asize, &adata); // if (DEBUG) printf("attribute name=%s\n",g->attr_namelist[i]); adios_define_attribute(new_adios_group,g->attr_namelist[i],"",atype,adata,0); } /*------------------------------ NOW WE WRITE -------------------------------------------- */ // Now we have everything declared... now we need to write them out!!!!!! if (WRITEME==1) { // open up the file for writing.... if (DEBUG) printf("rank=%d, opening file = %s, with group %s, size=%" PRId64 "\n",rank,argv[2],f->group_namelist[gidx],adios_groupsize); if(TIMING==100) start_time[0] = MPI_Wtime(); adios_open(&m_adios_file, f->group_namelist[gidx],argv[2],"w",comm); adios_group_size( m_adios_file, adios_groupsize, &adios_totalsize); //get both the total adios_totalsize and total adios_groupsize summed across processes. uint64_t* sb = (uint64_t *) malloc(sizeof(uint64_t));; uint64_t* rb = (uint64_t *) malloc(sizeof(uint64_t)); sb[0] = adios_groupsize; MPI_Reduce(sb,rb,1,MPI_UNSIGNED_LONG_LONG,MPI_SUM,0, comm); uint64_t* sb2 = (uint64_t *) malloc(sizeof(uint64_t));; uint64_t* rb2 = (uint64_t *) malloc(sizeof(uint64_t)); sb2[0] = adios_totalsize; MPI_Reduce(sb2,rb2,1,MPI_UNSIGNED_LONG_LONG,MPI_SUM,0, comm); if(rank==0){ printf("total adios_totalsize = %" PRId64 "\n", *rb2); printf("total adios_groupsize = %" PRId64 "\n", *rb); } free(sb); free(rb); free(sb2); free(rb2); if (TIMING==100) { end_time[0] = MPI_Wtime(); total_time[0]+=end_time[0] - start_time[0]; //variable definition time taken } // now we have to write out the variables.... since they are all declared now // This will be the place we actually write out the data!!!!!!!! for (i = 0; i < g->vars_count; i++) { ADIOS_VARINFO * v = adios_inq_var_byid (g, i); getbasename (g->var_namelist[i], &var_path, &var_name); if (v->ndim == 0) { if (DEBUG) { printf ("ADIOS WRITE SCALAR: rank=%d, name=%s value=", rank,g->var_namelist[i]); print_data (v->value, 0, v->type); printf ("\n"); } if (TIMING==100) { start_time[2] = MPI_Wtime(); } adios_write(m_adios_file,g->var_namelist[i],v->value); if (TIMING==100) { end_time[2] = MPI_Wtime(); total_time[2]+=end_time[2] - start_time[2]; //IO write time... } } else { for(j=0; j<v->ndim; j++){ s[j] = 0; c[j] = 1; } getTypeInfo( v->type, &element_size); uint64_t total_size = 1; for (ii=0;ii<v->ndim;ii++) total_size*=v->dims[ii]; chunk_size = calcChunkSize(total_size, read_buffer*1024*1024/element_size, size); calcC(chunk_size, v, c); chunk_size = 1; for(ii=0; ii<v->ndim; ii++) chunk_size *= c[ii]; uint64_t current_step = rank*chunk_size; if(current_step<total_size) rS(v, s, current_step, rank); uint64_t elements_written = 0; while(current_step < total_size) { uint64_t ts[] = {0,0,0,0,0,0,0,0,0,0}; arrCopy(s, ts); uint64_t remain_chunk = chunk_size; if(current_step+chunk_size>total_size) remain_chunk = total_size-current_step; uint64_t tc[] = {1,1,1,1,1,1,1,1,1,1}; arrCopy(c, tc); do{ uint64_t uc[] = {1,1,1,1,1,1,1,1,1,1}; uint64_t used_chunk = remain_chunk; remain_chunk = checkBound(v, ts, tc, uc, remain_chunk); checkOverflow(1, v, ts, uc); used_chunk -= remain_chunk; elements_written += used_chunk; //allocated space for data read-in data = (void *) malloc(used_chunk*element_size); if (TIMING==100) { start_time[1] = MPI_Wtime(); } if(PERFORMANCE_CHECK) printf("rank=%d, read start\n",rank); bytes_read = adios_read_var_byid(g,v->varid,ts,uc,data); if(PERFORMANCE_CHECK) printf("rank=%d, read end\n",rank); if (TIMING==100) { end_time[1] = MPI_Wtime(); total_time[1]+=end_time[1] -start_time[1]; //IO read time } if (DEBUG) printf ("ADIOS WRITE: rank=%d, name=%s datasize=%" PRId64 "\n",rank,g->var_namelist[i],bytes_read); if (TIMING==100) { start_time[2] = MPI_Wtime(); } if (DEBUG){ printf("rank=%d, write ts=",rank); int k; for(k=0; k<v->ndim; k++) printf("%" PRId64 ",", ts[k]); printf(" uc="); for(k=0; k<v->ndim; k++) printf("%" PRId64 ",", uc[k]); printf("\n"); } //local bounds and offets placeholders are not written out with actual values. if(PERFORMANCE_CHECK) printf("rank=%d, adios write start\n", rank); for(k=0; k<v->ndim; k++){ //sprintf(tstring, "ldim%d_%s", k, var_name); sprintf(tstring, "ldim%d", k); if (DEBUG) { printf ("ADIOS WRITE DIMENSION: rank=%d, name=%s value=", rank,tstring); print_data (&uc[k], 0, adios_unsigned_long); printf ("\n"); } adios_write(m_adios_file, tstring, &uc[k]); //sprintf(tstring, "offs%d_%s", k, var_name); sprintf(tstring, "offs%d", k); if (DEBUG) { printf ("ADIOS WRITE OFFSET: rank=%d, name=%s value=", rank,tstring); print_data (&ts[k], 0, adios_unsigned_long); printf ("\n"); } adios_write(m_adios_file, tstring, &ts[k]); } adios_write(m_adios_file,g->var_namelist[i],data); if(PERFORMANCE_CHECK) printf("rank=%d, adios write end\n", rank); if (TIMING==100) { end_time[2] = MPI_Wtime(); total_time[2]+=end_time[2] - start_time[2]; //IO write time } free(data); if(remain_chunk!=0){ rS(v, ts, used_chunk, rank); for(k=0; k<10; k++) tc[k] = 1; calcC(remain_chunk, v, tc); } }while(remain_chunk!=0); current_step += size*chunk_size; if(current_step<total_size) rS(v, s, size*chunk_size,rank); } if(DEBUG){ uint64_t* sb = (uint64_t *) malloc(sizeof(uint64_t));; uint64_t* rb = (uint64_t *) malloc(sizeof(uint64_t)); sb[0] = elements_written; MPI_Reduce(sb,rb,1,MPI_UNSIGNED_LONG_LONG,MPI_SUM,0, comm); if(rank==0 && rb[0]!=total_size) printf("some array read mismatch. please use debug mode\n"); free(sb); free(rb); } } free (var_name); free (var_path); }// end of the writing of the variable.. if (TIMING==100) { start_time[3] = MPI_Wtime(); } if(PERFORMANCE_CHECK) printf("rank=%d, adios_close start\n", rank); adios_close(m_adios_file); if(PERFORMANCE_CHECK) printf("rank=%d, adios_close end\n", rank); if (TIMING==100) { end_time[3] = MPI_Wtime(); total_time[3]+=end_time[3] - start_time[3]; } adios_gclose(g); } //end of WRITEME } // end of all of the groups if(rank==0) printf("conversion done!\n"); if(TIMING==100) start_time[4] = MPI_Wtime(); adios_fclose(f); if(TIMING==100){ end_time[4] = MPI_Wtime(); total_time[4] = total_time[4]+end_time[4]-start_time[4]; } adios_finalize(rank); // now, we write out the timing data, for each category, we give max, min, avg, std, all in seconds, across all processes. if(TIMING==100){ // 0: adios_open, adios_group_size // 1: the total time to read in the data // 2: times around each write (will only work if we do NOT buffer.... // 3: the time in the close // 4: fopen, fclose // 5: total time end_time[5] = MPI_Wtime(); total_time[5] = end_time[5] - start_time[5]; double sb[7]; sb[0] = total_time[1]; sb[1] = total_time[4]; //read_var, fopen+fclose sb[2] = sb[0]+sb[1]; sb[3] = total_time[0]; sb[4] = total_time[2]+total_time[3]; //adios_open+adios_group_size, write+close sb[5] = sb[3]+sb[4]; sb[6] = total_time[5]; //total double * rb = NULL; if(rank==0) rb = (double *)malloc(size*7*sizeof(double)); //MPI_Barrier(comm); MPI_Gather(sb, 7, MPI_DOUBLE, rb, 7, MPI_DOUBLE, 0, comm); if(rank==0){ double read_avg1 = 0; double read_avg2 = 0; double tread_avg = 0; double write_avg1 = 0; double write_avg2 = 0; double twrite_avg = 0; double total_avg = 0; for(j=0; j<size; j++){ read_avg1 += rb[7*j]; read_avg2 += rb[7*j+1]; tread_avg += rb[7*j+2]; write_avg1 += rb[7*j+3]; write_avg2 += rb[7*j+4]; twrite_avg += rb[7*j+5]; total_avg += rb[7*j+6]; } read_avg1 /= size; read_avg2 /= size; tread_avg /= size; write_avg1 /= size; write_avg2 /= size; twrite_avg /= size; total_avg /= size; double read1_max = rb[0]; double read1_min = rb[0]; double read1_std = rb[0]-read_avg1; read1_std *= read1_std; double read2_max = rb[1]; double read2_min = rb[1]; double read2_std = rb[1]-read_avg2; read2_std *= read2_std; double tread_max = rb[2]; double tread_min = rb[2]; double tread_std = rb[2]-tread_avg; tread_std *= tread_std; double write1_max = rb[3]; double write1_min = rb[3]; double write1_std = rb[3]-write_avg1; write1_std *= write1_std; double write2_max = rb[4]; double write2_min = rb[4]; double write2_std = rb[4]-write_avg2; write2_std *= write2_std; double twrite_max = rb[5]; double twrite_min = rb[5]; double twrite_std = rb[5]-twrite_avg; twrite_std *= twrite_std; double total_max = rb[6]; double total_min = rb[6]; double total_std = rb[6]-total_avg; total_std *= total_std; for(j=1; j<size; j++){ if(rb[7*j]>read1_max) read1_max = rb[7*j]; else if(rb[7*j]<read1_min) read1_min = rb[7*j]; double std = rb[7*j]-read_avg1; std *= std; read1_std += std; if(rb[7*j+1]>read2_max) read2_max = rb[7*j+1]; else if(rb[7*j+1]<read2_min) read2_min = rb[7*j+1]; std = rb[7*j+1]-read_avg2; std *= std; read2_std += std; if(rb[7*j+2]>tread_max) tread_max = rb[7*j+2]; else if(rb[7*j+2]<tread_min) tread_min = rb[7*j+2]; std = rb[7*j+2]-tread_avg; std *= std; tread_std += std; if(rb[7*j+3]>write1_max) write1_max = rb[7*j+3]; else if(rb[7*j+3]<write1_min) write1_min = rb[7*j+3]; std = rb[7*j+3]-write_avg1; std *= std; write1_std += std; if(rb[7*j+4]>write2_max) write2_max = rb[7*j+4]; else if(rb[7*j+4]<write2_min) write2_min = rb[7*j+4]; std = rb[7*j+4]-write_avg2; std *= std; write2_std += std; if(rb[7*j+5]>twrite_max) twrite_max = rb[7*j+5]; else if(rb[7*j+5]<twrite_min) twrite_min = rb[7*j+5]; std = rb[7*j+5]-twrite_avg; std *= std; twrite_std += std; if(rb[7*j+6]>total_max) total_max = rb[7*j+6]; else if(rb[7*j+6]<total_min) total_min = rb[7*j+6]; std = rb[7*j+6]-total_avg; std *= std; total_std += std; } read1_std /= size; read1_std = sqrt(read1_std); read2_std /= size; read2_std = sqrt(read2_std); tread_std /= size; tread_std = sqrt(tread_std); write1_std /= size; write1_std = sqrt(write1_std); write2_std /= size; write2_std = sqrt(write2_std); twrite_std /= size; twrite_std = sqrt(twrite_std); total_std /= size; total_std = sqrt(total_std); printf("---type--- max\tmin\tavg\tstd\n"); printf("---read_var--- %lf\t%lf\t%lf\t%lf\n", read1_max, read1_min, read_avg1, read1_std); printf("---fopen+fclose--- %lf\t%lf\t%lf\t%lf\n", read2_max, read2_min, read_avg2, read2_std); printf("---total_read--- %lf\t%lf\t%lf\t%lf\n", tread_max, tread_min, tread_avg, tread_std); printf("---adios_open+adios_groupsize--- %lf\t%lf\t%lf\t%lf\n", write1_max, write1_min, write_avg1, write1_std); printf("---write+close--- %lf\t%lf\t%lf\t%lf\n", write2_max, write2_min, write_avg2, write2_std); printf("---total_write--- %lf\t%lf\t%lf\t%lf\n", twrite_max, twrite_min, twrite_avg, twrite_std); printf("---total--- %lf\t%lf\t%lf\t%lf\n", total_max, total_min, total_avg, total_std); free(rb); } } // if (TIMING==100 && rank==0) { // printf("------------------------------------------------------------------\n"); // printf("Define variables = %lf\n",total_time[0]); // printf("Read variables = %lf\n",total_time[1]); // printf("Write variables = %lf\n",total_time[2]); // printf("Close File for write = %lf\n",total_time[3]); // printf("Total write time = %lf\n",total_time[2] + total_time[3]); // for (itime=0;itime<timers-1;itime++) // total_time[timers-1]+=total_time[itime]; // printf("Total I/O time = %lf\n",total_time[timers-1]); // } MPI_Finalize(); return(0); }
int main (int argc, char ** argv) { char filename [256]; int rank, size, i, j, step, block; int Offset; int NX = 2; // number of records written per step per process int Width=20; int sub_blocks = 2; // number of record-blocks written per process in one step int steps = 3; char t[NX][Width]; MPI_Comm comm = MPI_COMM_WORLD; /* ADIOS variables declarations for matching gwrite_temperature.ch */ int adios_err; uint64_t adios_groupsize, adios_totalsize; int64_t adios_handle; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); //Global_bounds = sub_blocks * NX * size; strcpy (filename, "steps.bp"); adios_init_noxml (comm); adios_set_max_buffer_size (1); int64_t m_adios_group; int64_t m_adios_file; adios_declare_group (&m_adios_group, "steps", "", adios_flag_yes); adios_select_method (m_adios_group, "MPI", "", ""); adios_define_var (m_adios_group, "NX" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "Width" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "nproc" ,"", adios_integer ,0, 0, 0); for (i=0;i<sub_blocks;i++) { adios_define_var (m_adios_group, "record" ,"", adios_byte ,"NX,Width", "", ""); } for (step=0; step<steps; step++) { adios_open (&m_adios_file, "steps", filename, "a", comm); adios_groupsize = sub_blocks * (4 + 4 + 4 + (uint64_t) NX * (uint64_t)Width); adios_group_size (m_adios_file, adios_groupsize, &adios_totalsize); adios_write(m_adios_file, "nproc", (void *) &size); adios_write(m_adios_file, "NX", (void *) &NX); adios_write(m_adios_file, "Width", (void *) &Width); /* now we will write the data for each sub block */ for (block=0;block<sub_blocks;block++) { for (i = 0; i < NX; i++) //print 19 chars here + '\0' sprintf (t[i], "r%2d b%2d s%2d i%2d ", rank, block, step, i); adios_write(m_adios_file, "record", t); } adios_close (m_adios_file); } MPI_Barrier (comm); adios_finalize (rank); MPI_Finalize (); return 0; }
int main (int argc, char ** argv) { MPI_Comm comm = MPI_COMM_WORLD; int rank; int ndx, ndy; // size of array per processor double * data; double *X; //X coordinate double *Y; //Y coordinate // Offsets and sizes int offs_x, offs_y; //offset in x and y direction int nx_local, ny_local; //local address int nx_global, ny_global; //global address int posx, posy; // position index in the array int i,j; int64_t m_adios_group; uint64_t adios_groupsize, adios_totalsize; int64_t adios_handle; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &nproc); if (processArgs(argc, argv)) { return 1; } //will work with each core writing ndx = 65, ndy = 129, (65*4,129*3) global ndx = 65; ndy = 129; //2D array with block,block decomposition posx = rank%npx; // 1st dim posy = rank/npx; // 2nd dim offs_x = posx * ndx; offs_y = posy * ndy; nx_local = ndx; ny_local = ndy; nx_global = npx * ndx; ny_global = npy * ndy; data = malloc (ndx * ndy * sizeof(double)); for( i = 0; i < ndx; i++ ) for( j = 0; j < ndy; j++) data[i*ndy + j] = 1.0*rank; X = malloc (ndx * ndy * sizeof(double)); for( i = 0; i < ndx; i++ ) for( j = 0; j < ndy; j++) X[i*ndy + j] = offs_x + posy*ndx + i*ndx/ndx + (double)ndx*j/ndy; Y = malloc (ndx * ndy * sizeof(double)); Y[0] = offs_y; for( i = 0; i < ndx; i++ ) for( j = 0; j < ndy; j++) Y[i*ndy + j] = offs_y + ndy*j/ndy; char * schema_version = "1.1"; char * dimemsions = "nx_global,ny_global"; adios_init_noxml (comm); adios_set_max_buffer_size (50); adios_declare_group (&m_adios_group, "structured2d", "", adios_flag_yes); adios_select_method (m_adios_group, "MPI", "", ""); adios_define_var (m_adios_group, "nx_global" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "ny_global" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "nproc" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "offs_x" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "offs_y" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "nx_local" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "ny_local" ,"", adios_integer ,0, 0, 0); adios_define_var (m_adios_group, "X" ,"", adios_double ,"nx_local,ny_local", "nx_global,ny_global", "offs_x,offs_y"); adios_define_var (m_adios_group, "Y" ,"", adios_double ,"nx_local,ny_local", "nx_global,ny_global", "offs_x,offs_y"); adios_define_var (m_adios_group, "data" ,"", adios_double ,"nx_local,ny_local", "nx_global,ny_global", "offs_x,offs_y"); adios_define_schema_version (m_adios_group, schema_version); adios_define_mesh_structured (dimemsions, "X,Y", "2", m_adios_group, "structuredmesh"); adios_define_mesh_timevarying ("no", m_adios_group, "structuredmesh"); adios_define_var_mesh (m_adios_group, "data", "structuredmesh"); adios_define_var_centering (m_adios_group, "data", "point"); adios_open (&adios_handle, "structured2d", "structured2d_noxml.bp", "w", comm); adios_groupsize = 7*sizeof(int) \ + 3*sizeof(double) * (nx_local*ny_local); adios_group_size (adios_handle, adios_groupsize, &adios_totalsize); adios_write (adios_handle, "nproc", &nproc); adios_write (adios_handle, "nx_global", &nx_global); adios_write (adios_handle, "ny_global", &ny_global); adios_write (adios_handle, "offs_x", &offs_x); adios_write (adios_handle, "offs_y", &offs_y); adios_write (adios_handle, "nx_local", &nx_local); adios_write (adios_handle, "ny_local", &ny_local); adios_write (adios_handle, "X", X); adios_write (adios_handle, "Y", Y); adios_write (adios_handle, "data", data); adios_close (adios_handle); MPI_Barrier (comm); free (data); free (X); free (Y); adios_finalize (rank); MPI_Finalize (); return 0; }
int output_finalize (int rank) { adios_finalize (rank); return 0; }
int main (int argc, char ** argv) { char filename [256]; int rank, size, i, j; int NX = 100, gb, offset; //local/global/offset double t[NX]; int nblocks = 3; MPI_Comm comm = MPI_COMM_WORLD; char g_str[100], o_str[100], l_str[100]; // attributes (from C variables) int someints[5] = {5,4,3,2,1}; double somedoubles[5] = {5.55555, 4.4444, 3.333, 2.22, 1.1}; /* ADIOS variables declarations for matching gwrite_temperature.ch */ uint64_t adios_groupsize, adios_totalsize; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); gb = nblocks * NX * size; sprintf (g_str, "%d", gb); sprintf (l_str, "%d", NX); strcpy (filename, "no_xml_write_byid.bp"); adios_init_noxml (comm); adios_set_max_buffer_size (10); int64_t m_adios_group; int64_t m_adios_file; int64_t var_ids[nblocks]; adios_declare_group (&m_adios_group, "restart", "iter", adios_flag_yes); adios_select_method (m_adios_group, "MPI", "", ""); for (i = 0; i < nblocks; i++) { offset = rank * nblocks * NX + i * NX; sprintf (o_str, "%d", offset); var_ids[i] = adios_define_var (m_adios_group, "temperature" ,"", adios_double ,l_str, g_str, o_str ); adios_set_transform (var_ids[i], "none"); // This is here just for fun uint64_t varsize = adios_expected_var_size(var_ids[i]); // adios_expected_var_size() works here because the definition of the variable // does not depend on any dimension variable (but defined with numerical dimensions) fprintf (stderr, "Temperature block %d is %" PRIu64 " bytes\n", i, varsize); } // add some attributes adios_define_attribute_byvalue (m_adios_group, "single_string","", adios_string, 1, "A single string attribute"); char *strings[] = {"X","Yy","ZzZ"}; adios_define_attribute_byvalue (m_adios_group, "three_strings","", adios_string_array, 3, strings); adios_define_attribute_byvalue (m_adios_group, "single_int", "", adios_integer, 1, &someints); adios_define_attribute_byvalue (m_adios_group, "single_double","", adios_double, 1, &somedoubles); adios_define_attribute_byvalue (m_adios_group, "five_ints", "", adios_integer, 5, &someints); adios_define_attribute_byvalue (m_adios_group, "five_double", "", adios_double, 5, &somedoubles); adios_open (&m_adios_file, "restart", filename, "w", comm); adios_groupsize = nblocks * (4 + 4 + 4 + NX * 8); adios_group_size (m_adios_file, adios_groupsize, &adios_totalsize); /* now we will write the data for each sub block */ for (i = 0; i < nblocks; i++) { offset = rank * nblocks * NX + i * NX; for (j = 0; j < NX; j++) t[j] = offset + j; adios_write_byid(m_adios_file, var_ids[i], t); } adios_close (m_adios_file); MPI_Barrier (comm); adios_finalize (rank); MPI_Finalize (); return 0; }
int main (int argc, char ** argv) { int rank, size; int NX, NY; int len, off; double *t = NULL; MPI_Comm comm = MPI_COMM_WORLD; uint64_t start[2], count[2]; ADIOS_SELECTION *sel; int steps = 0; #ifdef _USE_GNUPLOT int i, j; double *tmp; FILE *pipe; #else // Variables for ADIOS write int64_t adios_handle; uint64_t adios_groupsize, adios_totalsize; char outfn[256]; #endif MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); adios_read_init_method(ADIOS_READ_METHOD_FLEXPATH, comm, ""); ADIOS_FILE* fp = adios_read_open("stream.bp", ADIOS_READ_METHOD_FLEXPATH, comm, ADIOS_LOCKMODE_NONE, 0.0); assert(fp != NULL); ADIOS_VARINFO* nx_info = adios_inq_var( fp, "NX"); ADIOS_VARINFO* ny_info = adios_inq_var( fp, "NY"); NX = *((int *)nx_info->value); NY= *((int*)ny_info->value); len = NX / size; off = len * rank; if (rank == size-1) len = len + NX % size; printf("\trank=%d: NX,NY,len,off = %d\t%d\t%d\t%d\n", rank, NX, NY, len, off); assert(len > 0); t = (double *) malloc(sizeof(double) * len * NY); memset(t, '\0', sizeof(double) * len * NY); assert(t != NULL); start[0] = off; start[1] = 0; count[0] = len; count[1] = NY; // Not working ... //sel = adios_selection_boundingbox (2, start, count); sel = malloc(sizeof(ADIOS_SELECTION)); sel->type=ADIOS_SELECTION_WRITEBLOCK; sel->u.block.index = rank; #ifdef _USE_GNUPLOT if ((NX % size) > 0) { fprintf(stderr, "Equal distribution is required\n"); return -1; } if (rank == 0) { pipe = popen("gnuplot", "w"); fprintf(pipe, "set view map\n"); fprintf(pipe, "set xrange [0:%d]\n", NX-1); tmp = (double *) malloc(sizeof(double) * NX * NY); assert(tmp != NULL); } #else // ADIOS write init adios_init ("adios.xml", comm); #endif //while(adios_errno != err_end_of_stream && adios_errno != err_step_notready) while(1) { steps++; // Reading adios_schedule_read (fp, sel, "var_2d_array", 0, 1, t); adios_perform_reads (fp, 1); printf("step=%d\trank=%d\tfp->current_step=%d\t[%d,%d]\n", steps, rank, fp->current_step, len, NY); /* // Debugging for (i=0; i<len; i++) { printf("%d: rank=%d: t[%d,0:4] = ", steps, rank, off+i); for (j=0; j<5; j++) { printf(", %g", t[i*NY + j]); } printf(" ...\n"); } */ // Do something #ifdef _USE_GNUPLOT // Option 1: plotting MPI_Gather(t, len * NY, MPI_DOUBLE, tmp, len * NY, MPI_DOUBLE, 0, comm); if (rank == 0) { fprintf(pipe, "set title 'Soft X-Rray Signal (shot #%d)'\n", steps); fprintf(pipe, "set xlabel 'Channel#'\n"); fprintf(pipe, "set ylabel 'Timesteps'\n"); fprintf(pipe, "set cblabel 'Voltage (eV)'\n"); # ifndef _GNUPLOT_INTERACTIVE fprintf(pipe, "set terminal png\n"); fprintf(pipe, "set output 'fig%03d.png'\n", steps); # endif fprintf(pipe, "splot '-' matrix with image\n"); //fprintf(pipe, "plot '-' with lines, '-' with lines, '-' with lines\n"); double *sum = calloc(NX, sizeof(double)); for (j = 0; j < NY; j++) { for (i = 0; i < NX; i++) { sum[i] += tmp[i * NY + j]; } } for (j = 0; j < NY; j++) { for (i = 0; i < NX; i++) { fprintf (pipe, "%g ", (-tmp[i * NY + j] + sum[i]/NY)/3276.8); } fprintf(pipe, "\n"); } fprintf(pipe, "e\n"); fprintf(pipe, "e\n"); fflush (pipe); # ifdef _GNUPLOT_INTERACTIVE printf ("Press [Enter] to continue . . ."); fflush (stdout); getchar (); # endif free(sum); } #else // Option 2: BP writing snprintf (outfn, sizeof(outfn), "reader_%3.3d.bp", steps); adios_open (&adios_handle, "reader", outfn, "w", comm); adios_groupsize = 4 * sizeof(int) + sizeof(double) * len * NY; adios_group_size (adios_handle, adios_groupsize, &adios_totalsize); adios_write (adios_handle, "NX", &NX); adios_write (adios_handle, "NY", &NY); adios_write (adios_handle, "len", &len); adios_write (adios_handle, "off", &off); adios_write (adios_handle, "var", t); adios_close (adios_handle); #endif // Advance MPI_Barrier (comm); adios_advance_step(fp, 0, TIMEOUT_SEC); if (adios_errno == err_end_of_stream) { printf("rank %d, Stream terminated. Quit\n", rank); break; // quit while loop } else if (adios_errno == err_step_notready) { printf ("rank %d: No new step arrived within the timeout. Quit.\n", rank); break; // quit while loop } else if (adios_errno != err_no_error) { printf("ADIOS returned code=%d, msg:%s\n", adios_errno, adios_get_last_errmsg()); break; // quit while loop } } // free(t); adios_read_close(fp); //printf("rank %d, Successfully closed stream\n", rank); adios_read_finalize_method(ADIOS_READ_METHOD_FLEXPATH); //printf("rank %d, Successfully finalized read method\n", rank); #ifndef _USE_GNUPLOT adios_finalize (rank); //printf("rank %d, Successfully finalized adios\n", rank); #else if (rank==0) { free(tmp); pclose(pipe); } #endif MPI_Finalize (); return 0; }
int worker(int argc, char* argv[]) { TAU_PROFILE_TIMER(timer, __func__, __FILE__, TAU_USER); TAU_PROFILE_START(timer); static bool announced = false; my_printf("%d of %d In worker A\n", myrank, commsize); /* validate input */ validate_input(argc, argv); my_printf("Worker A will execute %d iterations.\n", iterations); /* ADIOS: These declarations are required to match the generated * gread_/gwrite_ functions. (And those functions are * generated by calling 'gpp.py adios_config.xml') ... */ uint64_t adios_groupsize; uint64_t adios_totalsize; uint64_t adios_handle; char adios_filename[256]; MPI_Comm adios_comm; /* ADIOS: Can duplicate, split the world, whatever. * This allows you to have P writers to N files. * With no splits, everyone shares 1 file, but * can write lock-free by using different areas. */ //MPI_Comm_dup(MPI_COMM_WORLD, &adios_comm); adios_comm = MPI_COMM_WORLD; int NX = 10; int NY = 1; double t[NX]; double p[NX]; /* ADIOS: Set up the adios communications and buffers, open the file. */ if (send_to_b) { sprintf(adios_filename, "adios_a_to_b.bp"); adios_init("adios_config.xml", adios_comm); } int index, i; for (index = 0 ; index < iterations ; index++ ) { /* Do some exchanges with neighbors */ do_neighbor_exchange(); /* "Compute" */ compute(index); /* Write output */ //my_printf("a"); for (i = 0; i < NX; i++) { t[i] = index*100.0 + myrank*NX + i; } for (i = 0; i < NY; i++) { p[i] = index*1000.0 + myrank*NY + i; } if (send_to_b) { TAU_PROFILE_TIMER(adiostimer, "ADIOS send", __FILE__, TAU_USER); TAU_PROFILE_START(adiostimer); if (index == 0) { adios_open(&adios_handle, "a_to_b", adios_filename, "w", adios_comm); } else { adios_open(&adios_handle, "a_to_b", adios_filename, "a", adios_comm); } /* ADIOS: Actually write the data out. * Yes, this is the recommended method, and this way, changes in * configuration with the .XML file will, even in the worst-case * scenario, merely require running 'gpp.py adios_config.xml' * and typing 'make'. */ #include "gwrite_a_to_b.ch" /* ADIOS: Close out the file completely and finalize. * If MPI is being used, this must happen before MPI_Finalize(). */ adios_close(adios_handle); TAU_PROFILE_STOP(adiostimer); #if 1 if (!announced) { SOS_val foo; foo.i_val = NX; SOS_pack(example_pub, "NX", SOS_VAL_TYPE_INT, foo); SOS_announce(example_pub); SOS_publish(example_pub); announced = true; } #endif } MPI_Barrier(MPI_COMM_WORLD); } MPI_Barrier(MPI_COMM_WORLD); if (send_to_b) { adios_finalize(myrank); } my_printf("Worker A exting.\n"); //MPI_Comm_free(&adios_comm); TAU_PROFILE_STOP(timer); /* exit */ return 0; }
int main (int argc, char ** argv) { char filename [256] = "stream.bp"; int rank, size; int NX, NY; int len, off; double *t = NULL; MPI_Comm comm = MPI_COMM_WORLD; int64_t adios_handle; uint64_t adios_groupsize, adios_totalsize; uint64_t start[2], count[2]; ADIOS_SELECTION *sel; int steps = 0; MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); // ADIOS read init adios_read_init_method (ADIOS_READ_METHOD_BP, comm, "verbose=3"); ADIOS_FILE* fp = adios_read_open_file ("kstar.bp", ADIOS_READ_METHOD_BP, comm); assert(fp != NULL); ADIOS_VARINFO* nx_info = adios_inq_var( fp, "N"); ADIOS_VARINFO* ny_info = adios_inq_var( fp, "L"); NX = *((int *)nx_info->value); NY= *((int*)ny_info->value); len = NX / size; off = len * rank; if (rank == size-1) len = len + NX % size; printf("\trank=%d: NX,NY,len,off = %d\t%d\t%d\t%d\n", rank, NX, NY, len, off); assert(len > 0); t = (double *) malloc(sizeof(double) * len * NY); memset(t, '\0', sizeof(double) * len * NY); assert(t != NULL); start[0] = off; start[1] = 0; count[0] = len; count[1] = NY; sel = adios_selection_boundingbox (2, start, count); // ADIOS write init adios_init ("adios.xml", comm); remove (filename); //int ii; //for(ii = 0; ii<10; ii++){ // for (i = 0; i < len * NY; i++) // t[i] = ii*1000 + rank; while(adios_errno != err_end_of_stream && adios_errno != err_step_notready) { steps++; // Reading adios_schedule_read (fp, sel, "var", 0, 1, t); adios_perform_reads (fp, 1); // Debugging //for (i = 0; i < len*NY; i++) t[i] = off * NY + i; printf("step=%d\trank=%d\t[%d,%d]\n", steps, rank, len, NY); // Writing adios_open (&adios_handle, "writer", filename, "a", comm); adios_groupsize = 4*4 + 8*len*NY; adios_group_size (adios_handle, adios_groupsize, &adios_totalsize); adios_write (adios_handle, "NX", &NX); adios_write (adios_handle, "NY", &NY); adios_write (adios_handle, "len", &len); adios_write (adios_handle, "off", &off); adios_write (adios_handle, "var_2d_array", t); adios_close (adios_handle); // Advance MPI_Barrier (comm); adios_advance_step(fp, 0, TIMEOUT_SEC); } free(t); MPI_Barrier (comm); adios_read_close(fp); if (rank==0) printf ("We have processed %d steps\n", steps); MPI_Barrier (comm); adios_read_finalize_method(ADIOS_READ_METHOD_BP); adios_finalize (rank); MPI_Finalize (); return 0; }